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The Internet of Things (IoT) has significantly enhanced human security through various 

smart devices and wearables. Despite minor drawbacks, such as vibrations caused by these 

devices, their benefits far outweigh the challenges. The Internet of Things (IoT) plays a 

crucial role in the development of smart cities and smart homes, particularly in enhancing 

public safety and security. By integrating IoT with deep learning, real-time threat 

detection can be significantly enhanced. This research addresses a critical challenge in 

IoT-based security systems: ensuring secure data communication from its point of 

generation to analysis and final consumption. The proposed system introduces a novel 

dataset-driven approach that leverages deep learning for real-time detection of potential 

threats, such as individuals carrying sharp objects or those attempting to conceal their 

identity with face coverings. By combining IoT with digital image processing and 

cryptographic techniques, the system ensures secure data transmission while promptly 

alerting authorized personnel to potential security threats. This work not only strengthens 

public safety but also mitigates risks associated with malicious activities, offering a robust 

and intelligent IoT-based security framework. 
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1. INTRODUCTION

IoT has emerged as a transformative force in the digital age, 

redefining how humans can interact with technology and 

achieve control or monitor their surroundings. The rapid 

evolution of IoT has formulated a vast number of applications 

in diverse fields, ranging from smart healthcare [1, 2] to smart 

creatures where Projects such as the Smart Feeding Station use 

RFID Technology and weight sensors to study small mammals 

like Goodman's mouse lemurs in semi-natural habitats [3, 4] 

and from urban development [5-7] to home automation [8, 9]. 

This technology promises not only convenience and efficiency 

but also sustainability, as it empowers individuals and 

organizations to make data-driven decisions that aim at 

efficient resource utilization. Many research works have been 

published with each of these applications.  

The integration of IoT Technology in shaping smart cities 

has revolutionized urban infrastructure, enhancing efficiency, 

security, and automation. Various IoT-driven monitoring and 

surveillance systems have been developed, playing a crucial 

role in areas such as intelligent traffic management, energy 

distribution, and waste management. While existing public 

security systems leverage IoT for threat detection, many face 

challenges related to real-time accuracy, secure data 

transmission, and proactive threat identification. 

This research introduces a novel IoT-based security 

framework that enhances public safety by integrating deep 

learning-driven image processing with cryptographic 

techniques. Unlike conventional surveillance systems, which 

primarily rely on manual monitoring or basic automated 

recognition, the proposed system offers real-time detection of 

potential threats, including individuals carrying sharp objects 

or those attempting to conceal their identity. The key 

advantage of this approach lies in its secure communication 

framework, ensuring end-to-end encrypted data transmission 

from the point of detection to authorized personnel. 

Additionally, by leveraging deep learning, the system achieves 

higher detection accuracy and faster response times compared 

to traditional security models. 

This work not only enhances public safety but also 

addresses existing gaps in IoT-based security by providing a 

robust, intelligent, and privacy-preserving surveillance 

solution, marking a significant step forward in smart city 

infrastructure. 

2. RELATED WORK

Ensuring secure data communication in IoT systems is a 

critical challenge, given the resource constraints of devices. 
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Recent research has focused on developing lightweight 

cryptographic algorithms specifically tailored for the Internet 

of Things (IoT). This study [10] compared several ciphers 

(AES-128, SPECK, ASCON) on constrained IoT boards and 

measured execution time, memory use, and throughput. Their 

evaluation showed that SPECK exhibits the best overall 

performance on low-power IoT devices, striking a favorable 

balance between security and efficiency. Similarly, the study 

[11] analyzed encryption delays on common IoT hardware

(ESP32, Raspberry Pi) using a stream cipher (ChaCha20)

versus AES. They found ChaCha20 to be significantly faster

than AES across devices, as ChaCha20's lightweight

operations (rotation and XOR) impose less computational

overhead. AES still provides robust security, but its latency

grows with key size, which can be impractical for real-time

IoT data streams. These studies highlight the importance of

adopting optimized cryptographic algorithms (e.g., SPECK or

ChaCha20) for secure yet efficient IoT communications.

Beyond securing data, IoT Technology itself is being 

leveraged to enhance public safety. Reza [12] noted that law 

enforcement agencies worldwide are investing in IoT and AI 

technologies for smart policing and crime prevention. The 

integration of AI with IoT can help authorities analyze massive 

amounts of sensor data in real-time, overcoming human 

limitations and making crime more predictable and detectable. 

