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Preventive maintenance (PM) is essential for enhancing reliability, safety, and cost-

efficiency in industrial systems by significantly reducing failure rates through systematic 

interventions. This paper conducts a comparative analysis of three advanced optimization 

methods-Simulated Annealing (SA), Genetic Algorithms (GAs), and Ant Colony 

Optimization (ACO)-to determine their effectiveness in improving PM strategies. Each 

method is evaluated based on its ability to optimize maintenance schedules, reduce failure 

rates, enhance system security, and minimize costs. SA demonstrates robustness in 

solving complex, non-linear problems, balancing risk mitigation and system security. GA 

excel in optimizing PM schedules, achieving notable reductions in failure rates and 

maintenance costs. ACO, with its cooperative approach, is highly effective in cost 

minimization while maintaining competitive reliability outcomes. The study also explores 

the challenges of imperfect maintenance, where systems are partially restored to an 

intermediate state, assessing its impact on reliability and operational stability. The 

findings emphasize that integrating advanced optimization techniques into PM planning 

significantly mitigates risks associated with imperfect maintenance, ensures efficient 

resource allocation, and enhances system resilience. This study underscores the critical 

role of optimized PM strategies in maintaining secure, reliable, and cost-effective 

industrial operations, providing a foundation for further advancements in maintenance 

engineering. 
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1. INTRODUCTION

In the modern industrial landscape, the reliability, security, 

and cost-effectiveness of systems are paramount for 

maintaining competitive advantage and operational efficiency. 

Preventive maintenance (PM) has long been recognized as a 

crucial strategy for minimizing system downtimes and 

extending the lifespan of equipment. The impact of PM on 

system performance, particularly in terms of reducing failure 

rates, enhancing system security, and optimizing costs, has 

been the subject of extensive research. Recent advancements 

in computational techniques, data-driven methodologies, and 

emerging technologies such as the Internet of Things (IoT), 

artificial intelligence (AI), and digital twins have further 

revolutionized maintenance strategies, enabling more efficient 

and proactive approaches. 

The integration of optimization methods in PM has 

significantly improved operational efficiency and system 

security. Wang et al. [1] emphasized the role of advanced 

optimization in systematically identifying and mitigating risks 

through optimized maintenance schedules. Their research 

suggests that well-planned PM can preemptively address 

vulnerabilities, thereby bolstering system defenses against 

potential failures and security breaches. Similarly, Pereira et 

al. [2] proposed a Particle Swarm Optimization (PSO) 

approach for non-periodic PM scheduling, demonstrating its 

effectiveness in maximizing system availability while 

considering realistic factors such as repair probabilities, costs, 

and imperfect maintenance. 

Recent advancements in optimization techniques have 

further augmented the efficacy of PM strategies. GA have 

emerged as a powerful tool for PM optimization due to their 

ability to explore large solution spaces and handle complex, 

non-linear problems. By mimicking natural selection and 

evolution, GA can efficiently identify optimal maintenance 

schedules that balance cost, reliability, and resource 

constraints. For instance, Kamel et al. [3] developed a PM 

scheduling model to optimize costs and improve the effective 

age of machines in complex repairable systems. Their model 

minimizes total maintenance costs-including random failure, 

repair, replacement, and downtime costs-while ensuring 

defined levels of availability and reliability. Multilevel 

maintenance actions (inspection, repair, and replacement) are 

planned over the entire horizon. A GA implemented in 

MATLAB provided near-optimal solutions, and when applied 

to a Chloride Sodium factory, the model reduced total 

maintenance costs by 34%. Similarly, Fitri et al. [4] 

highlighted the importance of maintenance management in 
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ensuring industrial profitability by minimizing costs due to 

machine failures. The study focused on optimizing PM to 

maximize machine reliability while minimizing costs. The 

company’s current maintenance policy, conducted every two 

months, faced implementation challenges. To address this, the 

authors proposed a steady-state GA optimization method, 

utilizing three fitness functions: (1) weighted total costs and 

reliability, (2) budget constraints, and (3) target reliability. 

Inputs included time-to-failure distribution parameters, costs, 

and GA iterations. Using a Weibull distribution (λ=0.00184, 

β=1.38194), three PM schedules for a 24-month period were 

generated. Fitness function 1 yielded a total cost of 28.66 

million rupiahs with 91.78% reliability, function 2 resulted in 

29.75 million rupiahs with 92.47% reliability, and function 3 

achieved 30.79 million rupiahs with 92.52% reliability. These 

studies demonstrate the versatility and effectiveness of GA in 

addressing diverse PM challenges, from cost optimization to 

reliability enhancement, across various industrial applications. 

Furthermore, the concept of imperfect maintenance, where 

maintenance actions restore the system to a state between "as 

good as new" and "as bad as old," poses additional challenges. 

This means that after maintenance, the system's reliability is 

improved, but not to the level of a brand-new system. This 

concept is crucial because in real-world scenarios, 

maintenance actions are often imperfect due to various factors 

such as human error, limited resources, and the complexity of 

the system. Models such as the age reduction model and the 

virtual age model are commonly used to describe this 

phenomenon. These models help to quantify the degree of 

improvement achieved through maintenance, allowing for 

more accurate predictions of system reliability. The impact of 

imperfect maintenance on system reliability is significant 

because it affects the system's hazard rate and reliability 

function. Specifically, imperfect maintenance can reduce the 

hazard rate, but not to zero, and increase the reliability, but not 

to 100%. Therefore, it is essential to consider the effects of 

imperfect maintenance when planning and optimizing PM 

strategies. This consideration allows for more realistic and 

effective maintenance scheduling, ultimately leading to 

improved system performance and reduced operational risks. 

