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The Shumba watershed, located in the province of Jaén, played an essential role in the 

ecological balance and water supply of the region. The objective of this study was to 

analyze changes in land cover and land use between 1998 and 2024, using spectral indices 

of vegetation, soil, and water derived from Landsat 5 and 8 images. The processing was 

performed in Google Earth Engine and ArcGIS 10.5, applying the Random Forest 

algorithm for supervised classification. The results indicate an increase of 2708.11 ha in 

the category “Mosaic of crops, pastures and natural spaces” and 122.50 ha in “Continuous 

urban fabric”. In contrast, reductions were recorded in “Shrub/herbaceous vegetation” (-

1867.32 ha), “High dense forest” (-462.86 ha), “Transient crops” (-446.25 ha), and “Bare 

land” (-54.17 ha). Validation of the classification yielded an overall accuracy of 0.90 and 

a Kappa coefficient of 0.88, which supports the reliability of the results. These changes 

show significant transformations in the landscape, providing key information for 

territorial planning and the implementation of environmental conservation policies.  
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1. INTRODUCTION

As globalization, climate change, consumption, and 

population growth exert greater pressure on finite land 

resources, it is essential to understand and monitor the drivers 

of these changes, as well as the ecological implications, from 

local to global scales [1]. The expansion of agriculture plays 

an important role in the transformation of the landscape, 

causing significant challenges for the conservation of different 

ecosystems around the world. Statements indicate that the 

agricultural area could increase by 14% between 2010 and 

2030; this would generate greater pressure on forested areas 

and/or shrub vegetation [2, 3].  

Land cover and land use (LULC) changes are generated by 

biological, physical and social interactions; endogenous and 

exogenous factors; technological advances; economic and 

population growth, following a stochastic behavior [4-6]. 

These changes turn out to be negative, mainly for the existing 

biodiversity and functioning of ecosystems. Furthermore, 

erosion processes and loss of soil fertility, decrease in water 

quality, and loss of habitats are enhanced; consequently, it 

ends up affecting the provision of environmental goods and 

services [6-8].  

Watersheds are important natural hydrological units that 

allow the storage and transport of water resources and 

nutrients throughout their area, while supporting different 

ecological communities [9, 10]. Changes in the volume and 

rate of runoff resulting from variations in land use and land 

cover can erode the soil and thereby increase the amount of 

sediment transported, generating flooding problems in the 

lower areas of the watershed [11]. In that sense, the ecosystem 

function of flood control and water purification is affected; 

therefore, to ensure the proper functioning of these ecosystems, 

it is necessary that resource management and conservation 

include analysis of land cover and land use changes in 

watersheds [12].  

The Shumba watershed, with an area of 34204.39 ha, plays 

a strategic role in providing key ecosystem services for the 

districts of Jaen, San Jose del Alto, Huabal, Las Pirias, and 

Bellavista. This watershed is integrated into the hydrographic 
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system of the Chinchipe River, which contributes significantly 

to the flow of the Marañon River, a major tributary of the 

Amazon Basin. From a hydrological perspective, the Shumba 

watershed supplies water to more than 40000 inhabitants [13] 

and irrigates nearly 1500 ha of agricultural land (Junta de 

Usuarios del Sector Hidraulico Menor Jaén – San Ignacio), 

making it an essential source for human consumption, family 

agriculture, and productive activities in the area. In addition, 

its surface flows have been identified as contributing to the 

stability of the Marañón water regime, especially during the 

dry season, acting as a natural regulator in the face of climate 

variability [14]. 

This basin harbors remnants of tropical montane forest and 

areas of highly diverse herbaceous vegetation, which provide 

critical habitats for different species. Several investigations on 

biodiversity in montane ecosystems indicate that the 

altitudinal gradients present in the Shumba basin promote high 

ecological heterogeneity, favoring critical biological corridors 

for migratory birds and local fauna [15]. In addition, recent 

studies show that inter-Andean watersheds with remnant 

forest cover, such as Shumba, play a relevant role in carbon 

sequestration, erosion mitigation, and provision of clean water 

[16, 17]. These functions are key to addressing the cumulative 

impacts of climate change, agricultural expansion, and urban 

sprawl [18, 19]. Given its ecological, functional, and 

hydrological relevance, the Shumba watershed represents a 

priority unit for scientific research, natural resource 

conservation, and sustainable territorial planning in the 

context of the tropical Andes. 