In smart cities, a variety of IoT devices (from environmental 

sensors to surveillance cameras) have been deployed to 

improve safety. Shchepkina et al. [13] performed a 

comprehensive evaluation of IoT-based public safety 

measures across urban and rural settings. They classified key 

device types, including wearable health monitors, 

environmental and traffic sensors, and AI-powered 

surveillance cameras, and assessed their impact. The results 

showed substantial benefits; for example, a rural deployment 

of wearable health and surveillance IoT devices led to 

approximately a 40% improvement in the community's safety, 

accompanied by high user satisfaction. Such data-driven 

Public Safety IoT tests underscore the flexibility of IoT 

solutions in various environments and their role in creating 

safer and more resilient communities. Advanced analytic 

methods are also being applied to IoT-based safety systems. 

Thirunagari and Ferdouse [14] developed a real-time crime 

detection framework using CCTV feeds (an IoT component in 

smart cities) with deep learning to recognize suspicious 

activities automatically. Their system combines convolutional 

neural networks and LSTM (long short-term memory) 

networks to analyze video, capturing both spatial features and 

temporal motion patterns. This hybrid CNN-LSTM model 

achieved approximately 90% accuracy in predicting and 

detecting crimes in real-time, significantly outperforming a 

baseline CNN-only approach. Such results demonstrate the 

potential of integrating IoT surveillance infrastructure with AI 

models to proactively alert authorities to incidents, thereby 

enhancing public safety through timely response. 

In parallel, researchers are exploring vision-based threat 

detection on IoT platforms to identify dangerous objects or 

individuals. Sanapannavar et al. [15] proposed an IoT-driven 

smart surveillance system utilizing a Raspberry Pi (an IoT 

microcomputer) with a camera to detect weapons or intruders 

in public spaces. Their implementation captures video streams 

and applies a deep learning model to recognize potential threat 

objects, such as guns or knives. Notably, they employed a pre-

trained CNN (VGG16/YOLO) to perform object detection, 

and by training on a standard dataset of common weapons, the 

system can swiftly identify weapons with high accuracy. In 

testing, the prototype achieved about 96% accuracy in 

detecting firearms or edged weapons, and it automatically 

sends an alert with the captured images to authorized 

personnel for intervention. To ensure the security of the 

transmitted alert data, the system also integrates cryptography. 

Before sending video evidence to the cloud or officials, an 

elliptic curve digital signature algorithm (ECDSA) is applied 

to the footage. This cryptographic layer preserves data 

integrity and authenticity, preventing tampering while 

enabling real-time forensic analysis of the incident. The result 

is a secure IoT surveillance solution that can promptly detect 

and report violent threats. Another important threat scenario is 

individuals attempting to conceal their identity. Al-Dmour et 

al. [16] addressed the challenge of masked face detection and 

recognition using deep learning. Their system first utilizes a 

convolutional neural network to distinguish between masked 

and unmasked faces, achieving 99.77% accuracy in this binary 

classification task. It further classifies the mask-wearing 

condition (proper, improper, or no mask) with over 99% 

accuracy and even performs facial identification of the person 

despite the mask, with an average recognition accuracy of 

~98%. Such performance is remarkable, considering that face 

occlusion typically impairs recognition. By training on diverse 

face datasets (both masked and unmasked) and using a 

specialized CNN architecture, the model can reliably detect 

people hiding their faces. This has obvious public safety 

applications – for instance, spotting suspects who wear masks 

or balaclavas to evade CCTV identification. Deploying this 

capability on IoT camera networks or access control systems 

can help security personnel identify individuals with 

concealed faces for further attention without significantly 

impeding those using masks for legitimate reasons. 

The Internet of Things (IoT) plays a significant role in 

transforming energy usage, making it more efficient, smarter, 

and sustainable through advanced energy management 

systems. In energy distribution, smart grids [17] (The 

interconnected network that delivers energy from producers to 

consumers) ensure the generation, transmission, and 

distribution of electricity. In Industrial management, 

Sustainable energy savings are achieved by using IoT sensors 

to monitor machinery. Where it identifies inefficiencies, 

predicts maintenance needs, and optimizes processes. 