This theoretical background is vital for understanding the 

complexities of real-world maintenance scenarios and for 

developing robust optimization strategies [5]. 

Wu et al. [6] applied a condition-based imperfect 

maintenance model to power systems, showing its 

effectiveness in reducing system failure risks and improving 

maintainability. Wang et al. [7] further advanced this concept 

by proposing an imperfect opportunistic maintenance model 

for a two-unit series system, integrating deterioration levels 

and usage data to optimize maintenance actions and minimize 

costs. These studies highlight the importance of considering 

imperfect maintenance in PM strategies to achieve realistic 

and effective maintenance scheduling. 

Recent research has also focused on the integration of 

predictive maintenance (PdM) techniques, which leverage 

real-time data and machine learning algorithms to anticipate 

equipment failures before they occur. Jardine et al. [8] laid the 

foundation for PdM by emphasizing the use of condition 

monitoring and data-driven approaches to anticipate 

equipment failures, significantly reducing downtime and 

maintenance costs. Hu et al. [9] extended this approach by 

proposing a dynamic, cost-effective PM policy for machines 

under progressively changing operating conditions, 

demonstrating its practical application and effectiveness. 

The application of Group Technology (GT) in PM planning 

has also gained traction. Alhourani et al. [10] proposed a PM 

planning method using the similarity coefficient approach, 

grouping machines into virtual cells based on their common 

failures and maintenance needs. This approach improves 

efficiency by standardizing maintenance processes and 

optimizing resource allocation. Abdelhadi et al. [11] 

demonstrated the impact of applying GT for PM on reducing 

stockroom operational costs, enhancing PM planning through 

the formation of virtual PM cells. 

In the context of risk-based maintenance (RBM), Li et al. 

[12] developed a risk-based model for subsea pipelines subject 

to pitting corrosion, using a dynamic Bayesian network (DBN) 

and Bayesian influence diagram (BID) to optimize 

maintenance decisions. De-León-Escobedo [13] further 

advanced this approach by proposing a risk-based process for 

assessing the optimal maintenance time for oil and gas 

pipelines on a sustainable and life-cycle basis. Energy-aware 

scheduling under Time-of-Use (TOU) pricing has also been 

explored, with Sin and Do Chung [14] developing a bi-

objective mixed-integer non-linear programming model to 

minimize electricity costs and machine unavailability. Their 

Hybrid Multi-Objective Genetic Algorithm (HMOGA) 

demonstrated superior performance in balancing these 

objectives. Additionally, Huang et al. [15] addressed the 

problem of minimizing makespan on a single batch processing 

machine with flexible periodic PM, proposing a hybrid method 

combining batching rules and a modified GA to optimize job 

grouping and maintenance planning. 

This paper delivers a comprehensive investigation into the 

transformative impact of PM on industrial systems, 

specifically targeting enhancements in reliability, system 

security, and cost-effectiveness. Through systematic 

preventive actions, PM significantly reduces failure rates, a 

critical factor for operational stability. This study advances the 

field by conducting a robust comparative analysis of three 

state-of-the-art optimization methods-SA, GA, and ACO-to 

identify the most effective strategies for optimizing PM 

interventions. 

SA is recognized for its resilience in navigating complex, 

non-linear optimization landscapes, effectively avoiding local 

minima. GA, leveraging evolutionary mechanisms, excel in 

exploring extensive solution spaces, optimizing PM schedules 

to minimize failure rates and costs. ACO, inspired by 

collective intelligence, is distinguished by its rapid 

convergence and efficiency in continuous optimization 

problems. 

Our findings reveal that GA achieve the most substantial 

failure rate reductions, while ACO demonstrates exceptional 

cost minimization capabilities. SA delivers balanced 

improvements, excelling in system security and risk mitigation. 

The study also addresses the challenges of imperfect 

maintenance, where systems are only partially restored, by 

showcasing how optimized PM strategies mitigate reliability 

degradation and resource inefficiencies. 

This research underscores the critical role of advanced 

optimization techniques in revolutionizing PM planning, 

enabling industries to achieve unparalleled system uptime, 

operational resilience while also reducing associated risk 

factors, and cost efficiency. The presented methodologies pave 

the way for future innovations in maintenance engineering, 

offering a strategic framework for managing complex 

industrial systems under diverse operational constraints. 
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2. IMPERFECT MAINTENANCE STRATEGIES: 

ANALYZING COST AND RELIABILITY USING THE 

GERTSBAKH MODEL 

 

In the realm of system maintenance, traditional approaches 

often involve periodic replacements, where components are 

entirely replaced at regular intervals. However, for certain 

systems, this strategy may not be the most economical or 

practical solution. Imperfect maintenance emerges as a viable 

alternative, offering a more cost-effective approach to 

extending the lifespan of components and optimizing system 

reliability. 

Unlike periodic replacement, imperfect maintenance 

focuses on performing interventions that aim to reduce the 

failure rate of a component without eliminating it entirely. 

This approach is particularly well-suited for systems that can 

benefit from extended service life through partial overhauls or 

repairs. 

Consider the example of an industrial machine that 

undergoes periodic partial revisions. After a certain number of 

partial revisions, the machine receives a more comprehensive 

general overhaul. This exemplifies imperfect maintenance, as 

the interventions gradually reduce the failure rate but do not 

completely restore the machine to its original state. 

The impact of imperfect maintenance on the system's failure 

rate is crucial to consider. After each maintenance action, the 

failure rate settles at a level between its initial state (before 

maintenance) and its state just before the imperfect 

maintenance. This dynamic behavior necessitates careful 

monitoring and evaluation of the maintenance strategy's 

effectiveness. 

The Gertsbakh model provides a simplified framework for 

analyzing the impact of imperfect maintenance on system 

reliability and cost. This model assumes a constant effect from 

all PMs, causing the failure rate to decrease exponentially by 

a factor of e α (where α is a positive value) after each 

maintenance [16]. 