Large-scale and long-term monitoring methodologies are 

closely linked to the dynamic analysis of LULC 

transformations through time and space [20]. Land use and 

land cover mapping information is a primary source of 

information that serves for different research related to the 

earth system, including studies of biodiversity, climate change, 

public health, carbon cycle [21, 22], and also provides 

important information for planning urban expansion and 

natural resource management [23].  

Remote sensing represents an essential technology for the 

analysis of land cover changes at the regional, continental or 

global level [24]. Landsat 5 (1998) and Landsat 8 (2024) 

satellite images offer consistent historical coverage, adequate 

spatial resolution (30 m) for regional studies, and are freely 

available through the Google Earth Engine (GEE) platform. 

Although sensors such as Sentinel-2 present higher spatial 

resolution, their limited coverage since 2015 restricts their 

usefulness for extensive multitemporal analyses. 

Previous studies have validated the use of the Landsat series 

for land use monitoring and long-term change detection [25, 

26], especially in tropical regions with complex cloud 

conditions. Also, the implementation of GEE-based tools 

allows for efficient management of large volumes of data, 

facilitating reproducible and regional-scale analyses [20, 27]. 

In this context, this research aims to i) analyze the spatial 

and temporal changes in land cover and land use in the 

Shumba watershed between 1998 and 2024, using satellite 

imagery and supervised classification techniques, ii) evaluate 

the accuracy of the supervised classification using the Random 

Forest algorithm, and iii) identify the main conversion and 

persistence processes between LULC classes using transition 

matrices. 

 

 

2. METHODOLOGY 

 
2.1 Location of the study area 

 

The Shumba watershed has an area of 34204.39 ha, 

covering part of the districts of San Jose del Alto, Jaen, Huabal, 

Las Pirias, and Bellavista, province of Jaen, Cajamarca region. 

Hydrographically, Shumba is part of the Chinchipe Basin and 

the Upper Marañon III Interbasin (Figure 1). It is located at 

parallels 5° 40' 0'' and 5° 28' 0'' south latitude and meridians 

78° 56' 0'' and 78° 44' 0'' west longitude, with an altitudinal 

gradient that ranges between 372 and 2464 m.a.s.l. 

 

 

 
 

Figure 1. Location of the Shumba watershed 
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2.2 Methodological design 

 

Figure 2 shows the methodological flowchart to determine 

land cover and land use changes in the study area, using remote 

sensing techniques and geographic information systems (GIS). 

 

 
 

Figure 2. Methodological flowchart to determine the land 

cover and land use in the Shumba watershed in the district 

and province of Jaen-Cajamarca 

 

2.3 Spatial information  

 

The study area was delimited using a vector file (shapefile) 

of Shumba Creek and a digital elevation model (DEM) from 

the Shuttle Radar Topography Mission (SRTM) with a spatial 

resolution of 30 meters, available on the Google Earth Engine 

platform [28]. This information was processed in the ArcGIS 

10.5 software. 

The temporal analysis covered the years 1998 and 2024. 

Landsat 5 and Landsat 8 satellite images (level 2, collection 2) 

were used, with a spatial resolution of 30 m and a maximum 

cloud cover of 30%. The images were obtained from the 

United States Geological Survey (USGS) (Table 1) repository 

and processed using the Google Earth Engine platform [27]. 

 

2.4 Obtaining LULC maps 

 

For supervised classification, the Random Forest algorithm 

[29] was applied, which constructs multiple decision trees to 

generate a final class by majority voting. Hundred trees were 

set up (ntree=100) and √m (where m is the number of predictor 

variables) was used as the mtry value, following the 

recommendations for multispectral analysis [30]. 