Moreover, IoT combines smart charging systems and vehicle-

to-grid (V2G) technology to facilitate the integration of 

Electric Vehicles (EVs). This maximizes grid stability and 

renewable energy usage. Smart IoT sensors in waste bins help 

transform waste by providing real-time data and enhancing 

more efficient waste collection capabilities. The primary 

purpose of these sensors is to monitor the fill level of these 

bins and communicate this data to the centralized hub. 

Traditional surveillance security system operations involve 

humans and are done manually, which can sometimes lead to 

oversight. Recent advances utilize surveillance cameras to 

continuously capture video footage, which is either stored 

locally or on centralized servers. Security personnel are tasked 

with monitoring live video feeds or reviewing recorded 

footage when a security breach occurs. Even the processing of 

data is done using deep learning methods.  

However, even now, systems have several notable 

drawbacks [18-22]. Many Privacy-Preserving Architectures 

and technologies have been proposed in this direction across 

various sectors. Secure Visual Data Processing via Federated 

Learning [23] demonstrates how Integrating object detection, 
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anonymization, and federated learning can be utilized to 

protect privacy while processing surveillance video. 

Additionally, a recent comprehensive review of methods that 

detect unusual behaviors in video while minimizing privacy 

leaks has been conducted [24]. 

Lack of Real-Time Threat Detection: In traditional systems, 

the automatic identification of threats or analysis of suspicious 

behavior in real-time is not possible. Security teams need to 

spend a significant amount of time and effort studying footage 

manually, which is time-consuming and prone to 

misinterpretation due to minor or major human error. No 

Proactive Responses leading to delay in action against 

adversaries cause significant losses or harm.  

Limited Scalability: Expanding traditional surveillance 

systems requires considerable investments in infrastructure, 

such as additional cameras, storage, and human resources, 

which can become costly and complicated, potentially 

threatening the human resources employed.  

Inability to Process Data: Although the footage is stored for 

later examination, traditional systems lack advanced tools to 

analyze patterns, behaviors, or threats using historical data.  

With the rise of IoT and AI technologies, these challenges 

can be overcome by developing smarter, automated systems 

that enhance security and response efficiency. Although 

present IoT systems, along with AI technology, have efficient 

methods for analyzing data, the effectiveness depends on the 

features used and the model considered. In any model, the 

secure communication of data from the source of generation 

to storage is very important. This secure communication can 

be achieved using lightweight cryptographic algorithms, as the 

systems involve IoT-constrained devices.  

3. PROPOSED MODEL

This section describes the methodology used, the tools used, 

and the interdependencies among them. In this, the use of IoT 

in public places for people's safety is explored. Real-time 

testing conducted on projects. Additionally, it ensures that the 

captured images are stored securely in the cloud, providing 

security measures in the event of a threat detection. The 

original dataset comprises 6,850 samples, partitioned into 

4,795 for training, 1,028 for testing, and 1,028 for validation. 

Following the application of data augmentation techniques, 

the dataset size increases to 34,250 images, with an updated 

split of 23,975 for training, 5,138 for testing, and 5,137 for 

validation. The dataset distribution adheres to a 70% (training) 

- 15% (validation) - 15% (testing) ratio to ensure a balanced

and effective model evaluation.

Figure 1. End to end system design 

This system represents a significant advancement in 

overcoming the shortcomings of conventional surveillance 

methods. Integrating artificial intelligence (AI) with the 

Internet of Things (IoT) offers real-time, automated 

capabilities for detecting and responding to threats. The 

overall architecture of the system is Figure 1. 

The video frames generated in the source are authenticated 

using a Secure Hash Algorithm with a 512-bit value, encrypted 

with Elliptic Curve Cryptography, and then sent to cloud 

storage via the Wi-Fi internet that is configured and enabled 

for the Raspberry Pi board.  

SHA-512 is a cryptographic hash function that always 

produces a hash output value of 512 bits irrespective of input 

size. SHA-512 functions on a block size of 1024. If input 

size(n)% 1024 produces a remainder value >0, then padding is 

done with a starting '1' bit and followed by '0' bits to make a 

block of 1024. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑝𝑎𝑑𝑑𝑒𝑑 =  1024 − (𝑛%1024) (1) 

After padding, the input is divided into 1024-bit blocks 

using Eq. (1) and then processed. Each block is processed by 

a compression function with eight 64-bit feedback from the 

previous block. The processing of the first block utilizes pre-

initialized constant values, denoted as H0, H1, H2, H3, H4, H5, 

H6, and H7, which are temporarily stored in variables a to h 

and updated in a circular shifting pattern. The compression 

function iterates over each block, processing it with 80 rounds. 