The average cost per unit of time, represented by the 

function C(T): 

 
𝐶(𝑇)

=
𝐶𝑐 . 𝐻(𝑇) (1 + 𝑒α + ⋯ + 𝑒α(K−1)) + (𝐾 − 1)𝐶𝑝 + 𝐶𝑜𝑣

𝐾𝑇
 

(1) 

 

Underlying Assumptions for Cost Analysis: 

1) Minimal repair after a failure: The assumption of 

minimal repair implies that after a failure, the system 

is restored to a condition where its failure rate 

remains unchanged. This is consistent with a non-

homogeneous Poisson process (NHPP), where the 

intensity function depends on time. 

Physical Meaning: Minimal repair does not improve the 

system’s overall reliability but merely restores it to its pre-

failure state. This is realistic for complex systems where 

repairs address only the immediate cause of failure without 

eliminating underlying wear and tear. 

2) Weibull distribution for system failure: The 

system’s failure distribution follows a Weibull model 

with a shape parameter β and scale parameter η. The 

assumption γ=0 implies that the system has no initial 

failure-free period (i.e., failures can occur 

immediately after installation). 

Physical Meaning: The Weibull distribution is widely used 

to model systems with time-dependent failure rates. The shape 

parameter β determines whether the failure rate increases 

(β>1), decreases (β<1), or remains constant (β=1) over time 

[17]. 

 

The cumulative hazard function H(T) for a Weibull 

distribution is derived as follows: 

 

𝐻(𝑇) = ∫
𝛽

𝜂
[
𝑡

𝜂
]

𝛽−1

𝑑𝑡
𝑇

0

=
𝛽

𝜂
∫ [

𝑡

𝜂
]

𝛽−1

𝑑𝑡
𝑇

0

 (2) 

 

This represents the integral of the Weibull hazard rate over 

time T. 

 

Simplification by factoring out constants. 

 

𝐻(𝑇) =
𝛽

𝜂
∫ [

𝑡𝛽−1

𝜂𝛽−1
] 𝑑𝑡

𝑇

0

=
𝛽

𝜂𝛽
∫ 𝑡𝛽−1𝑑𝑡

𝑇

0

 (3) 

 

Integration of 𝑡𝛽−1 yields 
𝑡𝛽

𝛽
 

 

𝐻(𝑇) =
𝛽

η𝛽
[
tβ

β
]

0

𝑇

=
𝛽

η𝛽
∗ (

𝑇β

β
− 0) (4) 

 

𝐻(𝑇) =
𝑇β

η𝛽
 (5) 

 

By substituting this equation into the Gertsbakh model Eq. 

(1), we obtain: 

 
𝐶(𝑇)  

=
𝐶𝑐 . (𝑇𝛽 𝜂𝛽⁄ )(1 + 𝑒α + ⋯ + 𝑒α(K−1)) + (𝐾 − 1)𝐶𝑝 + 𝐶𝑜𝑣

𝐾𝑇
 

(6) 

 

Separate the terms involving 𝑇𝛽 and the constant terms. 

Hence, 

 

𝐶(𝑇) =
𝐶𝑐 . 𝑇𝛽(1 + 𝑒α + ⋯ + 𝑒α(K−1))

𝐾𝑇𝜂𝛽

+
(𝐾 − 1)𝐶𝑝 + 𝐶𝑜𝑣

𝐾𝑇
 

(7) 

 

Therefore, 

 

𝐶(𝑇) =
𝐶𝑐 . 𝑇𝛽−1(1 + 𝑒α + ⋯ + 𝑒α(K−1))

𝐾𝜂𝛽

+
(𝐾 − 1)𝐶𝑝 + 𝐶𝑜𝑣

𝐾𝑇
 

(8) 

 

This formula represents our objective function to minimize. 

To achieve this, we will use exact resolution methods to 

compare their results with those of three other algorithms. 

The production line N1 of the metal packaging 

manufacturing company (production line) consists of nine 

machines arranged in series. This sequential configuration 

introduces specific maintenance challenges, as the failure of a 

single machine can significantly disrupt the entire system, 

leading to production downtime and high repair costs. 

To address these issues, implementing a robust PM strategy 

is crucial to prevent machine malfunctions. Our study focuses 

on the critical machines within production line N1, each with 

distinct roles in the production process: 
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Rolling Band, Can-O-Mat, Strapping Machine, Ocsam 

Shear, Conveyor, Gear Motor, Palletizing Machine, Welding 

Machine and Test-O-Mat. 

Each machine plays a vital role in ensuring the seamless 

operation of production line N1 and contributes to the 

manufacturing and preparation of the final products. 

For the successful optimization of the PM strategy, it is 

essential to preprocess the available data, relying on the 

historical failure records of the machines in production line N1. 

By analyzing this data, we can design and implement a 

maintenance policy aimed at minimizing downtime, reducing 

costs, and ensuring the reliability of the production line. 

The parameters in Table 1 (e.g., Cc, Cp, Cov, K, α, β, and ν) 

are derived from real industrial data collected from the 

maintenance records and operational logs of the production 

line N1 in a metal packaging manufacturing company. 

The shape parameter β for each machine was estimated 

using statistical analysis of historical failure data. Specifically, 

the Weibull distribution was fitted to the failure data using 

methods such as maximum likelihood estimation (MLE) or 

regression analysis. 

For β<1: In the production line, most machines exhibit β<1, 

indicating a decreasing failure rate over time. This is typical 

for systems experiencing early-life failures or "infant 

mortality," where failures are more frequent initially but 

decrease as the system stabilizes. The exception is 

the Conveyor No. 1, which has β>1, indicating an increasing 

failure rate over time, consistent with wear-out failures. 

