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 The goal of this research involving a motor imagery brain-computer interface paradigm is to 

assess the possibility of enhancing the classification rate handling a feature vector based on 

the modulation of electrophysiological brain activity in specific bands. A new amplitude 

modulation energy index of the cerebral rhythms is proposed as feature vector concept. The 

method is proven on a public database and on a set of electroencephalographic data recorded 

in our own laboratory. In both cases, only eight electrodes are used in order to reach high 

performance classifying rates. The discrimination of motor tasks (imagination of right and 

left hand movements) is analyzed by means of five classifiers: support vector machine, k 

nearest neighbor, linear discriminant analysis, quadratic discriminant analysis and 

Mahalanobis distance based classifier. For our database, the medians of the classification rates 

for two of classifiers are very high (94.62 % - 97.76 %) when some rhythms are modulated in 

theta and alpha bands. Significantly higher classification rates reported herein (greater than 

90 % for both of the databases) compared with classifiers trained on the other features prove 

that the index may be very useful for highlighting the modulation found in certain bands of 

the EEG rhythms. 
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1. INTRODUCTION 

 

A brain computer interface (BCI) measures the electrical 

neural activity and converts it into commands for a computer 

or for external equipment represented by a wheelchair or a 

neuroprosthetic device. The main purpose of BCI is to offer 

to disabled people with neuromuscular disorder the 

possibility to communicate with his/her environment without 

muscle action, measuring only the brain activity that is to 

decode human intentions into messages or control signals for 

an output device [1-3].  

The development during the last 10 years of technologies 

based on BCI systems leads to the improvement of the 

quality of life for people with severe neuromotor disabilities.  

A BCI electroencephalographic (EEG) based system is the 

best choice from the point of view of simplicity, safety, 

temporal resolution and costs. Such a system can detect and 

classify specific features enclosed in EEG signals that are 

associated with different activities or tasks. 

The user of the BCI system has to perform different tasks 

and to adopt mental strategies to produce significant EEG 

features. The most common mental strategies are selective 

based paradigms (focusing on different goals) and motor 

imagery (MI) ones [4]. 

The well-known features elicited by selective attention are 

the P300 event related potential [5, 6] and the steady-state 

visual evoked potential (SSVEP) [6-8]. 

Sensorimotor rhythms (SMR) represent oscillations 

recorded in the motor cortex. The brain oscillations are 

classified according to the following specific frequency 

bands: Delta (0.1 – 4 Hz), Theta (4 - 8 Hz), Alpha (8 - 12 

Hz), Beta (12 - 30 Hz) and Gamma (30 - 60 Hz). The Alpha 

rhythm activity recorded in the sensorimotor area is also 

called Mu rhythm. Decreasing oscillatory activity in a 

specific frequency band (event related desynchronization - 

ERD) and increasing oscillatory activity in a specific 

frequency band (event related synchronization - ERS) may be 

produced even by motor imagery, not only by a real 

movement of a limb, [9-12].  

The most known feature extraction methods implemented 

for discriminating the motor tasks are: the principal component 

analysis (PCA) [13-15] the independent component analysis 

(ICA) [16-18], the autoregressive spectral estimation [19], the 

fractal spectra [20], the phase synchronization [18, 21-23] and 

the wavelet transform [24-26]. 

The purpose of the research is to implement a method in 

order to extract and classify the features of the brain signals 

based on the amplitude modulation found in certain bands of 

the EEG rhythms in the case of a MI based BCI paradigm. 

An amplitude modulation energy index is proposed to 

construct the feature vector on which classification methods 

are applied using a publicly available database, as well as our 

own data. 

The leftovers of this paper are structured as it follows: 

Section 2 presents the two databases handled in order to 

validate the method, the amplitude modulation analysis and 

how the amplitude modulation energy index is expressed. 

The results obtained are presented in Section 3 and the last 

one reviews the conclusions. 