That involves bitwise logical functions to process the input, 

producing a 512-bit authentication value. The compression 

function can be represented mathematically as: 

𝑇₁ = 𝐻₇ + 𝛴₁(𝐻₄) + 𝐶ℎ𝑜𝑖𝑐𝑒(𝐻₄, 𝐻₅, 𝐻₆) + 𝐾ₜ + 𝑊ₜ (2) 

𝑇₂ = 𝛴₀(𝐻₀) + 𝑀𝑎𝑗𝑜𝑟(𝐻₀, 𝐻₁, 𝐻₂) (3) 

𝐻₇ = 𝐻₆, 𝐻₆ = 𝐻₅, 𝐻₅ = 𝐻₄, 𝐻₄ = 𝐻₃ + 𝑇₁ (4) 

𝐻₃ = 𝐻₂, 𝐻₂ = 𝐻₁, 𝐻₁ = 𝐻₀, 𝐻₀ = 𝑇₁ + 𝑇₂ (5) 

Eqs. (1)-(5) represent how the bits are permuted using the 

compression function. 𝑇₁ Eq. (2) introduces non-linearity and 

message mixing into the state via Bitwise operations on the 

current state (H₄, H₅, H₆), a constant, Kₜ a constant unique to 

the round, and the expanded message word Wₜ. This 

contributes to the avalanche effect. The second temporary 

variable 𝑇₂   in Eq. (3), helps update the upper half of the 

working state variables a, b, c, and d (representing temporary 

32-bit registers used during the 64 rounds of compression for

each message block) using 𝛴₀(𝐻₀) and 𝑀𝑎𝑗𝑜𝑟 (𝐻₀, 𝐻₁, 𝐻₂).

𝐻₇ in Eq. (4) is used for upper-half updation, and 𝐻₃ in Eq. (3)

is used for lower-half updation.

The Σ₀ and Σ₁ are the bitwise rotate and shift functions. The 

function Choice (z, y, z) = (z&y) +(-z&z) is the choice 

function. The Major (x, y, z) = (x&y) + (x&z) + (y&z) is the 

majority function. The Kₜ is the round constant derived from 

the fractional parts of cube roots of the first 80 prime numbers. 

Finally, the output value is the concatenation of H0 to H7, 

which will be 512 bits in length. 

The 512-bit SHA value is stored in a text file. The video file 

captured at the source, along with the SHA value, is zipped in 

a file. Then, the zipped file is encrypted using the AES 256 

algorithm and sent across the internet to cloud storage. The key 

used for AES 256 is generated using Edward Curve 

cryptography. 

The key is generated by choosing an Edwards curve, q, d, 
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and a generator point G. The generated key is then exchanged 

using the ECDH (Elliptic Curve Diffie-Hellman) algorithm, 

which is represented as 𝑘𝐴  and kB. That will be utilized to

derive a shared secret S. The secret key S is then utilized to 

compute the AES key via a secure hash. Encryption and 

decryption are performed using the AES Key.  

An Edward curve in Eq 6 is defined over a finite field (𝐹𝑞)

by the Eq. 

𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 (6) 

where, d≠0 and d is not a square in 𝐹𝑞, select curve parameter

d satisfying the Edwards curve equation. After selecting the 

required parameters, a Key pair (private Key (k), public Key 

(p)) is generated. Private Key (k) is an integer selected at 

random within the range 1≤k<n, where n is the order of the 

curve. Public Key (P) is derived by multiplying the private 

Key k by the base point G on the Edwards curve: P=k⋅G, where 

G=(𝑥𝐺, 𝑦𝐺) is a predefined generator point. The Shared Secret

Derivation is achieved by applying the Elliptic Curve Diffie-

Hellman (ECDH) protocol. The sender of data computes 𝑆 =
𝑘𝐴. 𝑃𝐵 and the receiver of data computes S =  𝑘𝐵. 𝑃𝐴 , where

PA and PB are public keys, and S is the shared secret. Since 

elliptic curve multiplication is commutative, both derive the 

same shared secret point S= (𝑥𝑆, 𝑦𝑆).