To apply the presented cost model, it is essential for the 

parameter β to exceed 1. However, in the production line, the 

β value for each machine is below 1, except for the Conveyor, 

which satisfies all the required conditions. 

The optimal maintenance interval T* and minimal cost Cmin 

in Table 2 are calculated using a MATLAB program based on 

the input parameters from Table 1. 

The results are specific to Conveyor No. 1, as it is the only 

machine satisfying the condition β>1, which is required for the 

cost model to be applicable. 

Since the objective function C(T) is differentiable, we can 

find its minimum by solving the equation C'(T*)=0, where T* 

represents the optimal value of T that minimizes C(T). 

However, it's crucial to consider the following conditions: 

 

𝐶𝑐 > 0;  𝐶𝑝 > 0;  𝐶𝑜𝑣 > 0;  𝑇 > 0;  𝐾 > 0;  𝛽 >

1;  𝛼 > 0 𝑒𝑡 
𝜕

𝜕𝑇
(

𝜕𝐶(𝑇)

𝜕𝑇
) ≥ 0  

(9) 

 

We have: 

 

𝐶(𝑇) =
𝐶𝑐𝑇𝛽−1(1+𝑒α+⋯+𝑒α(K−1))

𝐾𝜂𝛽 +
(𝐾−1)𝐶𝑝+𝐶𝑜𝑣

𝐾𝑇
  (10) 

 

So: 

 

𝐶′(𝑇) =
𝐶𝑐(𝛽−1)𝑇𝛽−2(1+𝑒α+⋯+𝑒α(K−1))

𝐾𝜂𝛽  −  
(𝐾−1)𝐶𝑝+𝐶𝑜𝑣

𝐾𝑇2   (11) 

 

𝐶′(𝑇) =

𝐶𝑐(𝛽−1)𝑇𝛽(1+𝑒α+⋯+𝑒α(K−1))

−𝜂𝛽((𝐾−1)𝐶𝑝+𝐶𝑜𝑣)

𝜂𝛽𝑇2   
(12) 

 

Therefore, we derive the relationship for T such that 

C′(T*)=0: 

 
𝐶𝑐(𝛽−1)𝑇∗𝛽(1+𝑒α+⋯+𝑒α(K−1))

−𝜂𝛽((𝐾−1)𝐶𝑝+𝐶𝑜𝑣)

𝜂𝛽𝑇∗2 = 0  
(13) 

 

𝐶𝑐(𝛽 − 1)𝑇∗𝛽(1 + 𝑒α + ⋯ + 𝑒α(K−1)) − 𝜂𝛽 ((𝐾 −

1)𝐶𝑝 + 𝐶𝑜𝑣) = 0  
(14) 

 

𝐶𝑐(𝛽 − 1)𝑇∗𝛽(1 + 𝑒α + ⋯ + 𝑒α(K−1)) = 𝜂𝛽 ((𝐾 −

1)𝐶𝑝 + 𝐶𝑜𝑣)  
(15) 

 

𝑇∗𝛽 =
𝜂𝛽((𝐾−1)𝐶𝑝+𝐶𝑜𝑣)

𝐶𝑐(𝛽−1)(1+𝑒𝛼+⋯+𝑒𝛼(𝐾−1))
  (16) 

 

𝑇∗ = √
𝜂𝛽((𝐾−1)𝐶𝑝+𝐶𝑜𝑣)

𝐶𝑐(𝛽−1)(1+𝑒𝛼+⋯+𝑒𝛼(𝐾−1))

𝛽

  (17) 

 

MATLAB program developed to determine the optimal 

maintenance interval (T*) in both hours and days, alongside 

the corresponding minimal cost. This program processes a 

detailed dataset, which includes variables such as specific 

maintenance costs, the number of partial revisions (K), and the 

maintenance efficiency factor (α). These variables are 

integrated into the program to yield precise and actionable 

insights for optimizing maintenance schedules and reducing 

overall costs. Table 1 provides a summary of these data points 

for a specific piece of equipment, "Conveyor N°1". 

To apply the presented cost model, it is essential for the 

parameter β to exceed 1. However, in the production line, the 

β value for each machine is below 1, except for the Conveyor, 

which satisfies all the required conditions. 

The MATLAB program uses these inputs to calculate the 

optimal maintenance interval (T*) and the associated minimal 

cost, providing a structured approach to maintenance 

scheduling that enhances efficiency and cost-effectiveness. 

The program results are summarized in Table 2. 

Table 2 indicates that performing maintenance on Conveyor 

No. 1 every 197.86 hours (or about every 8.24 days) will result 

in the lowest possible maintenance cost of 81,345.84 USD per 

time period. This optimized schedule helps in minimizing 

downtime and maximizing the efficiency and cost-

effectiveness of the maintenance operations. Figure 1 

graphically shows the evolution of cost C as a function of T. 

The graph illustrates the relationship between maintenance 

periodicity (T) and the corresponding cost (C(T)). The curve 

rapidly decreases as T increases, indicating that frequent 

maintenance (low T values) incurs extremely high costs. As T 

increases, the cost drops sharply and then levels off. The red 

dot marks the optimal maintenance interval (T*), 

approximately 197.86 hours, where the cost is minimized. This 

optimal point highlights that very frequent maintenance is 

costly due to unnecessary downtime and labor, while 

infrequent maintenance increases operational costs and 

potential equipment failures. Thus, the graph emphasizes the 

importance of selecting the optimal maintenance interval to 

balance the frequency of activities with associated costs, 

ensuring a cost-effective maintenance strategy. 
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Table 1. Optimal maintenance parameters 

 

Equipment Cc (KUSD/Y) Cp (KUSD/Y) Cov (KUSD/Y) K α β n (nu) 

Rolling Band 720 230 860 2 0.81 0.84 2111.57 

Can-O-Mat 2200 1200 3060 8 0.79 0.77 365.18 

Strapping Machine 900 600 1350 3 0.74 0.62 1011.81 

Ocsam Shear 3100 2100 4680 6 0.69 0.88 823.25 

Conveyor N°1 2700 1900 4140 7 0,69 1.16 575 

Palletizer 1100 400 1350 4 0.62 0.45 807.91 

Welder 5100 3800 8010 12 0.68 0.87 121 

Test-O-Mat 1900 1400 2970 4 0.7 0.6 1331.72 

Table 2. Optimal maintenance parameters for conveyor No. 