 

 

2. METHOD AND DATABASES 
 

2.1 Databases 

 

The first set of data contains the EEG recordings from 50 

Traitement du Signal 
Vol. 36, No. 3, June, 2019, pp. 201-207 

 

Journal homepage: http://iieta.org/journals/ts 
 

201



 

healthy volunteers performed in the Biomedical Signal 

Processing Laboratory of the Medical Bioengineering 

Faculty. The trials were operated on different days and all 

volunteers signed an informed consent form. They were 

seated in front of a PC monitor that displayed left or right 

arrows. They had to imagine the hand movement indicated 

by an arrow and when the screen was white the volunteer had 

to relax. The arrows appeared 30 times for left hand and 30 

times for right hand imagination, in a random manner. Before 

trials, in order to avoid artifacts generation, the volunteer was 

advised not to move, to sallow, to move the eyes or to blink. 

The EEG acquisition system is a g.tec Guger Technologies 

based one [27]. The active electrodes were mounted at 

positions C3, Cz, C4, P3, Pz, P3, CP3, CP4, according to 10-

20 International System of electrode placement. The 

mentioned channels are considered significant to highlight 

real or imagined motor activity [11, 28]. The sampling 

frequency was 256 Hz and the reference electrode were 

placed on the right ear.  

The second set of data consists of EEG signals recorded 

from nine well trained subjects when they performed motor 

imagery tasks. It was made available by Dr. Allen Osman of 

the University of Pennsylvania at the 2002 BCI Competition 

[29]. The signals were acquired from 59 electrodes placed on 

the scalp in accordance with the International System 10-20 

and sampled with a frequency of 100 Hz. The subjects had to 

imagine the left index finger movement or the right index 

finger movement when letter “L” or “R” appeared on the 

computer screen. The subjects had to relax when letter “N” 

was displayed. Each trial session consists of 45 motor 

imagery left hand movements and 45 motor imagery right 

hand movements. For signal processing purposes, only the 

same 8 channels (C3, Cz, C4, P3, Pz, P3, CP3, CP4) were 

selected. 
 

2.2 Amplitude modulation analysis applied to EEG 

signals 

 

Two motor imagery datasets were formed: one composed 

by the EEG signals acquired during right hand movement 

mental task and the second one by the EEG signals acquired 

during left hand movement mental task. 

In order to obtain signals in 4 – 8 Hz, 8 – 12 Hz, 12 – 30 

Hz, 30 – 60 Hz frequency bands, the EEG signal when the 

subject was accomplishing the right hand imagination task, 

denoted by 𝑅𝑠𝑖𝑔(𝑛), where n represents  the time, was band 

passed filtered. The mentioned frequency bands correspond 

to the well-known cerebral rhythms Delta, Theta, Alpha, Beta 

and Gamma respectively [30].  

So, the filtered right signals EEG 𝑅𝑠𝑖𝑔𝑖(𝑛) are defined by: 

 

 ( ) ( ) ( )*i iRsig n Rsig n h n= ,               (1) 

 

where, ( ), 1,2,3,4ih n i = represents the impulse response of 

the bandpass filter for the corresponding frequency band (that 

is 1i = for Delta, 2i = for Theta, 3i = for Beta and 4i = for 

Gamma rhythms). R denotes Right direction. 

The Hilbert transform 𝐻{. } of 𝑅𝑠𝑖𝑔𝑖(𝑛) is defined as [22]: 
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( )1 i

i
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H Rsig n PV dt

t 

+

−
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where, 𝑃𝑉, is the Cauchy principal value. 

The analytic signal 𝑅𝑠𝑖𝑔𝑖(𝑛)𝑎 is defined as: 

 

 ( ) ( ) ( ) i i ia
Rsig n Rsig n jH Rsig n= + , (3) 

 

where, Rsigi(n) and H{Rsigi(n)} are defined in (1) and (2) 

respectively.  

The amplitude modulation, named 𝑅𝑎𝑚𝑖(𝑛)  (or the 

temporal envelope), for 𝑅𝑠𝑖𝑔𝑖(𝑛)𝑎  from (3), is its absolute 

value: 

 

 ( ) ( ) 
22

( )i i iRam n Rsig n H Rsig n= +  (4) 

 

Then, in order to get the temporal envelope for the m-th 

frame, denoted by 𝑅𝑎𝑚𝑖(𝑚, 𝑛), 𝑅𝑎𝑚𝑖(𝑛), expressed in (4), 

is multiplied by a 5 s Hamming window with 0.5 s overlap. 