Key Derivation for AES-256 is done by extracting 256 bits 

from the shared secret S. Apply a cryptographic secure hash 

function H (SHA-256) to derive a 256-bit AES Key: 

AES_Key=H(𝑥𝑆 ∥ 𝑦𝑆). The derived Key is then used in the

AES-256 algorithm for encryption: 

C=AESAES_Key(M), where M is the plaintext and C is the 

ciphertext. At the receiver side, decryption is done using the 

AES key. After the video is decrypted and the integrity check 

is performed, the video frames are analyzed to detect threats 

in the captured video. 

Figure 2. AI model for public surveillance system 

Video frame analysis is done in the cloud and can be 

described using three main stages. The various steps are shown 

in Figure 2. Frames are extracted from an input video captured 

using a Pi camera. These frames are preprocessed, and the 

objects are detected. After object detection, object 

identification is performed, and if any matches are found, an 

alarm is triggered, and a notification is sent to the predefined 

number. 

The AI system is shown in Figure 2, is initialized by loading 

the VGG16 pre-trained model, which was trained on a dataset 

consisting of images of weapons and people wearing masks, 

and imported into 𝐷𝑡 . The Raspberry Pi (𝑅𝑝) is configured to 
receive the alarm notifications. The function 

InitializeAISystem depicts the steps of the initialization 

process. 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐴𝐼𝑆𝑦𝑠𝑡𝑒𝑚)
𝑀 ← 𝑙𝑜𝑎𝑑(𝑉𝐺𝐺16_𝑚𝑜𝑑𝑒𝑙) 

𝐷𝑡 ← 𝐼𝑚𝑝𝑜𝑟𝑡(𝑇𝑎𝑏𝑙𝑒1)
𝑅𝑝 ← 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒(𝑅𝑎𝑠𝑝𝑏𝑒𝑟𝑟_𝑝𝑖)

𝐴 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝐴𝑙𝑎𝑟𝑚_𝑆𝑦𝑠𝑡𝑒𝑚) 

𝑒𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Video is captured using a Raspberry Pi camera and 

converted to frames. These frames are preprocessed by passing 

frame 𝐹 to the preprocessing function, which involves image 

translation, in which pixels in frame F are shifted by offset 

∆𝑥 and ∆𝑦. 

𝐹𝑡 ← 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒(𝐹, ∆𝑥, ∆𝑦)

Then, the sharing operation is carried out on the frame to 

distort it along an axis with an angle of θ. 

𝐹𝑠 ← 𝑆ℎ𝑒𝑎𝑟(𝐹𝑡 , 𝜃)

Then normalization is carried out in which pixel values are 

adjusted to range [0,1] 

𝐹𝑛 ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐹𝑠)

After this stage, images are sent to the object detection 

model, which identifies the objects( 𝑂) present in the frame by 

performing bounding boxes for detected edges (E). 

𝑂 {𝑏 𝐸|∃ 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑛𝑠𝑖𝑑𝑒 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑏} 
Then it detects objects 𝑜 and their positions 𝑝 as shown 

below. 

𝑃 ← {(𝑜, 𝑝) | 𝑜 ∈ 𝑂, 𝑝 ∈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑜)} 

The list of detected objects and their locations 𝑃 is passed 

to the analysis function, which matches the detected objects 

to predefined threat categories {𝑐 ∈  𝑔𝑢𝑛, 𝑘𝑛𝑖𝑓𝑒, 𝑎𝑛𝑑 𝑚𝑎𝑠𝑘} 
Based on trained models. If a match is found, an alarm 

notification is sent to 𝑅𝑝, triggering an alarm 𝐴 . 𝐶  contains 

the identified objects and their categories. 

𝐶 ← {(𝑜, 𝑐)| 𝑜 ∈ 𝑃, 𝑐 ∈ 𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑃)}, compares objects to 

predefined classes 𝑃. 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑛𝑎𝑙𝑦𝑧𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑠(𝑂: 𝑠𝑒𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑠) 

𝑓𝑜𝑟 (𝑜, 𝑐) ∈ 𝑂 𝑑𝑜 

𝑖𝑓 𝑐 ∈ {𝑔𝑢𝑛, 𝑘𝑛𝑖𝑓𝑒, 𝑚𝑎𝑠𝑘}, 𝑡ℎ𝑒𝑛 

𝑠𝑒𝑛𝑑_𝑛𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑅𝑝, 𝑐)
𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝐴) 