To ensure a statistically robust representation, 

homogeneous and well-defined training areas were identified 

and selected to prominently represent the spectral and spatial 

characteristics of each land use and land cover class. The 

selection process was carried out using simplified random 

sampling, which allowed us to adequately capture the internal 

variability of each class and maximize the representativeness 

of the samples in the classifier training. In total, 18 training 

areas were used, with a cumulative surface of 477 pixels, 

covering all the defined thematic classes. For validation, 18 

independent areas, equivalent to 44% of the total number of 

training pixels, with an area of 369 pixels, were used. This 

proportion guarantees an objective and statistically consistent 

evaluation of the performance of the supervised classification 

model [31], which was followed for all classes except the 

airport class, where it was performed manually. 

LULC classes were defined according to the Corine Land 

Cover methodology adapted for Peru, and include: continuous 

urban fabric (Tuc), airports (Ae), transient crops (Ct), crop 

mosaic, pasture and natural spaces (Mcpen), tall dense forest 

(Bda), shrub/herbaceous vegetation (Var/Her) and bare land 

(Td) (Table 2) [32]. 

 

2.5 Spectral indices 

 

The following spectral indices were used: NDVI, EVI, 

SAVI, BSI, NDMI, and MNDWI (Table 3). The use of 

Enhanced Vegetation Index (EVI) was prioritized over NDVI 

and NDVIre due to its better performance in areas with high 

vegetation cover, such as the Shumba watershed. EVI 

minimizes the saturation effect of NDVI in dense cover and is 

less sensitive to atmospheric and soil interference [33]. The 

NDVIre index was not considered since it requires bands in 

the red-edge region, absent in Landsat sensors.

 
Table 1. Description of Landsat 5 and Landsat 8 data acquired 

 

Name Name Scale 
Wavelength 

(μm) 
Description 

Landsat 5 

SR_B1 2.75e- 05 0.45- 0.52 Band 1 surface reflectance (blue) 

SR_B2 2.75e-05 0.52-0.60 Band 2 surface reflectance (green) 

SR_B3 2.75e-05 0.63-0.69 Band 3 surface reflectance (red) 

SR_B4 2.75e-05 0.77-0.90 Band 4 surface reflectance (near infrared) 

SR_B5 2.75e-05 1.55-1.75 Band 5 surface reflectance (shortwave infrared 1) 

SR_B7 2.75e-05 2.08-2.35 Band 7 surface reflectance (shortwave infrared 2) 

Landsat 8 

SR_B1 2.75e- 05 0.435-0.451 Band 1 surface reflectance (ultra-blue, coastal aerosol) 

SR_B2 2.75e-05 0.452-0.512 Band 2 surface reflectance (blue) 

SR_B3 2.75e-05 0.533-0.590 Band 3 surface reflectance (green) 

SR_B4 2.75e-05 0.636-0.673 Band 4 surface reflectance (red) 

SR_B5 2.75e-05 0.851-0.879 Band 5 surface reflectance (near infrared) 

SR_B6 2.75e-05 1.566-1.651 Band 6 surface reflectance (shortwave infrared 1) 

SR_B7 2.75e-05 2.107-2.294 Band 7 surface reflectance (shortwave infrared 2) 
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Table 2. Land cover and land use were identified in the Shumba watershed 

 
LEVEL I LEVEL II LEVEL III CODE 

1. Artificialized areas 
1.1 Urbanized areas 1.1.1 Continuous urban fabric Tuc

 
1.2 Industrial areas and infrastructure 1.2.4 Airports Ae 

2. Agricultural areas 

2.1 Transient crops --- Ct 

2.4 Heterogeneous agricultural areas 
2.4.3 Mosaic of crops, pastures, and 

natural spaces 
Mcpen 

3. Forests and mostly 

natural areas 

3.1 Forests 3.1.3 High dense forest Bda 

3.3 Areas with herbaceous and/or 

shrub vegetation 
3.3.4 Shrub / herbaceous vegetation Var/ Her 

3.4 Areas without or with little 

vegetation 
3.4.3 Bare lands Td 

Source: Adapted from study [32]. 