1 

 
System T* (Hours) T* (Days) Cmin (USD/ t) 

Conveyor No. 1 197.8589 8.2441 81,345.8372 

 

 
 

Figure 1. Objective function value vs. periodicity (T) for 

conveyor No. 1 

 

 

3. OPTIMIZATION METHODS FOR ENHANCING PM 

INTERVENTIONS 

 

3.1 ACO algorithm 

 

ACO is an optimization technique inspired by the foraging 

behavior of ant colonies, first introduced by Marco Dorigo in 

the early 1990s. This algorithm mimics the way ants find the 

shortest paths to food sources using pheromone trails. Ants 

communicate and coordinate their actions through 

pheromones, which are chemical compounds secreted to 

create trails that guide other ants to food sources [18]. As ants 

travel, they deposit pheromones on the ground, which 

subsequently influence the path selection of other ants. The 

probability of following a particular path is higher if the 

pheromone concentration is higher, which leads to a 

reinforcement of shorter, more efficient paths as more ants 

follow and reinforce these trails. The evaporation of 

pheromones over time ensures that paths which are not 

frequently used gradually lose their attractiveness, thereby 

incorporating a mechanism for dynamic optimization. ACO 

has been effectively applied to a range of combinatorial 

optimization problems, such as the traveling salesman 

problem and network routing [19]. The algorithm's ability to 

adaptively find optimal solutions by simulating natural 

processes has made it a powerful tool in various fields of 

research and practical applications. The ACO algorithm is a 

robust tool designed for optimizing intricate problems, 

especially those with discrete or combinatorial search spaces. 

Its strength lies in its capacity to explore diverse solutions and 

iteratively refine them, guided by pheromone trails that 

encapsulate the collective wisdom of the ant colony. 

When applied to the task of minimizing the objective 

function C(T), the ACO algorithm adeptly navigates through 

the solution space, constructing paths that lead to decreased 

values of C(T). Its efficacy hinges on several key parameters, 

including the number of ants, iterations, and rules governing 

pheromone updates. Below are the specific details of the ACO 

implementation: 

 

Parameter Settings: 

• Number of Ants (Population Size): 50 

• Number of Iterations: 100 

• Pheromone Evaporation Rate (ρ): 0.5 

• Pheromone Influence (α): 0.70 

• Heuristic Influence (β): 1.16  

• Initial Pheromone Level (τ0): 0.1 

 

The fitness function for ACO is the same as the cost 

function C(T) derived in the study Eq. (10). The goal is to 

minimize C(T) by finding the optimal maintenance interval T∗. 

 

Implementation Steps: 

1) Initialize pheromone levels on all possible solutions 

(maintenance intervals). 

2) Each ant constructs a solution (value of T) 

probabilistically based on pheromone levels and 

heuristic information. 

3) Evaluate the fitness of each solution using the cost 

function C(T). 

4) Update pheromone levels based on the quality of 

solutions found by the ants. 

5) Repeat steps 2-4 for the specified number of 

iterations. 

 

The accompanying MATLAB code offers a foundational 

framework for implementing the ACO algorithm tailored to 

specific problem requirements. Central to its application is the 

definition of the objective function C(T) and the customization 

of algorithmic parameters to align with the problem's nuances. 

By harnessing the ACO framework effectively, significant 

optimization gains can be realized across a broad spectrum of 

problem domains. The results of the program are gathered in 

Table 3. 

The results obtained using the ACO algorithm for Conveyor 

No. 1 reveal significant operational improvements. The 
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algorithm pinpointed an optimal operational time of 

approximately 196.37 hours (8.18 days), striking a balance 

between productivity and resource utilization. This 

achievement is complemented by a minimal cost per unit time 

of 81,911.07 USD/t, indicating efficient economic 

management. The algorithm's performance metrics highlight 

its effectiveness: it converged after 28,284 iterations, executed 

in just 0.726214 seconds, and conducted 303,800 evaluations. 

These outcomes underscore ACO's capability in enhancing 

operational efficiency and cost-effectiveness in industrial 

settings, demonstrating its robustness in optimizing complex 

systems like Conveyor No. 1. Figure 2 graphically shows the 

evolution of cost C as a function of T. 

The graph illustrates the relationship between operational 

period (T) and the corresponding cost C(T). The curve rapidly 

decreases as T increases, indicating that shorter operational 

periods (low T values) incur extremely high costs. 

As T increases, the cost drops sharply and then levels off. 

The green dot marks the optimal operational period, 

approximately 196.38 hours, where the cost is minimized at 

81911.07 USD/t. This optimal point highlights that very short 

operational periods are costly due to frequent stoppages and 

resource utilization, while excessively long periods can 

increase maintenance risks and potential equipment failures. 

This indicates that the optimal period represents the best trade-

off between operational time and cost efficiency, achieving the 

most economical operation point. Additionally, the optimal 

period helps in scheduling maintenance more effectively, 

reducing the risk of unexpected breakdowns and ensuring 

smoother operations. By identifying this optimal period, the 

ACO algorithm aids in proactive maintenance planning, which 

can minimize downtime and enhance overall system reliability, 

thereby mitigating operational risks. 