For each rhythm i, the modulus of the Fourier transform of 

the temporal envelope m is then computed: 

 

  ( , ) ( , )i iRam m f F Ram m n= ,               (5) 

 

where, f is the frequency and 𝐹{𝑅𝑎𝑚𝑖(𝑚, 𝑛)}is the discrete 

Fourier transform of the m-th frame, 𝑅𝑎𝑚𝑖(𝑚, 𝑛). 
In order to measure the frequency content of the temporal 

envelope, 𝑅𝑎𝑚𝑖(𝑚, 𝑓)  was further decomposed into four 

frequency bands, hereafter named modulation bands [31]. It 

is worth preserving the same names for modulation bands as 

those of the rhythms. This is justified by the assertion that the 

frequency content of the envelope of the analytic signal can 

be up to the maximum frequency of the signal. Because 

modulation in the gamma band is possible only in the gamma 

rhythm, this modulation band was not taken into account. 

Therefore, there are thirteen options (Table 1) corresponding 

to four cerebral rhythms and four modulation bands. Table 1 

depicts these cases. 

Table 1. The modulation bands corresponding to different rhythms 

 
Modulation 

band 
Rhythm 

Theta  Alpha Beta Gamma 
delta delta_theta delta_alpha delta_beta delta_gamma 
theta theta_theta theta_alpha alpha_beta theta_gamma 
alpha ----------- alpha_alpha alpha_beta alpha_gamma 
beta ----------- ----------- beta_beta beta_gamma 

  

Then we compute the energy of each modulation j band 

corresponding to each rhythm i , denoted by , ( , )i jRE m f : 

 

 𝑅𝐸𝑖,𝑗(𝑚, 𝑓) = 𝑅𝑎𝑚𝑖,𝑗(𝑚, 𝑓)2 (6) 

and the average of energies over all the frames, represented 

by ,( , )i jRE m f . 

Taking into account the energy defined in (6) and 

,( , )i jRE m f , a new measure, named amplitude modulation 
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energy index, 𝑅𝐴𝑀𝐸𝐼𝑖,𝑗(𝑓), is proposed: 

 

 
,

,

,

1

( , )
( )

( , )

i j

i j K

i j

j

RE m f
RAMEI f

RE m f
=

=


,           (7) 

 

where, K  may be 2, 3 or 4, related to the appropriate rhythm. 

For instance, for the theta rhythm 2K =  because only Delta 

and Theta modulation bands are possible, but for Beta rhythm 

and Gamma rhythm 4K =  as there are four modulation bands 

(delta, theta, alpha and beta). We have to mention that the 

denominator is a sum for one rhythm only, not for all the 

possible rhythms as the index in [30] is represented. 

The steps described above for right hand movement 

imagery were followed by the trials corresponding to left 

hand movement imagery, leading to the amplitude 

modulation energy index for this case, named 𝐿𝐴𝑀𝐸𝐼𝑖,𝑗(𝑓) 

(L designates Left). 

 

2.3 The feature extraction and classification 

 

To get the feature vector, 𝑅𝐴𝑀𝐸𝐼𝑖,𝑗(𝑓) and 𝐿𝐴𝑀𝐸𝐼𝑖,𝑗(𝑓) 

were computed (for each rhythm i and each possible 

amplitude modulation, that is 13 cases for each of the 8 

channels).  

Discrimination of motor tasks (right and left) was assessed 

with five classifiers: support vector machine (SVM) [32, 33], 

k-nearest neighbor (kNN) - k (1, 2, 3, 4 and 5) [34], linear 

discriminant analysis (LDA) [34, 35], quadratic discriminant 

analysis (QDA) [36] and Mahalanobis distance (MD) [37]. 

