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This paper proposes a new post-whitening transform domain LMS (POW-TDLMS) algorithm 

for system identification purposes, where the post whitened and original transformed signals 

are used during the adaptation and filtering phases, respectively. The main idea behind the 

proposed algorithm is to introduce a first order adaptive post-whitening filter in the TDLMS 

algorithm after applying the transform to completely decorrelate the transformed signal. Linear 

prediction is adopted for the post-whitening and the prediction coefficients are adapted in the 

time domain. Furthermore, the mean convergence performance analysis of the proposed POW-

TDLMS algorithm is presented. The simulation results show the superiority of the proposed 

POW-TDLMS algorithm compared to the conventional TDLMS algorithm in terms of the MSE 

convergence speed and reached steady state. 
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1. INTRODUCTION

The least mean square (LMS) algorithm is an adaptive 

filtering algorithm known for its simplicity, robustness and 

low computational complexity [1-3]. The convergence of this 

algorithm becomes slow in the case of correlated input signals. 

The autocorrelation matrix of such signals is said ill 

conditioned [4-6]. 

In the literature, several solutions and alternatives have 

been proposed to improve the performance of the LMS 

algorithm when it is employed with correlated input signals. 

In [7], Mboub et al. proposed a new whitening structure for 

the acoustic echo cancellation. In [8, 9], the authors devised a 

pre-whitening for the time domain LMS algorithm and its 

variants. The resulting pre-whitening techniques have 

allowed improvements in the convergence performance. The 

affine projection algorithms were developed to speed up the 

convergence of the gradient based algorithms in the case of 

correlated input signals [1, 10]. 

In [11], Narayan et al. proposed a new LMS algorithm 

operating in the transform domain, where orthogonal and 

unitary transforms have been used for the decorrelation of the 

input signal. The transformed signal is then normalised by its 

power, which allows the reduction of the eigenvalue spread 

of the autocorrelation matrix of the resulting signal, and thus 

offers improvements in the convergence performance of the 

resulting algorithm called transform domain LMS algorithm 

(TDLMS) [12]. The convergence performance of the 

TDLMS algorithm depends on the used orthogonal 

transforms, which are known to be limited in terms of 

decorrelation [13, 14]. In [13], Chergui et Bouguezel 

proposed a new pre-whitening (PW) of the TDLMS (PW-

TDLMS) algorithm. This pre-whitening allows the 

reinforcement of the decorrelation of the used orthogonal 

transforms, and consequently the improvements in the 

convergence performance of the corresponding PW-TDLMS 

algorithms. The PW-TDLMS algorithm was intended for 

applications of adaptive noise cancellation in the speech 

signal, where the pre-whitened and transformed signal is used 

during both filtering and adaptation phases. However, the 

PW-TDLMS algorithm cannot be applied in system 

identification applications, where the input signal 

characteristics must not be changed before the filtering phase 

[15, 16] and may only be modified during the adaptation 

phase. 

In this paper, to deal with system identification applications, 

we propose a post-whitening (POW) of the TDLMS algorithm 

to ensure further decorrelation of the transformed signal and 

significantly reinforce the decorrelation of the used 

orthogonal transforms. The post-whitening process is 

designed using a first order adaptive decorrelation filter based 

on linear prediction and the prediction coefficients are adapted 

in the time domain. In the proposed algorithm, the post 

whitened and original transformed signals are used during the 

adaptation and filtering phases, respectively. This allows 

improvements in the convergence performance of the TDLMS 

algorithm in system identification applications. 

This paper is organized as follows: Section 2 gives a review 

of the conventional TDLMS algorithm. Section 3 proposes a 

new post-whitening TDLMS (POW-TDLMS) algorithm. 

Section 4 presents a study of the mean convergence 

performance of the proposed POW-TDLMS algorithm. 