 

Table 3. Results of ACO for conveyor system optimization 

 

System 
Optimal Time 

(Hours) 

Optimal Time 

(Days) 

Min Cost 

(USD/t) 

Number of 

Iterations 
Execution Time 

Number of 

Evaluations 

Conveyor No. 1 196.374242 8.182260 81911.072031 28284 0.726214 seconds 303800 

 
 

Figure 2. Objective function vs. periodicity for conveyor 

No.1 optimized with ACO algorithm 

 

3.2 GA 

 

GAs are powerful tools for optimization problems, widely 

used in various fields due to their ability to efficiently search 

through large and complex solution spaces. In the context of 

cost model optimization, GAs offers significant advantages by 

simulating the process of natural selection to identify optimal 

solutions that balance multiple competing objectives, such as 

cost, time, and resource utilization [20]. Below are the specific 

details of the GA implementation: 

 

Parameter Settings: 

• Population Size: 100 

• Number of Generations: 200 

• Crossover Probability (Pc): 0.8 

• Mutation Probability (Pm): 0.1 

• Selection Method: Tournament selection with a 

tournament size of 5 

• Crossover Method: Two-point crossover 

• Mutation Method: Gaussian mutation 

The fitness function for GA is the same as the cost function 

C(T) derived in the study Eq. (10). The goal is to minimize 

C(T) by finding the optimal maintenance interval T∗. 

 

Implementation Steps: 

1) Generate an initial population of random solutions 

(values of T). 

2) Evaluate the fitness of each solution using the cost 

function C(T). 

3) Select parents for the next generation using 

tournament selection. 

4) Perform two-point crossover on selected parents to 

produce offspring. 

5) Apply Gaussian mutation to offspring to introduce 

diversity. 

6) Replace the current population with the new 

generation. 

7) Repeat steps 2-6 for the specified number of 

generations. 

The MATLAB code for the GA, along with its associated 

subroutines, is already available. By simply programming the 

objective function and providing the failure and maintenance 

data, optimization results for this policy can be obtained. We 

have developed a MATLAB program to minimize our 

objective function 𝐶(𝑇) using GA techniques. Table 4 presents 

the execution results. 

Table 4 provides key metrics and results from an 

optimization process related to Conveyor No. 1, detailing the 

time estimates, optimized performance metric (Cmin), and 

computational effort involved in achieving the optimization 

goals. Figure 3 graphically shows the evolution of cost C as a 

function of T. 

The Figure 3 illustrates the results of an optimization 

process using a GA, plotting the objective function value 𝐶(𝑡) 

against periodicity 𝑇. The curve shows a steep decline in 𝐶(𝑡) 

as 𝑇 increases from 0 to around 100, after which it flattens out, 

indicating that further increases in 𝑇 do not significantly 

improve 𝐶(𝑡). The red dot on the curve marks the optimal 

periodicity found by the GA, around 197.8589, corresponding 

to the minimum 𝐶(𝑡) of approximately 81345.8372. This point 
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represents the most efficient periodicity for the system, 

balancing low objective function values with a practical 

periodicity, highlighting the GA's effectiveness in finding an 

optimal solution. 

 

Table 4. Results of ACO for conveyor No. 1 

 
System T* in Hours T* in Days Cmin (USD/t) Number of Iterations Execution Time Number of Evaluations 

Conveyor No.1 197.8589 8.2441 81345.8372 200 1.897976 seconds 20000 

 

 
 

Figure 3. Objective function vs. periodicity for conveyor No. 

1 optimized with GA 

 

3.3 SA algorithm 

 

SA is a probabilistic optimization algorithm inspired by the 

annealing process in metallurgy. Initially proposed by 

Kirkpatrick et al. in 1983, SA mimics the annealing process 

where a material is heated and then slowly cooled to achieve a 

more optimal state by minimizing defects and refining its 

structure [21]. This technique is particularly effective for 

solving complex optimization problems with large search 

spaces and numerous local optima. It starts with an initial 

solution and explores neighboring solutions, accepting not 

only better solutions but also, with decreasing probability, 

worse ones. This acceptance of worse solutions helps the 

algorithm escape local optima early on. The "temperature" 

parameter, which controls the acceptance probability of worse 

solutions, gradually decreases as the algorithm proceeds, 

reducing the search space and focusing on the most promising 

areas. This careful balance between exploration and 

refinement enables SA to effectively search for and identify 

optimal solutions in complex optimization problems. Below 

are the specific details of the SA implementation: 

 

Parameter Settings: 

• Initial Temperature (T0): 1000 

• Cooling Rate (α): 0.69 

• Number of Iterations per Temperature: 50 

• Stopping Criterion: Temperature drops below 1 or 

maximum iterations (1000) reached. 

The fitness function for SA is the same as the cost function 

C(T) derived in Eq. (10). The goal is to minimize C(T) by 

finding the optimal maintenance interval T∗. 

 

Implementation Steps: 

1) Start with an initial solution (random value of T) and 

set the initial temperature. 

2) Evaluate the fitness of the current solution using the 

cost function C(T). 

3) Generate a neighboring solution by perturbing the 

current solution. 

4) Accept the new solution if it improves the fitness. If 

not, accept it with a probability based on the current 

temperature and the difference in fitness. 

5) Reduce the temperature according to the cooling 

schedule. 

6) Repeat steps 2-5 until the stopping criterion is met. 

Here are the results obtained from implementing a 

MATLAB program using the SA algorithm we developed. The 

collected data provide a detailed analysis of the performance 

and improvements brought by our algorithmic approach. 