The fivefold cross validation approach was employed to 

carry out the classification tests. So, the data was randomly 

split into five sets, from which only one was used as the test 

set and the remaining four as train set. The procedure was 

repeated five times and finally, the average classification rate 

across all was computed to get the most accurate results. 

 

 

3. RESULTS 

 

Considering our database, after passband filtering of the 

EEG signals from all the 8 channels on the four rhythms, the 

Hilbert transforms and the envelopes of the analytic signals 

were obtained.  

In Figure 1 the EEG beta rhythm recorded on C3 and C4 

channel and delta, theta, alpha and beta amplitude 

modulations are plotted for right and left hand imagination 

for the TR17i subject. 

The classification rates obtained for RA60i subject for all 

classifiers and for all possible amplitude modulations are 

displayed in Table 2. Classification rates higher than 87 % 

for all classifiers were obtained for rhythm Alpha with alpha 

modulation and for rhythm Beta with theta modulation. 

 
(a) C3 

 
(b) C4 

 

Figure 1. The amplitude modulations of EEG beta rhythm on 

C3 and C4 for the TR17i subject, right hand imagination 

(black - EEG rhythm, red - delta, green - theta, yellow - alpha 

and blue - beta amplitude modulation)

 

Table 2. Classification rates (%) attained for subject RA60i for all classifiers and for all amplitude modulations 

 
RA60i Subject  

Modulation_rhythm LDA QDA MD 
kNN 

SVM 
1 2 3 4 5 

delta_theta 64 73 72 87.69 87.96 88.04 88.19 88 51.5 

theta_theta 79 91.5 94 93.27 93.15 93.13 93.02 93 62 

delta_alpha 79 92.5 92.5 91.54 91.57 91.61 91.64 91.75 49 

theta_alpha 80.5 82.5 83 96.06 96.2 96.34 96.47 96.5 85 

alpha_alpha 100 100 100 100 100 100 100 100 99.5 

delta_beta 62.5 89 89 90.1 90.46 90.8 91.12 91.33 43.5 

theta_beta 87.5 92.5 90.5 95.87 96.02 95.98 96.12 96.17 98 

alpha_beta 69 75 73 91.15 91.48 91.61 91.81 91.67 95 

beta_beta 61 53.5 53 68.75 68.43 67.77 67.24 66.75 55 

delta_gamma 76 82.5 83 89.52 89.54 89.55 89.57 89.5 50.5 

theta_gamma 73 82 83 92.31 92.5 92.41 92.41 92.08 92.5 

alpha_gamma 61.5 88.5 87.5 94.52 94.72 94.64 94.74 94.67 91 

beta_gamma 52 54 58 59.9 59.91 60.18 60.34 60.33 57 
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For all the 50 subjects the attained classification rates are 

highest for alpha_alpha, theta_beta, alpha_beta, theta_gamma 

and alpha_gamma. We have chosen a threshold of 90 % for 

the classification rate which is a high one, according to the 

previous research. The number of the subjects who attained 

at least 90 % is included in Table 3 for the best cases already 

mentioned. 

It is obvious that the kNN and SVM outperform LDA, 

QDA and MD classifiers. So, for kNN and SVM almost all of 

the 50 subjects attained at least 90 % rate of classification 

(marked with green in Table 3). Although the most common 

statistics handled to measure the center of a dataset is the 

mean, it may be not a good representation of the data because 

it is significantly influenced by outliers. A better choice is the 

median as it splits the data into equal sets of numbers. So, in 

what follows we present the outcomes when using this 

statistic. 

In Table 4 there are included the medians of the 

classification rate for all the used classifiers, for the same types 

(combinations) of modulations and rhythms as in Table 3. 
 