𝑒𝑛𝑑 𝑖𝑓 

𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑒𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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𝐹𝑒  extracts the identified objects from frame 𝐹 , and the

extracted objects are added to the training dataset. Then, the 

VGG16 model is updated using the enhanced dataset 𝐷𝑡  to
improve object detection accuracy. 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 

(𝑂: 𝑆𝑒𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑜𝑏𝑗𝑒𝑐𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒: 𝐹) 

𝐹𝑒 ← {𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒(𝑜)|(𝑜, _) ∊  𝑂 
𝐷𝑡 ← 𝐷𝑡 ∪ 𝐹𝑒

𝑀 ← 𝑇𝑅𝐴𝐼𝑁(𝑀, 𝐷𝑡)
𝑒𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

The whole process is explained in three parts: 

Video Capture and Analysis: Surveillance cameras are 

installed to continuously record video footage from public 

areas, such as shopping malls, train stations, and office 

buildings. These cameras connect to a central processing unit 

powered by an affordable Raspberry Pi microcontroller, 

facilitating easy deployment and scalability.  

The imaging subsystem of the proposed architecture 

employs the Raspberry Pi Camera Module, a CSI-interface-

compatible peripheral optimized for seamless integration with 

the Raspberry Pi SBC (Single Board Computer). Engineered 

for high-efficiency video acquisition, the module supports 

native 5-megapixel still image capture and H.264/MJPEG 

video encoding. Upon interfacing via the dedicated camera 

serial interface (CSI) port and executing requisite initialization 

commands within the Raspbian OS terminal, the module 

becomes operational with minimal configuration overhead. 

From a cost-performance perspective, this optical sensor 

module offers an optimal price-to-capability ratio, making it a 

compelling choice for embedded vision applications. 

AI-Based Analysis: The system utilizes VGG16, a 

Convolutional Neural Network (CNN) model trained on large 

datasets, as shown in Table 1. It includes images of weapons, 

human behaviors, and contextual information. This training 

enables highly accurate detection, reducing the chances of 

false positives and negatives. VGG16 determines whether the 

person is armed with a gun or a knife, or has their face covered 

with a mask. Detection of such objects results in a notification 

being sent to the Raspberry Pi, prompting it to initiate the 

alarm. In addition to weapon detection, the system leverages 

AI to recognize individuals wearing masks or mufflers, which 

may indicate an emerging threat. 

After identifying the objects, the frames that contain the 

recognized items undergo a training process. At this stage, the 

system enhances its ability to identify and categorize similar 

objects within the frame by learning from the detected items. 

The training dataset, which consists of the identified objects, 

helps improve the system's comprehension of object features 

and attributes. The training data is processed through the 

VGG16 classification model, a widely recognized architecture 

for image classification due to its deep convolutional and 

pooling layers that extract hierarchical features, enabling 

accurate categorization of input images. VGG16 establishes 

connections between the identified objects and their respective 

classes or categories throughout the training phase. 

Object Detection and Identification Process: The captured 

video is converted into frames for preprocessing. Image 

translation in which pixels are shifted to a direction, then 

Shearing distorts the image along an axis, normalization in 

which the pixel values are adjusted to a standard value range, 

and lastly, Edge detection does the bounding boxes for the 

detected object, as shown in Figure 3(a), 3(b) and 3(c). 

Object identification ascertains what those things are by 

comparing them to predetermined categories or classes. Object 

detection identifies the presence and location of objects within 

frames. Through this procedure, the system can learn valuable 

information from the video feed, making monitoring, analysis, 

and surveillance easier. 

(a) 

(b) 

(c) 

Figure 3. Original image, image edge, processed images of 

(a) Masked persons; (b) Knife; (c) Gun
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As shown in Figure 3, a consistent and comprehensive 

preprocessing pipeline was applied to all images. This pipeline 

incorporates geometric transformations, such as translation 

and shearing, to simulate positional and angular variations, 

thereby enhancing model robustness. Edge detection 

techniques, such as Canny or Sobel filters, are used to extract 

critical structural features that assist in accurately identifying 

object shapes. Morphological operations, including dilation, 

erosion, opening, and closing, further refine these features by 

removing noise and reinforcing object boundaries. Finally, 

normalization scales the pixel values to a uniform range, 

ensuring standardized inputs that accelerate convergence and 

improve training stability. 