Table 5 presents performance metrics for Conveyor No.1 

optimization using a SA algorithm. The optimal temperature 

parameter (T*) was determined to be approximately 197.8587 

hours or about 8.182260 days. The algorithm executed 1280 

iterations, with an execution time of 7.821692 seconds, 

involving 1280 evaluations. These results indicate that the SA 

approach effectively optimized the parameters for Conveyor 

No.1, achieving a significant reduction in cost while 

maintaining computational efficiency within a short runtime. 

Figure 4 graphically shows the evolution of cost C as a 

function of T. 

The graph showcases the relationship between maintenance 

periodicity (T) and cost (C(T)) as optimized by a SA algorithm. 

The curve's initial plunge reflects efficient exploration, 

identifying solutions with lower costs compared to frequent 

maintenance. As T increases, the cost levels off, signifying a 

shift towards exploiting promising areas. The red dot 

(T*≈197.8587) marks the optimal maintenance interval 

identified by the algorithm, minimizing cost 

(C(T)≈81345.8372 USD/t). This sweet spot balances avoiding 

unnecessary downtime and labor (low T) with minimizing 

equipment failures and operational costs (high T), highlighting 

the importance of selecting the optimal frequency for a cost-

effective maintenance strategy. 

 

Table 5. Results of SA algorithm for conveyor system optimization 

 
System T* in Hours T* in Days Cmin (USD/t) Number of Iterations Execution Time Number of Evaluations 

Conveyor No.1 197.8587 8.182260 81345.8372 1280 7.821692 seconds 1280 
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Figure 4. Objective function vs. periodicity for conveyor No. 

1 optimized with SA algorithm 

 

 

4. COMPARATIVE ANALYSIS OF OPTIMIZATION 

METHODS FOR ENHANCING PM INTERVENTIONS 

 

To determine which optimization method is most effective 

for improving PM interventions, we will compare the 

performance of SA, GA, and ACO. This comparison will 

consider several factors, including the optimal maintenance 

interval (T*), minimum cost per ton (Cmin), number of 

iterations, execution time, and number of evaluations for 

Conveyor No. 1. By analyzing these metrics, we aim to 

identify the strengths and weaknesses of each algorithm in 

terms of accuracy, efficiency, and computational demand, 

providing insights into which method offers the best balance 

for enhancing PM strategies. 

Table 6 provides a general comparison of three optimization 

methods-SA, GA, and ACO-for improving PM interventions 

on Conveyor No. 1. The exact mathematical calculation serves 

as a benchmark with an optimal maintenance interval (T*) of 

197.86 hours (8.24 days) and a minimum cost (Cmin) of 

81,345.84 USD/t. The exact Calculation presented in Table 6 

represents the optimal solution obtained through a brute-force 

enumeration method. This approach systematically evaluates 

all possible maintenance schedules within the defined 

constraints. Specifically, for Conveyor No. 1, we generated 

and evaluated every possible combination of maintenance 

intervals, considering the underlying assumptions of minimal 

repair after failure and a Weibull distribution for system failure 

(γ=0). The cost function (Cmin) was calculated for each 

schedule, and the schedule that yielded the minimum cost was 

identified as the optimal solution. This exhaustive search 

method serves as a benchmark to assess the performance and 

accuracy of the heuristic optimization algorithms (ACO, GA, 

SA). Due to the computational complexity of brute-force 

enumeration, this method is only feasible for relatively small-

scale problems, such as the single conveyor system considered 

in this study. The optimization algorithms used in this study 

ACO, GA, and SA each have distinct strengths and 

weaknesses. ACO excels in exploring complex search spaces 

and escaping local optima through pheromone trails but is 

computationally expensive and sensitive to parameter choices. 

GA is robust and effective for global optimization, 

maintaining diversity through crossover and mutation, but it 

can be computationally intensive and prone to premature 

convergence if parameters are poorly tuned. SA is simple to 

implement and computationally efficient, with the ability to 

escape local optima by accepting worse solutions early in the 

search, but its performance depends heavily on the cooling 

schedule and may not explore the search space as thoroughly 

as ACO or GA. While ACO and GA are better suited for global 

exploration, SA is more efficient for local refinement. These 

trade-offs highlight the importance of selecting the appropriate 

algorithm based on problem complexity, computational 

resources, and desired outcomes. 

 

Table 6. Comparison of optimization algorithms for Conveyor No. 1 

 

System Algorithm Used 
T* in 

Hours 
T* in Days 

Cmin 

(USD/t) 

Number of 

Iterations 

Execution 

Time 

Number of 

Evaluations 

Conveyor No. 1 

Exact Calculation 197.8589 8.2441 81,345.8372 / / / 

ACO 196.3742 8.1823 81911.0720 28284 0.7262 seconds 303800 

GA 197.8589 8.2441 81345.8372 200 1.8980 seconds 20000 

SA 197.8587 8.2441 81345.8372 1280 7.8217 seconds 1280 

In terms of performance, ACO achieved a similar T* but 

had a slightly higher cost and required many iterations and 

evaluations, showing high computational demand but quick 

execution. GA matched the benchmark precisely with fewer 

iterations and moderate computational resources. SA also 

matched the benchmark but was less efficient, needing more 

iterations and longer execution time. Overall, GA and ACO 

show strong performance in terms of accuracy and efficiency. 