Table 3. The number of subjects with the classification rate equal or greater than 90 % (our database) 

 

Classifiers 
Modulation_rhythm 

alpha_alpha theta_beta alpha_beta theta_gamma alpha_gamma 

LDA 26 8 5 9 6 

QDA 28 29 20 29 26 

MD 30 23 18 23 17 

kNN1/3/4/5 49 48 47 48 46 

kNN2 49 48 47 49 47 

SVM 47 46 48 48 47 

  

Table 4. The medians of the classification rates (%) (our database) 
 

Classifiers 
Modulation_rhythm 

alpha_alpha theta_beta alpha_beta theta_gamma alpha_gamma 

LDA 90.50 81.00 74.75 79.00 77.00 

QDA 92.00 90.75 88.75 90.25 91.00 

MD 91.25 89.25 88.25 89.25 87.75 

kNN1 97.74 96.01 95.82 94.62 95.20 

kNN2 97.69 96.11 95.88 94.82 95.28 

kNN3 97.73 96.12 96.03 94.82 95.18 

kNN4 97.76 96.17 96.08 94.87 95.35 

kNN5 97.75 96.04 96.00 94.75 95.30 

SVM 97.75 96.04 96.00 94.75 95.30 

The medians are very high (94.62 % - 97.76 %) for alpha 

and theta modulation bands of Alpha, Beta and Gamma 

rhythms, especially for kNN and SVM. 

The same steps were performed for the second database 

(named Osman database in what follows). Unfortunately, it 

has only 9 subjects, but they are well trained compared with 

the subjects from our database who were not trained at all.  

In Figure 2 the EEG beta rhythm recorded on C3 and C4 

channel and the delta, theta, alpha, beta amplitude modulations 

are plotted for right hand imagination for subject 9. 

In Table 5 are presented the classification rates obtained  

for subject 1 for all classifiers and for all possible amplitude 

modulations bands. 

The best classification rates, higher than 85 %, for all 

classifiers were obtained for Alpha rhythm with alpha 

modulation and Beta rhythm with theta modulation.  

It is important to mention that the best results were 

achieved on the same modulation bands of the same rhythms 

as in the previous reported cases. 

In Table 6 are included the modulations of different 

rhythms where the number of subjects who have 

classification rate between the imagination of right hand and 

the imagination of left hand greater or equal with 90 %. 

For theta_beta, all the 9 subjects get more than 90 % for 

classification rate when KNN or SVM classifier is used. For 

alpha_gamma, 6 subjects when KNN classifier is handled 

and only 3 in the case of SVM. Except the modulation in 

alpha band of alpha rhythm, all the other possibilities lead to 

the worst performances when LDA, QDA or MD is 

performed. 

 
(a) C3 

 
(b) C4 

 

Figure 2. The amplitude modulations of EEG beta rhythm on 

C3 and C4 for subject 9, right hand imagination (black - EEG 

rhythm, red - delta, green - theta, yellow - alpha and blue - beta 

amplitude modulation)
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Table 5. Classification rates (%) obtained for subject 1 (Osman database) 

Subject 1 

Modulation_rhythm LDA QDA MD 
kNN 

SVM 
1 2 3 4 5 

delta_theta 81 82.5 83 90.38 90.46 90.54 90.6 90.5 58.5 

theta_theta 76 64.5 71.5 84.81 85.19 85.18 85.17 85 50 

delta_alpha 76 65 74.5 85 85.28 85.63 85.86 85.92 50.5 

theta_alpha 79 71.5 80.5 93.85 94.07 94.2 94.31 94.17 77.5 

alpha_alpha 97 96.5 96 98.85 98.8 98.75 98.71 98.75 99 

delta_beta 78 88.5 90.5 92.02 91.76 91.34 91.12 90.67 51 

theta_beta 85.5 90 90 95.58 95.74 95.71 95.86 95.5 94 

alpha_beta 72.5 84.5 83 94.42 94.63 94.55 94.57 94.42 90.5 

beta_beta 60.5 52 55 68.08 67.41 67.41 67.16 67.08 51.5 

delta_gamma 96 99 98.5 90.19 90.09 90.09 90 89.92 60.5 

theta_gamma 79 93 93 93.75 93.89 94.02 94.14 94.08 90.5 

alpha_gamma 76 90.5 88.5 89.52 89.63 89.64 89.83 89.92 76.5 

beta_gamma 66 57.5 57 64.23 64.54 64.82 65.09 65.58 54 

Table 6. The number of subjects with the classification rate 

equal or greater than 90 % (Osman database) 

Classifiers 

Modulation_rhythm 

al
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a 
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a 

al
p
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a 
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g
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a 
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h
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g
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LDA 6 0 0 1 1 

QDA 8 3 4 5 4 

MD 6 3 2 5 3 

kNN1/5 8 9 9 7 6 

kNN2/3/4 8 9 9 8 6 

SVM 8 9 8 5 3 

The medians for the classification rates of all the 9 subjects 

are included in Table 7. 