 

Table 3. Spectral indices used 

 
Name Abbreviation Formula Source 

Normalized Difference 

Vegetation Index 
NDVI 𝑵𝑫𝑽𝑰 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 [34] 

Improved Vegetation 

Index 
EVI 𝑬𝑽𝑰 = 𝐶 × [

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝐶1 ×  𝑅𝐸𝐷 − 𝐶2 × 𝐵𝐿𝑈𝐸 + 𝐿)
] [35] 

Soil Adjusted Vegetation 

Index 
SAVI 𝑺𝑨𝑽𝑰 = [

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
] × (1 + 𝐿) [36] 

Bare Soil Index BSI 𝑩𝑺𝑰 =
[(𝑅𝐸𝐷 + 𝑆𝑊𝐼𝑅) − (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)]

[(𝑅𝐸𝐷 + 𝑆𝑊𝐼𝑅) + (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)]
 [37] 

Modified Normalized 

Difference Water Index 
MNDWI 𝑴𝑵𝑫𝑾𝑰 =

(𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅1)

(𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅1)
 [38] 

Normalized Difference 

Moisture Index 
NDMI 𝑵𝑫𝑴𝑰 =

(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1)
 [39] 

*where, C=2.5; C1=6; C2=7.5; L=0.5 

 

Table 4. Transition matrix, rate of change (S), and rates of change for the 7-land cover and land use classes of the study area for 

the period 1998-2024 (area in ha and %) 

 

 
2024 

Total 

1998 (ha) 

Rate of 

Change 

Loss 

(Li) 

Total 

Change 

(Ct)  

Net 

Change 

(Cn)  

Exchange 

(Int) 

Tuc Ae Ct Mcpen Bda 
Var/ 

Her 
Td % 

Tuc 67.08  38.06 6.18  6.64  117.96 2.78 43.13 190.12 103.85 86.27 

Ae   45.01    4.00  49.01 0.00 8.16 16.30 0.02 16.28 

Ct 109.72 2.38 4663.15   1304.42 9.78 6089.45 -0.29 23.42 39.52 7.33 32.19 

Mcpen 33.55   6927.63 22.10 39.99  7023.27 1.26 1.36 41.28 38.56 2.72 

Bda    484.96 148.31   633.27 -4.92 76.58 80.07 73.09 6.98 

Var/Her 30.11 1.61 938.19 2312.61  16820.81 31.20 20134.53 -0.37 16.46 23.64 9.27 14.37 

Td   3.80   91.35 61.75 156.90 -1.62 60.64 86.76 34.53 52.24 

Total 

2024 

(ha) 

240.46 49.00 5643.20 9731.38 170.41 18267.21 102.73 34204.39      

Gain 

(Gj) (%) 
146.98 8.14 16.09 39.92 3.49 7.18 26.12       

 

2.6 Thematic accuracy 

 

Classification accuracy was evaluated using confusion 

matrices, calculating overall accuracy, errors of commission 

and omission, and the Kappa index [40-42]. 

The Kappa index evaluates whether the classification has 

accurately discriminated the categories of interest, being 

calculated with Eq. (1) [43]. 

 

𝑘 =
𝑚 ∑ 𝑋𝑖𝑖 − ∑ 𝑋𝑖=1;𝑛 𝑖+

𝑋+𝑖𝑖=1;𝑛

𝑚2  − ∑ 𝑋𝑖=1;𝑛 𝑖+
𝑋+𝑖

 (1) 

 

where, n is the number of rows of the matrix, Xii is the number 

of observations in row i and column i; Xi+ and X+i are the end 

of row i and column i, and m is the total number of 

observations. 

 

2.7 Spatial-temporal intensity of the rate of change and 

transition matrices 

 

The cross-tabulation matrix was developed to determine the 

annual rate of change (S) using Eq. (2) applied by FAO [44] 

and to calculate losses or gains of land cover and land use 

classes. 
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𝑆 = (
𝑆1

𝑆1

)

1
𝑡2−𝑡1

− 1 (2) 

 

where, S1 and S2 are the dates at t1 and t2, a negative value S is 

evidence of a decrease in LULC, and if it is greater than zero, 

it indicates an increase in LULC. 

The transition matrix (Table 4) shows the land cover and 

land use classes distributed on the horizontal and vertical axes, 

corresponding to times t1 and t2, respectively. The cells located 

on the diagonal indicate the areas that remained unchanged 

between the two periods, while the other cells reflect the areas 

that were transformed from one class to another during the 

interval analyzed. In addition, the table includes a final row 

and column that sums the total areas of all classes recorded in 

t1 and t2. 