Section 5 discusses the simulation results. Finally, the 

conclusion is given in Section 6. 
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2. CONVENTIONAL TDLMS ALGORITHM 
 

The conventional TDLMS algorithm presented in Figure 1 

can be summarised as [17, 18]: 

Let xk
N = [xk, xk-1,…, xk-N+1]

T be the input signal of length N, 

where (.)T  denotes the transposition operation. Its 

transformed version Xk
N  is also of length N  and obtained 

using the N×N orthogonal transform matrix TN as 

 

Xk
N = TNxk

N = [Xk(0), Xk(1), …, Xk(N – 1)]
T      (1) 

 

 
 

Figure 1. Block diagram of the TDLMS adaptive filter [13, 

18] 

 

The sample y
k
 at the output of the filter is obtained as 

 

y
k
 = (wk

N)
H

Xk
N                                (2) 

 

where, (.)H denotes the complexe conjugate transpose 

operation and wk
N = [wk(0),  wk(1), …, wk(N – 1)]

T  is the 

filter vector of length N , which is updated at each instant 

sample k according to the adaptation equation given by 

 

wk+1
N  = wk

N + μekPk
-1Xk

N                          (3) 

 

with e k= dk – yk
 being the sample of the error signal and dk is 

the sample of the desired signal, 

Pk = diag(σk
2(0), σk

2(1),…, σk
2(N – 1)),  the entries σk

2(i) , 

i = 0, 1, …, N – 1 , are obtained from the power estimate 

σk
2 = [σk

2(0), σk
2(1),…, σk

2(N – 1)]
T

 of Xk
N , which can be 

computed recursively at each time sample k  as 

σk
2(i) = βσk-1

2 (i) + (1 – β)|Xk(i)|
2, β is a smoothing factor that 

takes values in the interval ]0, 1[. The matrix Pk is used for 

normalising the transformed signal and the constant step size 

μ is employed for controlling the MSE convergence of the 

TDLMS algorithm. 

2.1 Convergence analysis 

 

In this subsection we briefly review the convergence 

analysis with first order autoregressive (AR1) process. The 

signal xk  obtained from the AR1 process is defined at each 

instant sample k as [13, 20, 21]: 

 

xk = ρxk-1+ ωk                                (4) 

 

where, ρ is the correlation coefficient that takes values in the 

interval [0 1[  and ωk  is a stationary white Gaussian noise 

with variance that makes the power of xk equal to 1. 

The autocorrelation matrix of the input signal xk is defined 

as: 

 

RN = 

(

  
 

1 ρ ρ2 …   ρN-1

ρ 1  ρ   … ρN-2

ρ2

⋮
ρN-1

ρ

⋮
ρN-2

    1                 

     ⋱    ⋮   
         …    1        )

  
 

         (5) 

 

The eigenvalue spread of RN is defined as: 

 

Lim
N→∞

(Eigenvalue spread of RN)= (
1 + ρ

1 – ρ
)

2

          (6) 

 

A high value of ρ  inceases the correlation of xk , and 

consequently increases the eigenvalue spread of the 

autocorrelation matrix RN. The orthogonal transforms namely 

the DCT, the DFT and the DHT are used in the TDLMS as a 

decorrelator, which allows the whitening of the input signal xk 

before being used by the LMS algorithm and consequently 

improves the convergence performances of the TDLMS 

algorithm.  

The autocorrelation matrix of the transformed signal and 

normalised by its power is defined as: 

 

SN=(diag(BN))
-
1

2BN(diag(BN))
-
1

2                 (7) 

 

and BN = TNRNTN
H. 

The eigenvalue spreads of SN  are defined for various 

transforms as: 

 

Lim
N→∞

(
Eigenvalue spread after DFT or

 DHT and power normalisation
)= (

1 + ρ

1 – ρ
)     (8) 

 

Lim
N→∞

(
Eigenvalue spread after DCT

 and power normalisation
)= (1 + ρ)    (9) 

  
The different transforms significantly decrease the 

eigenvalue spread of the autocorrelation matrix SN  and the 

DCT is considered as suboptimal in terms of decorrelation 

and offers the best reduction in the eigenvalue spread of SN 

compared to the DFT and the DHT transforms. 