When the model identifies objects such as guns, masks, or 

knives, it creates and sends a notification signal to the 

Raspberry Pi. Once the Raspberry Pi receives this notification, 

it triggers a response mechanism that sends alerts to the 

appropriate authorities or security personnel and activates a 

warning tone to emit an alarm. This alarm is utilized as a 

warning to alert the relevant parties to potentially hazardous 

items or suspicious individuals. 

A detailed analysis of the video samples used for 

assessment is shown in Table 1. Seven movies were used for 

knife identification, which were divided into about 35,600 

frames in total, all of which featured blades. Eight movies, 

totaling about 42,340 frames and exclusively featuring 

firearms, were also set aside for gun detection. 

 

Table 1. Count of annotated frames and total videos 

 
Weapons/Masks Count of Frames Count of Videos 

Knives 35,200 7 

Guns 42,000 8 

Masks 28,340 6 

Grand total 105,540 21 

 

The dataset used for firearm, knife, and mask detection 

consists of images curated from publicly available sources, 

including COCO and Open Images, as well as custom datasets, 

ensuring a comprehensive representation of real-world 

scenarios. Each image is annotated using bounding box 

annotations in the COCO JSON format or PASCAL VOC 

XML format, making it compatible with deep learning 

frameworks such as TensorFlow and PyTorch. The dataset 

includes three primary object classes: firearms, knives, and 

masks, along with a background class to mitigate false 

positives. To ensure robust generalization, images are 

collected across diverse environments, varying lighting 

conditions, occlusion scenarios, and different angles of 

observation. The dataset comprises X images, with Y samples 

per class, ensuring a balanced distribution to prevent class 

imbalance issues. 

Additionally, a subset of the dataset is reserved for 

evaluation, following an 80-10-10 split for training, validation, 

and testing, respectively. Given the critical security 

implications of detecting firearms, knives, and masks, ethical 

considerations are paramount. The dataset strictly adheres to 

privacy-preserving principles, ensuring that personally 

identifiable information (PII) is excluded from all images. To 

address potential algorithmic bias, the dataset is curated to 

include diverse demographics, backgrounds, and object 

orientations, thereby reducing skewed model predictions that 

may disproportionately affect specific populations. The study 

aligns with international guidelines, including the GDPR 

(General Data Protection Regulation), IEEE AI Ethics 

standards, and UNESCO AI Ethics Recommendations, 

ensuring compliance with privacy laws and promoting the 

ethical deployment of AI. Additionally, measures are taken to 

prevent the adversarial misuse of the model, such as 

embedding model watermarking and controlled access 

protocols for deployment in security applications. 

Data inconsistencies, such as missing annotations or 

corrupted images, are addressed using automated data 

validation pipelines. Missing labels are either interpolated 

using nearest-neighbor estimation or flagged for manual 

correction via an active learning re-annotation process. In 

cases where bounding boxes are missing or incorrectly 

labeled, synthetic labeling techniques such as semi-supervised 

learning (SSL) are employed, leveraging weakly labeled 

datasets to enhance annotation quality. 

To ensure uniformity across different image sources, all 

images are resized to a fixed resolution of 512×512 pixels 

while maintaining the original aspect ratio using padding 

techniques (letterboxing). Pixel intensity values are 

normalized to the [0, 1] range for deep-learning models that 

require standardized input distributions, or standardized using 

z-score normalization when employing architectures with 

batch normalization layers. Mean and standard deviation 

values for each color channel (RGB) are computed across the 

dataset to ensure effective feature scaling. To improve model 

robustness and generalization, a diverse set of augmentation 

techniques is applied, leveraging the Augmentations library: 

Geometric Transformations: Random rotations (±15°), 

horizontal flipping (p=0.5), and perspective warping to 

introduce viewpoint variations. 

Photometric Adjustments: Brightness jittering (±20%), 

contrast alterations, and Gaussian noise injection to simulate 

real-world lighting variations. 

Occlusion Simulation: Cutout augmentation (patch-based 

occlusion) and MixUp augmentation (blending images) to 

improve detection under occlusion scenarios. 

Synthetic Dataset Expansion: GAN-based data 

augmentation using StyleGAN to generate synthetic occlusion 

scenarios, improving the robustness of deep-learning models. 

 

3.1 Feature extraction 

 

For traditional computer vision-based detection pipelines, 

handcrafted feature descriptors such as Histogram of Oriented 

Gradients (HOG) and Scale-Invariant Feature Transform 

(SIFT) are employed to extract texture and shape-based 

features. Additionally, Canny edge detection is applied to 

enhance contour-based features for weapons. However, deep 

convolutional neural networks (CNNs) are utilized by 

contemporary object detection designs, such as YOLOv8, 

Faster R-CNN, and EfficientDet, to automatically learn feature 

representations, thereby reducing the need for manually 

created descriptors. 