 

 

3. RESULTS 

 

3.1 Land cover and land use maps 

 

Figure 3 shows the land cover and land use maps for the 

years 1998 and 2024 in the Shumba watershed, district, and 

province of Jaen. Of the seven classes identified, the increase 

of Mosaic of pasture crops and natural spaces is observed due 

to land use change of continuous urban fabric, deforestation of 

high dense forest and herbaceous shrub vegetation; on the 

other hand, continuous urban fabric in its expansion took areas 

of transitory crops, mosaic of pasture crops and natural spaces 

and herbaceous shrub vegetation.  

The coverages that decreased their area are: 

shrub/herbaceous vegetation as the expansion took place 

continuous urban fabric, airport, transitory crop, mosaic of 

pasture crops and natural spaces, bare land; tall dense forest 

was replaced by mosaic of pasture crops and natural spaces, 

transitory crops part of its area went to the classes of bare land, 

continuous urban fabric, herbaceous shrub vegetation; 

likewise, bare land decreased its area due to the expansion of 

transitory crops and shrub/Herbaceous vegetation. 

The precision values of the generated maps were obtained 

by elaborating the confusion matrix for both years, which 

allowed the comparison of the Global Accuracy and Kappa 

index, whose values for the year 1998 were 0.93 and 0.92, 

while for the year 2024 presented a Global Accuracy of 0.90 

and a Kappa index of 0.88 (Figure 4). 

 

3.2 Rate of change (S) 

 

It is observed that the estimated rates for the period 1998-

2024 show marked changes in land cover and land use. The 

positive rate of change is shown for Tuc (2.78%) and Mcpen 

(1.26%), which increased in extent, due to the loss of other 

cover classes, e.g., Ct (-0.29%) and Var/Her (-0.37%). The 

reduction of Bda, which presents a higher negative annual rate 

of change (-4.92%) due to the increase of Mcpen, followed by 

Td (-1.62%) due to the extension of the Ct and Var/Her 

boundary (Table 4). 

 

 
 

Figure 3. Map of land cover and land use in the Shumba  watershed, district and province of Jaen 
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Figure 4. Global precision values and kappa index for the Shumba  watershed 

 

3.3 Evaluation of land cover and land use changes 

 

3.3.1 At the period and surface level 

The spatial-temporal dynamics of land cover and land use 

(LULC) of the Shumba watershed in the 26-year period 

showed an increase of 7.92% (2708.11 ha), in mosaic crops, 

pastures and natural spaces, 0.36% (122.50 ha) continuous 

urban fabric, and, as for the classes that present loss in their 

area were shrub/herbaceous vegetation -5.46% (-1867.32 ha), 

high dense forest -1.35% (-462.86 ha), transitory crop -1.30% 

(-446.25 ha) and bare land -0.16% (-54.17 ha), the class that 

did not present variation in its area is airports (Table 5 and 

Figure 5).

 

Table 5. Land cover and land use in the Shumba watershed, 1998-2024 

 
Land Cover and Land Use 

(LULC) 
Symbology 1998 % 2024 % 1998-2024 % 

Continuous urban fabric Tuc
 

117.96 0.34 240.46 0.70 122.50 0.36 

Airports Ae 49.01 0.14 49.00 0.14 -0.01 0.00 

Transient crops Ct 6089.45 17.80 5643.20 16.50 -446.25 -1.30 

Mosaic of crops, pastures, and 

natural spaces 
Mcpen 7023.27 20.53 9731.38 28.45 2708.11 7.92 

Highly dense forest Bda 633.27 1.85 170.41 0.50 -462.86 -1.35 

Shrub/Herbaceous vegetation Var/ Her 20134.53 58.87 18267.21 53.41 -1867.32 -5.46 

Bare lands Td 156.90 0.46 102.73 0.30 -54.17 -0.16 

Total 34204.39 100 34204.39 100   

 

 
 

Figure 5. Spatial-temporal dynamics of land cover and land use classes in the Shumba watershed, 1998-2024 

 

3.3.2 At the level of change indices 

The Tuc and Mcpen classes had the greatest change in area 

in the Shumba watershed (net change) of 103.85% and 38.56% 

(Table 4), with area gains of 146.98% and 39.92%, 
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respectively (Figure 6). Likewise, the classes Bda, Td, 

Var/Her, Ct, Ae, presented net changes of 73.09%, 34.53%, 

9.27%, 7.33%, 0.02% (Table 4) over the 26-year period, with 

losses ranging from -76.58%, -60.64%, -16.46%, -23.42%, 

and -8.16%, respectively (Figure 6). 