 

 

3. PROPOSED POST-WHITENING TRANSFORM 

DOMAIN LMS ALGORITHM 

 

3.1 Proposed post-whitening approach 

 

The decorrelation based on the linear prediction is given in 

time domain as [9, 13] 
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x̃k = xk – (ak-1
L-1)

T
xk-1

L-1                          (10) 

 

where, xk-1
L-1 = [ xk-1, xk-2,…, xk-L+1]

T  is the input sub-sequence 

of length L – 1, which is supposed to be correlated, and ak-1
L-1 = 

[ak-1(1), ak-1(2),…,ak-1(L – 1)]T , which can be computed 

adaptively at each time sample k using LMS algorithm as 

 

ak
L-1 = ak-1

L-1 + γx̃kxk-1
L-1                           (11) 

 

with γ  being the adaptation step size parameter. The 

decorrelation filter used in Eq. (10) is of order L – 1 and has a 

finite impulse response (FIR) [1,–( ak-1
L-1)

T
] of length L. Using 

Eq. (10), the preceding N – 1 samples of x̃k can be obtained by 

decorrelating the preceding N – 1 samples of xk as 

 

x̃k-1= xk-1–(ak-2
L-1)

T
xk-2  

L-1  

⋮   ⋮ 

x̃k-N+1 = xk-N+1–(ak-N
L-1)

T
xk-N

L-1                       (12) 

 

Therefore, Eq. (10) and Eq. (12) can be combined and 

compactly formulated as 

 

x̃k
N = xk

N – [(ak-1
L-1)

T
xk-1

L-1 , (ak-2
L-1)

T
xk-2

L-1,…,(ak-N
L-1)

T
xk-N

L-1  ]
T 

(13) 

It is clear that the decorrelation in Eq. (13) is achieved 

using the FIR decorrelation filters [1,–(ak-1
L-1)

T
] , [1,–

(ak-2
L-1)

T
] , …, and [1, –(ak-N

L-1)
T
]  of order L – 1 . Finally, by 

multiplying both sides of Eq. (13) by TN, the proposed post-

whitening of the transformed signal Xk
N can be obtained as  

 

X̃k

N
= Xk

N–TN× [(ak-1
L-1)

T
xk-1

L-1 , (ak-2
L-1)

T
xk-2

L-1,…,(ak-N
L-1)

T
xk-N

L-1  ]
T

  

(14) 

 

For simplicity, we consider in this paper the case of first 

order decorrelation filters, i.e. L = 2. Thus, Eq. (14) becomes 

 

X̃k

N
 = Xk

N – TN×[ak-1(1)xk-1, ak-2(1)xk-2,…, ak-N(1)xk-N]
T 

 

  = Xk
N – TN×diag(ak-1(1), ak-2(1),…, ak-N(1))×xk-1

N  (15) 

 

 
 

Figure 2. Proposed first order adaptive post-whitening 

 

In this case (L = 2) , the prediction coefficients ak-i(1) , 

i = 1, 2, …, N, in Eq. (15) are computed using the simplified 

versions of Eq. (10) and Eq. (11) as 

 

x̃k = xk – ak-1(1)xk-1                         (16) 

 

ak(1) = ak-1(1) + γx̃kxk-1                     (17) 

 

Therefore, Eq. (15), Eq. (16) and Eq. (17) represent the first 

order adaptive post–whitening process of the transformed 

signal Xk
N, which is illustrated by Figure 2, where the input 

signal xk-1
N  = [xk-1, xk-2,…, xk-N]

T  is weighted using the 

prediction coefficients ak-i(1) , i =1, 2, …, N , before being 

transformed by TN and the resulting vector is subtracted from 

Xk
N  to provide the post-whitened signal X̃k

N
 = [X̃k(0), 

X̃k(1), …, X̃k(N – 1)]
T
. 

 

3.2 Proposed post whitening TDLMS algorithm 

 

In this subsection, we introduce the proposed post-

whitening given by Eq. (15), Eq. (16), Eq. (17) and Figure 2 

in the TDLMS to develop a new Post-whitening TDLMS 

(POW-TDLMS) algorithm to reinforce the decorrelation of 

the used orthogonal transform TN , and consequently, to 

decrease the eigenvalue spread of the autocorrelation matrix 

of the post whitened signal X̃k

N
 normalised by its power. 