For the number of objective function evaluations, ACO 

performs the most (303800), contributing to better exploration 

of the search space, while the GA performs 20000 evaluations, 

sufficient to reach an optimal solution efficiently, while SA, 

though accurate, is more time-consuming. 
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5. IMPACT OF ADVANCED OPTIMIZATION 

METHODS ON PM, SYSTEM RELIABILITY, AND 

SECURITY 

 

Optimizing PM using advanced methods is crucial for 

enhancing the systems reliability and industrial security. By 

implementing sophisticated techniques such as GA, SA, and 

ACO, industries can significantly improve the precision and 

efficiency of their maintenance schedules. These methods not 

only ensure that maintenance tasks are performed at optimal 

times but also contribute to reducing the likelihood of 

unexpected failures, thereby increasing system reliability and 

security. The following figure clearly illustrates the reliability 

graphs, the risk function, and the failure function after 

maintenance, providing a comprehensive overview of how 

these advanced methods positively impact industrial system 

performance. 

 

 

 
 

Figure 5. Graphs of reliability, risk function and failure 

function 

 

Figure 5 illustrates the impact of a periodic PM strategy on 

system reliability, cumulative failure probability, and hazard 

rate. The reliability function 𝑅(𝑡) exhibits a distinct, reflecting 

alternating phases of degradation and restoration. The 

downward slopes of the curve correspond to the natural 

decline in reliability between maintenance intervals, while the 

sharp upward jumps signify the restoration of reliability 

following PM interventions, effectively reducing the risk of 

system failure and maintaining a non-zero reliability value. 

Similarly, the cumulative failure function 𝐹(𝑡) displays an 

inverse sawtooth pattern, with a gradual increase in failure 

probability during operational periods, followed by significant 

reductions after maintenance actions. This highlights the 

effective resetting of the failure probability by PM. 

The hazard rate ℎ(𝑡) further underscores the effectiveness of 

the PM strategy, exhibiting a cyclical trend characterized by a 

gradual rise in failure risk during system operation and abrupt 

declines immediately after maintenance activities. The 

periodicity of these cycles, observed at intervals of 

approximately 1500-2000 hours, defines the maintenance 

schedule and indicates the strategic timing of interventions. 

Overall, this analysis demonstrates that the PM strategy 

effectively mitigates the instantaneous risk of failure, sustains 

system reliability, and addresses degradation mechanisms or 

replaces critical components before catastrophic failure occurs. 

 

 

6. CONCLUSION AND FUTURE WORK 

 

In an industrial context, the application of optimization 

techniques and appropriate maintenance strategies is essential 

in enhancing the system's reliability and industrial security, 

ensuring the proper functioning and availability of equipment. 

The conclusions drawn from conducted studies provide 

valuable insights into the advantages and trade-offs associated 

with different approaches. 

The analysis of optimization algorithms highlights the 

strengths and weaknesses of each method. GA and SA stand 

out for their precision and ability to converge to high-quality 

solutions, while ACO offers notable execution speed. This 

diversity of approaches allows practitioners to choose the 

method best suited to their specific needs, depending on time 

and precision constraints. 

Regarding maintenance, the study emphasizes the 

importance of meticulous planning of periodic overhauls. The 

recommendation of partial overhauls after a certain number of 

operating days and a general overhaul after a longer interval is 

a wise strategy to maintain equipment reliability while 

minimizing downtime. Additionally, coordinating 

maintenance operations with other system components 

optimizes work efficiency and reduces production 

interruptions. 

In the context of optimizing PM, advanced methods play a 

critical role in enhancing the system's reliability and industrial 

security. Techniques such as GA, SA, and ACO allow for 

precise scheduling and execution of maintenance tasks, 

reducing the likelihood of unexpected failures and ensuring 

continuous operation. These methods not only improve 

reliability but also contribute to the overall security of the 

systems by addressing potential vulnerabilities through well-

timed maintenance activities. 

 In summary, these conclusions highlight the importance of 

optimization and planning in the industrial field. By adopting 

best practices and leveraging available optimization 

technologies, companies can improve their operational 
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efficiency, reduce maintenance costs, and ensure optimal 

performance of their equipment. 

To further advance the field of maintenance optimization, 

several research directions can be explored. Real-time data 

analytics could be investigated to enable continuous 

monitoring of equipment performance, allowing for predictive 

maintenance and just-in-time interventions. Sustainability 

integration should be prioritized, expanding optimization 

techniques to include environmental factors and aligning 

maintenance strategies with corporate social responsibility 

goals. Scalability studies are needed to explore the application 

of optimization algorithms to larger, more complex industrial 

systems with multiple interdependent components. 

Additionally, hybrid optimization models that combine the 

strengths of ACO, GA, and SA could be developed to achieve 

better performance across diverse industrial scenarios. Finally, 

human factor integration should be considered to incorporate 

decision-making processes and practical constraints into 

optimization models, improving their adoption and 

effectiveness in real-world settings. These research directions 

aim to enhance the applicability, efficiency, and sustainability 

of maintenance optimization in industrial environments. 
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NOMENCLATURE 

 

Cc 
Corrective maintenance cost per year in 

Killo-United States dollar (KUSD/Y) 

Cp 
PM cost per year in Killo-United States 

dollar (KUSD/Y). 

Cov 
General overhaul cost per year in Killo- 

United States dollar (KUSD/Y). 

T Time (Hours or Days) 

H(T) Failure probability function 

C(T) 
Average cost per unit time. Killo-United 

States dollar per year (KUSD/Y). 

K 
Number of partial overhauls before the 

general overhaul 

n 
Total number of maintenance activities or 

interventions over a period 

 

Greek symbols 

 

 
Maintenance efficiency factor, indicating 

the effectiveness of maintenance activities. 

 
The degradation rate or other relevant 

factors. 

η 

The scale parameter of the Weibull 

distribution, representing the characteristic 

life. 

eα 
Degradation factor (exponential effect of 

degradation) 

 

Subscripts 

 

T* 
Optimal maintenance interval that 

minimizes cost 

c 
Corrective maintenance (related to repair 

cost) 

P PM (related to partial overhaul cost) 

ov General overhaul (full maintenance cost) 
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