 

 
 

Figure 6. Gains and losses of land cover and land use classes in the Shumba watershed, 1998-2024 

 

3.3.3 At the level of transitions by classes 

Through the analysis of the transition matrices, it is 

observed that the Var/Her transformation was generated by the 

expansion of Tuc (30.11 ha), Ae (1.61 ha), Ct (938.19 ha), 

Mcpen (2312.61 ha) and Td (31.20 ha); Bda was towards a 

process of expansion of the Mcpen mosaic border (484.96 ha), 

on the other hand, Ct were transformed to Td (9.78 ha), Tuc 

(109.72 ha), Ae (2.38 ha), Var/Her (1304.42 ha); finally, Td 

changed to Ct (3.8 ha) and Var/Her (91.35 ha) (Table 4). 

 

 

4. DISCUSSIONS 

 
The results of the Global Accuracy and Kappa index 

showed acceptable accuracy values (Kappa index between 

0.88 and 0.92 and Global Accuracy between 0.90 and 0.93), 

for the case of the global accuracy of the maps exceeded 80% 

(indicated as minimum threshold for a reliable land cover and 

land use classification [45-47], similar results were observed 

in the Kappa statistic which showed strong correlation 

between the classified map and the actual values on the 

ground, accurately reflecting the land cover and land use in the 

Shumba  watershed [48], in general, it can be stated that 

through the methodology used it is possible to generate 

cartographic information with spatial and temporal coherence 

[41, 46, 49, 50], however, the maps generated are often subject 

to errors of commission and omission [51]; for this study, 

errors of commission were minimized through the use of 

NDVI which allows analyzing changes generated in 

vegetation cover [51-53], while omission errors are related to 

the spatial resolution, which can underestimate or 

overestimate other land uses [51], therefore, it was chosen to 

use Landsat 5 and Landsat 8 satellite images, with a spatial 

resolution of 30 m and maximum cloudiness of 30%. 

The results of the study show that Mcpen and Var/Her are 

the coverages with the greatest distribution in the Quebrada 

Shumba watershed for the two years of study (1998-2024). A 

clear dynamic is shown in the surface changes of these two 

coverages. For the case of Var/Her, the loss was 1867.32 ha 

for the period of analysis, being the reflection of the 2708.11 

ha increase of Mcpen [6, 54].  

In the case of Tuc and Mcpen, these are the two coverages 

that increased in area by 2024 with respect to the area reported 

in 1998. Tuc increased by 122.5 ha, while Mcpen increased by 

2708.11 ha, while Bda decreased by 462.86 ha, and Var/Her 

decreased by 1867.32 ha. These results are in agreement with 

those reported in different research studies which indicate that 

the advance of the agricultural and livestock frontier, replacing 

forests with crops and/or pastures, and urban expansion tend 

to decimate wooded and/or shrub areas, decreasing the areas 

for natural regeneration, as can be seen in the results of the 

present research, in which an increase in Tuc was observed 

(+122.50 ha / +0.36%) which is a clear indicator of the 

urbanization process within the watershed associated mainly 

with population growth [41, 49]. 

Spatial analysis showed a positive correlation between 

urban growth and population increase in districts such as Jaén, 

where a 35% increase was recorded between 1993 and 2017 

according to [13]. The expansion of the continuous urban 

fabric (Tuc) was greater in the vicinity of main access roads, 

reflecting the concentrated urbanization pattern. Furthermore, 

correlation analysis between LULC change and distance to 

urban centers and rivers suggests that socioeconomic factors 

and geographic accessibility are key drivers of change [5, 55]. 