Therefore, the convergence performance of the TDLMS 

would be improved in terms of the MSE convergence 

behaviour. 
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Figure 3. Proposed post-whitening TDLMS algorithm 

 

After introducing the proposed post-whitening approach, 

we develop the proposed POW-TDLMS algorithm for system 

identification as shown in Figure 3, where vk  is the 

observation noise generated from a random white Gaussian 

process, and h = [h(0), h(1), …, h(N – 1)]T  is the unknown 

system impulse response to be identified by the adaptive filter. 

In Figure 3, the error signal at the output of the filter is 

given by 

 

ek = dk – (wk
N)

H
Xk

N                           (18) 

 

and the desired signal is given by 

 

dk = vk +∑ h(i)N-1
i=0 xk-i                        (19) 

 

The post-whitened signal X̃k

N
 is normalised by its power 

defined as 

 

P̃k = diag([σ̃k
2(0), σ̃k

2(1),…, σ̃k
2(N – 1) ])       (20) 

 

where, σ̃k
2(i)  is the estimation of the power of the ith  input 

X̃k(i), which can be computed recursively as 

 

σ̃k
2(i) = βσ̃k-1

2 (i) + (1 – β)|X̃k(i)|
2
            (21) 

 

The filter weight vector is updated recursively as 

 

wk+1 
N = wk

N + μekP̃k

-1  

X̃k

N
                       (22) 

 

where, P̃k

-1  

X̃k

N
 represents the normalized post-whitened 

signal. 

 

 

4. PERFORMANCE ANALYSIS OF THE PROPOSED 

POW-TDLMS ALGORITHM 

 

4.1 Stability performance 

 

In this sub-section, we present the mean convergence 

behaviour analysis of the proposed POW-TDLMS algorithm. 

Similar to [19], it is seen from Eq. (22) that the power 

normalization performed by P̃k

-1
 on the step size, allowing 

improvement in the MSE convergence behaviour of the 

algorithm, increases the difficulty of analysing the stability 

performance. In order to simplify the analysis, we 

equivalently perform the power normalization on the post 

whitened vector X̃k

N
. The equivalent form is obtained by 

multiplying both sides of Eq. (22) by P̃k

1/2
 as  

 

P̃k

1/2
wk+1

N  = P̃k

1/2
wk

N + μekP̃k

-1/2
X̃k

N
            (23) 

 

We assume that X̃k

N
 is a zero mean stationary process. 

Thus, it can be assumed that P̃k+1
1/2

≈ P̃k

1/2
 for which Eq. (23) 

becomes 

 

ŵk+1
N  = ŵk

N + μekVk
N                           (24) 

 

where, ŵk+1
N  = P̃k+1

1/2
wk+1

N  ≈ P̃k

1/2
wk+1

N , ŵk
N = P̃k

1/2
wk

N  and 

Vk
N = P̃k

-1/2
X̃k

N
. 

The weight vector wk
N  of Eq. (22) converges to  TNwo , 

where wo is the wiener solution. We can easily check that the 

weight vector ŵk
N

 of Eq. (24) converges to  P̃ 

1/2
TNwo

 
, 

where P̃ = E{P̃k}. Therefore, the two forms of Eq. (22) and 

Eq. (24) are equivalent in stationary and mildly non 

stationary environments. 

By subtracting the transformed and normalized wiener 

filter P̃ 

1/2
TNwo

 
from both sides of Eq. (24), we obtain 

 

w̃k+1
N  = w̃k

N + μekVk
N                           (25) 

 

where, w̃k
N = ŵ

k

N
 – P̃ 

1/2
TNwo

 
 known as the weight-error 

vector.  

We assume that the decorrelation filter [1, –ak-1(1)]  is 

converged to its optimal value, where at each time sample 𝑘 

after the convergence was reached ak-1(1) = a, with a  is a 

scalar that takes values in the interval ]0, 1[. Thus, Eq. (16) 

becomes 

 

x̃k = xk – axk-1                             (26) 

 

and Eq. (15) becomes 

 

X̃k

N
 = Xk

N – aXk-1
N                           (27) 

 

Let us express ek defined in Eq. (18) in terms of  X̃k

N
. The 

input signal xk
N is generated from AR1 process according to 

Eq. (4) 

Therefore, 

 

xk
N = ρxk-1

N  + ωk
N                           (28) 