Table 7. The medians of the classification rates (%) (Osman 

database) 

Classifiers 

Modulation_rhythm 

al
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h
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h
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et
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a 
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p
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h
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g
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m
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LDA 94 84 77.50 76 71.50 

QDA 93 88 84.50 90 87.50 

MD 94 88.50 84 91.50 88.50 

kNN1 96.06 95.19 94.81 93.75 90.19 

kNN2 96.2 95.37 94.91 93.89 90.37 

kNN3 96.34 95.36 94.82 94.02 90.63 

kNN4 96.47 95.43 94.91 94.14 90.86 

kNN5 96.42 95.42 95 94.08 91.08 

SVM 95.50 94 91.50 90.50 78.50 

As expected, for all the cases, the higher median values of 

the classification rates are found when applying kNN or 

SVM classifiers, as evidenced in Table 7. Only for 

alpha_alpha, LDA, QDA and MD have high medians of the 

classification rates (about 93 %). 

4. CONCLUSIONS

The proposed method, tested on two databases, shows that 

when a person performs a motor task, such as imagination of 

the right or left hand movement, this determines a modulation 

of electrophysiological brain activity in specific bands. 

A new index, labeled amplitude modulation energy index, 

was developed and used to generate the feature vector, 

computed for the two classes (left and right) considered for 

investigation. The performance was reported by means of the 

classification rate obtained when LDA, QDA, MD, kNN and 

SVM classifier were employed. 

The classification rates greater than 90 % were attained for 

our own database of 50 subjects, when gamma, alpha or beta 

rhythms are modulated in theta (4-8 Hz) and alpha (8-12 Hz) 

bands. The medians of the classification rates are very high 

(94.62 % - 97.76 %) especially for kNN and SVM. It was 

shown that it can achieve significantly higher classification 

rates (with medians greater than 94 % in many situations) 

relative to classifiers trained on the other feature - based 

amplitude modulation index proposed in [38] (when the 

medians were no greater than 70 %).  

For the Osman database, our outcomes are compared with 

the reported results in [39-41]. In [39], where a new adaptive 

time–frequency feature extraction strategy is investigated, for 

subject 1, classification rates in the range of 74.2 – 81.1 % with 

LDA classifier were achieved. Using multiple frequency-

spatial synthesized features and SVM classifier in [40], a 

classification rate of 67.80% was obtained for subject 1. In 

[41], a dynamical ensemble learning framework is mentioned 

with model-friendly classifiers (SVM, kNN and LDA) for 

domain adaptation and for which subject 1 achieved 

classification rates of 67.89 %, 68.25 % and 70.22 % 

respectively. Applying our method, subject 1 changed the 

following discrimination rates for alpha modulation of Alpha 

rhythm: LDA – 97 %, QDA – 96.5 %, MD – 96 %, kNN (1, 2, 

3, 4, 5 neighbors) - 98.85 %, 98.80 %, 98.71 %, 98.75 %, 

98.83 respectively and SVM – 99 % (Table 5). Taking into 

account all these results, it is obvious that our method 

outperforms the others named in [39-41]. 

We may conclude that the newly developed metric of the 

temporal envelope, the amplitude modulation energy index, 

would be a valuable feature in order to classify motor tasks 

such as movement imagination of right /left hand. 

The future work implies improving classification rates by 

testing combinations of classifiers and applying the method on 
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other databases (both of health subjects and patients). 

Therefore, additionally, a new database of EEG signals 

recorded from patients with neuromotor disorders has to be 

created. 

An everyday challenge is to get high performances using 

limited data, so using less than 8 EEG channels must be 

considered for the processing steps.  
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