Finally, the area in Ct (-446.25 ha / -1.30%) and Td (-54.17 ha 

/ -0.16%) decreased; the former could be associated with land 

use change towards perennial crops, soil degradation, which 

generates the abandonment of these lands, effects of climate 

change; while the latter could suggest that some degraded soils 

have recovered or reforested and/or are colonized by natural 

vegetation or crops. 

The results obtained in the Shumba basin reflect a regional 

pattern of transformation of the Andean landscape, associated 

with agricultural expansion, deforestation, and unplanned 

urbanization. Studies such as those of findings in study [41] in 

livestock micro-watersheds in Amazonas and study [50] in the 

La Leche river basin show similar conversion patterns. 

Likewise, research in high Andean watersheds in Ecuador and 

Bolivia has reported accelerated loss of forest cover due to 

agricultural advancement and population pressure [16, 18].  

These dynamics respond to socioeconomic factors, such as 

the demand for productive land, disjointed agricultural 

policies and internal migratory processes, leading to a constant 

expansion of the areas, which could lead to loss of biodiversity, 
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erosion, change of microclimates and contamination of soil 

and water resources, affecting people's livelihoods [49], this 

highlights the need for integrated regional territorial 

management strategies. The factors that influence LULC 

changes have varied over time. Initially, these processes were 

mainly determined by natural conditions, such as slope, 

altitude, soil type, and proximity to water sources. However, 

nowadays, human influence has become more relevant, 

highlighting aspects such as economic development, public 

policies, and technological advances [55, 56].  

The use of remote sensing has been key to monitor changes 

in land cover and land use, providing a clear picture of the 

current state of the study area [46, 57], however, in recent 

years new technologies have emerged that have significantly 

expanded analysis capabilities, such as Google Earth Engine 

(GEE), radar imagery, and Remotely Piloted Aircraft Systems 

(RPAS) [41], which can incorporate hyperspectral cameras 

and machine learning algorithms for more accurate and 

detailed assessment. 

The delimitation of an agroecological “red line” is proposed 

in areas where more than 30% of the agricultural mosaic has 

been replaced by urban areas or degraded lands. This line 

should be used to establish buffer strips with incentives for 

agroforestry practices and ecological restoration, especially in 

the middle parts of the watershed. In addition, it is 

recommended that compensation mechanisms for ecosystem 

services be implemented for producers who conserve remnants 

of native vegetation, as a strategy for sustainable territorial 

governance [58]. 

An important limitation of the present study is the use of 

single-phase images (one season per year), which prevents us 

from fully capturing the seasonal variability of dynamic land 

covers such as transient crops or herbaceous vegetation. It is 

recommended that future research integrate multi-temporal 

series in different climatic seasons (dry and wet), with sensors 

such as Sentinel-2, which allow higher temporal frequency and 

spectral resolution useful to distinguish phenological 

variations [59, 60]. 

 

 

5. CONCLUSIONS 

 

The multitemporal analysis of land cover and land use in the 

Shumba watershed between 1998 and 2024 showed significant 

transformations, dominated by the increase in the mosaic of 

crops, pastures, and natural spaces (+2708.11 ha) and the 

expansion of the continuous urban fabric (+122.50 ha). These 

changes occurred at the expense of shrub/herbaceous 

vegetation, tall dense forest, and transient crops, indicating a 

trend towards the loss of natural ecosystems and increasing 

anthropic pressure on the territory's resources. The supervised 

classification using Random Forest showed high levels of 

precision (0.90-0.93), validating the reliability of the maps 

generated. As an action measure, it is recommended to 

implement an active restoration strategy of at least 500 ha of 

high-density forest in areas of high loss, prioritizing areas with 

medium slopes and high ecological fragility. It is also 

proposed to establish an “agroecological red line” to protect at 

least 1,500 ha of agricultural mosaics with potential for urban 

conversion, applying compensation mechanisms for 

ecosystem services and land use regulation. The results of this 

study not only constitute a robust technical basis for territorial 

planning in the Shumba basin, but also a strategic input for 

designing policies for the conservation, restoration, and 

sustainable use of Andean ecosystems in the face of the 

challenges of global change. 
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