 

where, ωk
N = [ωk, ωk-1,…, ωk-N+1]T. By multiplying both sides 

of Eq. (28) by TN, we obtain 

 

Xk
N = ρXk-1

N + 𝔀k
N                          (29) 

 

where, 𝔀k
N = TNωk

N. Thus, Eq. (29) can be reorganized as 

 

Xk-1
N  = 

1

ρ
Xk

N–
1

ρ
𝔀k

N                         (30) 

 

By substituting Eq. (30) in Eq. (27) and making some 

rearrangement, we obtain 

 

Xk
N = 

ρ 

ρ - a 

X̃k

N
–

a

ρ - a
𝔀k

N                     (31) 
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By substituting Eq. (31) in Eq. (18), we obtain an 

expression for ek as 

 

ek = dk – (wk
N)

H
(αX̃k

N
 – φ𝔀k

N)                (32) 

 

where, α = 
ρ 

ρ – a
, φ =

a

 ρ – a
, 0 < a ≤ 1 , 0 < ρ < 1 , ρ  is the 

correlation coefficient and a ≠ ρ. 

Let us now express ek given by Eq. (32) in terms of w̃k
N

 

and Vk
N as 

 

ek = dk – (wk
N)

H
P̃k

1/2
P̃k

-1/2
(αX̃k

N
− φ𝔀k

N) 

 dk – (wk
N)

H
P̃k

1/2
(αP̃k

-1/2
X̃k

N
 – φP̃k

-1/2
𝔀k

N) 

= dk – (ŵk
N)

H
(αVk

N – φP̃k

-1/2
𝔀k

N) 

 

= dk – (αVk
N – φP̃k

-1/2
𝔀k

N)
H

ŵk
N

 

 

= dk – (αVk
N – φP̃k

-1/2
𝔀k

N)
H

ŵk
N

 

+ (αVk
N – φP̃k

-1/2
𝔀k

N)
H

P̃ 

1/2
TNwo

 
 

– (αVk
N – φP̃k

-1/2
𝔀k

N)
H

P̃ 

1/2
TNwo

 
 

 

= eo – (αVk
N – φP̃k

-1/2
𝔀k

N)
H

ŵk
N

 

+ (αVk
N – φP̃k

-1/2
𝔀k

N)
H

P̃ 

1/2
TNwo

 
 

 

= eo– (αVk
N – φP̃k

-1/2
𝔀k

N)
H

(ŵk
N – P̃ 

1/2
TNwo

 
) 

= eo – (αVk
N – φP̃k

-1/2
𝔀k

N)
H

w̃k
N

               (33) 

 

where, eo = dk – (αVk
N – φP̃k

-1/2
𝔀k

N)
H

P̃ 

1/2
TNwo

 
 is the error 

when the filter is optimum. 

By substituting Eq. (33) in Eq. (25), we obtain, 

 

w̃k+1
N  = w̃k  

N
+ μVk

N [e o– (αVk
N – φP̃k

-1/2
𝔀k

N)
H

w̃k
N]  = w̃k

N + 

𝜇 [Vk
Neo – (αVk

N(Vk
N)

H
– φVk

N(𝔀k
N)

H
P̃k

-1/2

 
)

 

w̃k
N]

 
(34) 

 

Assuming that at time  k  the coefficients of w̃k
N

 are 

independent of Vk
N , 𝔀k

N  and P̃k

-1/2
. This assumption can be 

justified by taking small values of μ. 

By taking the expectation of both sides of Eq. (34), we 

obtain, 

 

E{w̃k+1
N } = E{w̃k

N} + μ× 

 [E{Vk
Neo} – (αE {Vk

N(Vk
N)

H
} – 

E {φVk
N(𝔀k

N)
H

P̃k

-1/2
}

 
)

 

E{ŵk
N}]

 

 

  = [I – μαS̃N]E{w̃k
N} + 

 μφE {Vk
N(𝔀k

N)
H

P̃k

-1/2
}E{w̃k

N}                 (35) 

 

where, E{Vk
Neo} = 0,  S̃N = E {Vk

N(Vk
N)

H
} . 

We assume that the proposed algorithm is convergent. 

Consequently, Vk
N ≈  P̃k

-1/2
𝔀k

N
 

, E {Vk
N(𝔀k

N)
H

P̃k

-1/2
}  ≈ S̃N and 

Eq. (35) becomes 

 

E{w̃k+1
N } = [I – μ (

ρ
 

ρ – a
) S̃N]E{w̃k

N} + μ (
a

ρ – a
) S̃NE{w̃k

N} 

=[I – μS̃N]E{w̃k
N}                           (36) 

 

It is clear from Eq. (36) that the equivalent forms of Eq. 

(22) and Eq. (24) are mean-square stabilized with the 

following sufficient condition 

 

|1 – μ3tr{S̃N}| < 1                          (37)  

 

So, we can write  

 

0 <  μ  < 
2

3tr{S̃N}
                            (38) 

 

where, Tr(∙) denotes the trace of matrix. The autocorrelation 

matrix S̃N is defined as 

 

S̃N = E {Vk
N(Vk

N)
H
}= (diag(B̃N))

-1/2

B̃N (diag(B̃N))
-1/2

  (39) 

 

where, B̃N = E {X̃k

N
(X̃k

N
)

H

} , and (diag(B̃N))
-1/2

 allows the 

power normalisation of X̃k

N
. Then, the trace of S̃N  can be 

obtained as 

 

tr{S̃N} = tr {E {Vk
N(Vk

N)
H
}}= tr {(diagB̃N)

-1/2
B̃N(diagB̃N)

-1/2 

} 

= tr {(diagB̃N)
-1/2
(diagB̃N)

-1/2
B̃N}= N 

 

where, N  is the filter length. Thus, the stability condition 

given by Eq. (38) becomes 

 

0 < μ < 
2

3N
                                  (40) 

 

which is the same as that of the conventional TDLMS 

algorithm. 

 

Table 1. Eigenvalue spreads obtained by different algorithms for N = 128 and various values of ρ 

 

Correlation 

coefficient 𝝆 

Eigenvalue spread of 

𝐑𝑵 
Eigenvalue spread of 𝐒𝑵 Eigenvalue spread of �̃�𝑵 

  
DCT-

LMS 

DFT-

LMS 

DHT-

LMS 

POW-DCT-

LMS 

POW-DFT-

LMS 

POW-DHT-

LMS 

0.9 341 2.06 18.24 17.85 1.12 1.10 1.12 

0.8 83 1.94 8.57 8.46 1.13 1.10 1.12 

0.7 34 1.84 5.39 5.46 1.13 1.10 1.11 

0.5 16 1.7 3.90 4.02 1.12 1.11 1.12 

0.6 9 1.65 3.06 2.95 1.14 1.10 1.11 
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4.2 Steady state performance of the proposed POW-

TDLMS algorithm 

 

The misadjustment can be computed as [19, 13] 

 

M = 
MSE(∞) – MSEmin

MSEmin
                         (41) 

 

where, MSE(∞) denotes the steady state mean square error 

and MSEmin denotes the minimum mean square error that can 

be achieved by an omptimal filter.  

 

 

5. SIMULATIONS AND RESULTS 

 

In this section, we evaluate the performances of the 

proposed POW-TDLMS algorithm by comparing it to that of 

the conventional TDLMS algorithm for the DCT, DFT and 

DHT transforms. The corresponding algorithms are the DCT-

LMS, DFT-LMS, DHT-LMS for the conventional TDLMS 

and the POW-DCT-LMS, POW-DFT-LMS, POW-DHT-LMS 

for the proposed POW-TDLMS. The step size parameter of 

the adaptive post whitening is set γ = 0.001  for all the 

experiments and all the simulations are averaged over 100 

independents runs.  

 

5.1 Experiment 01 

 

In this experiment, we compare the Eigenvalue spreads of 

 SN  and S̃N  achieved by the conventional TDLMS algorithm 

and the proposed POW-TDLMS, respectively. We use the 

input signals  xk
N generated form AR1 process with different 

correlation coefficients values ρ = 0.9, 0.8, 0.7, 0.6 and 0.5 to 

ensure different eigenvalue spread levels of the 

autocorrelation matrix of the input signal. 

It is clear from Table 1 that the proposed POW-TDLMS 

algorithm significantly decreases the eigenvalue spreads, 

which approaches to 1 for various transforms, independently 

of the correlation level of the input signal. Consequently, the 

post whitened signal becomes nearly white and the proposed 

POW-TDLMS algorithm should provide better MSE 

convergence behavior compared to the conventional TDLMS 

algorithm. 

 

5.2 Experiment 02 

 

In this experiment, the proposed POW-TDLMS algorithm 

and the conventional TDLMS algorithm are implemented in 

the context of system identification. The system h  to be 

identified is a low pass filter with a cutoff frequency equal to 

0.5 and different lengths N =16, N = 64, N = 128, its impulse 

response is presented in Figure 4. The tests are performed 

using input signals  xk
N generated form AR1 process with the 

correlation coefficients values ρ = 0.5  and ρ = 0.9  to ensure 

different eigenvalue spread levels of the autocorrelation 

matrix RN  of the input signal as shown in table 1. For the 

different algorithms, we use the weight vector adaptation step 

sizes µ = 0.001 for the case of the filter lengths N = 16 and N 

= 64 and µ = 0.003 for the case of the filter length N = 128, 

the smoothing factor β = 0.95 and the regularisation parameter 

ε = 0.025. A white Gaussian noise is added to the signal at the 

output of the system h with an SNR = 30 dB.  

 

 

 
 

Figure 4. Impulse response of the system h to be identified 

with N = 128 

 

 
 

Figure 5. MSE convergence of the TDLMS and the proposed 

POW-TDLMS for various transforms, N = 16, for AR(1) 

input signal with ρ = 0.9 

 

 
 

Figure 6. MSE convergence of the TDLMS and the proposed 

POW-TDLMS for various transforms, N = 16, for AR(1) 

input signal with ρ = 0.5 
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Figure 7. MSE convergence of the TDLMS and the proposed 

POW-TDLMS for various transforms, N = 64, for AR(1) 

input signal with ρ = 0.9 

 

 
 

Figure 8. MSE convergence of the TDLMS and the proposed 

POW-TDLMS for various transforms, N = 64, for AR(1) 

input signal with ρ = 0.5 

 

 
 

Figure 9. MSE convergence of the TDLMS and the proposed 

POW-TDLMS for various transforms, N = 128, for AR(1) 

input signal with ρ = 0.9 

 

The simulation results for the MSE convergence 

performance are presented in Figure 5, Figure 6, Figure 7, 

Figure 8, Figure 9 and Figure 10. It is clear from these 

figures that for all the considered cases, the proposed POW-

TDLMS algorithm outperforms the conventional TDLMS 

algorithm for various transforms in terms of the MSE 

convergence speed. It is seen from figures 9 and 10 which 

corresponds to the cases of relatively long filter that the 

proposed POW-TDLMS algorithm outperforms the 

conventional TDLMS algorithm for various transforms, 

especially for the DCT, in terms of the reached steady state. 

 

 
 

Figure 10. MSE convergence of the TDLMS and the propo-

sed POW-TDLMS for various transforms, N = 128, for AR(1) 

input signal with ρ = 0.5 

 

 

6. CONCLUSION  

 

In this paper, a new post-whitening transform domain 

LMS (POW-TDLMS) algorithm has been developed by 

introducing a first order adaptive post whitening after 

applying the transform to reinforce its decorrelation. The 

mean convergence performance analysis of the proposed 

POW-TDLMS algorithm has also been presented. It has been 

shown that the proposed POW-TDLMS algorithm 

significantly reduces the eigenvalue spread of the 

autocorrelation matrix of the post whitened signal normalized 

by its power compared to the conventional TDLMS 

algorithm for the DCT, DFT and DHT transforms. The 

performance of the proposed POW-TDLMS algorithm has 

also been evaluated in the context of system identification 

and in terms of the MSE convergence speed and reached 

steady state compared to that of the conventional TDLMS 

algorithm. The obtained results confirm the efficiency and 

the superiority of the proposed POW-TDLMS algorithm. The 

proposed algorithm has shown its efficiency in system 

identification application. Therefore, as a perspective, it 

would be interesting to investigate its usefulness in adaptive 

acoustic echo cancellation. 
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