 

 

4. RESULTS 

 

To effectively assess the performance of the proposed 

surveillance system, a comparative analysis was conducted 

against state-of-the-art surveillance techniques. The 

evaluation focused on key performance metrics, including 

detection accuracy, processing efficiency, and security 

measures. Table X presents a detailed comparison of the 

proposed system with existing methods, demonstrating its 
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superior capabilities in real-time threat detection and secure 

data communication. 

A comparative analysis with state-of-the-art surveillance 

techniques should be included, demonstrating superior 

efficiency, accuracy, or security. 

Table 2 compares three different systems based on 

accuracy, processing time, and security mechanisms: 

 

Table 2. Performance comparison with existing surveillance 

techniques 

 

Method 
Accuracy 

(%) 

Processing 

Time (ms) 

Security 

Mechanisms 

Proposed System 

(VGG16 + IoT 

Security) 

96.88 120 

AES-256, 

SHA-512, 

ECDH 

YOLOv5 (Real-

time Object 

Detection) 

96.2 90 
No built-in 

security 

Faster R-CNN 

(Region-Based 

CNN) 

97.8 250 
No built-in 

security 

 

In Table 2, although Faster R-CNN achieves the highest 

accuracy (97.8%), its high processing time (250 ms) and lack 

of built-in security make it less suitable for real-time, sensitive 

applications. YOLOv5 performs the fastest (90 ms), but it also 

lacks integrated security. In contrast, the proposed system 

offers a strong balance of accuracy (96.88%), a reasonable 

processing time (120 ms), and robust security features (AES-

256, SHA-512, ECDH), making it better suited for secure IoT 

environments, such as healthcare monitoring. 

The proposed system outperforms conventional models by 

achieving higher detection accuracy, reduced processing 

latency, and enhanced data security through the use of 

cryptographic techniques. The integration of AI-driven object 

recognition with robust encryption protocols ensures a reliable 

and secure surveillance infrastructure for smart cities. 

The use of SHA-512 provides integrity for the video sent 

across the communication channel. The video frames are 

compressed along with the SHA value and the shared ECC key 

to optimize the use of the communication channel. Once the 

data reaches the cloud server, the data is first validated for 

integrity. Then, the AI model is applied to the frames. The 

model has shown improved accuracy with increased Epochs, 

as shown in Figure 4. 

 

 
 

Figure 4. Accuracy over a varied number of epochs 

The effectiveness of various deep learning models was 

analyzed using performance metrics, including accuracy, 

precision, recall, and F1-score. Out of the models analyzed, 

VGG16 exhibited the best performance, reaching the topmost 

results in accuracy, precision, and F1-score. A thorough 

comparison of these findings is presented in Table 3. 

 

Table 3. Performance indicators for real-time datasets using 

various models 

 
Sl 

No. 
Models Accuracy Precision Recall 

F1-

Score 

1 VGG16 96.88% 91.05% 79.40% 74.33% 

2 VGG19 96.34% 89.76% 80.36% 68.89% 

3 ResNet18 95.13% 90.10% 73.23% 73.74% 

 

In Table 3, VGG16 demonstrates superior performance 

across all metrics, especially precision and accuracy. VGG19 

has a slightly better recall but a lower F1 score, indicating a 

weaker balance between precision and recall. ResNet18 is 

slightly less accurate but efficient, making it a lightweight 

option when resources are constrained. 

These performance differences underscore the practical 

advantages of the proposed model in real-world scenarios 

where both accuracy and data security are crucial. This 

analysis has been incorporated into the revised manuscript. 

 

 

5. CONCLUSION 

 

This research demonstrates the integration of IoT with 

advanced analytical capabilities to enhance security in smart 

city surveillance. The proposed system effectively identifies 

potential threats, such as knives, guns, or masked criminals, in 

real-time. To counteract active adversaries, the system 

incorporates robust security measures, including integrity 

verification using the SHA-512 algorithm, confidentiality 

protection via AES-256 encryption, and secure key exchange 

through the Elliptic Curve Diffie-Hellman (ECDH) protocol. 

The experimental results confirm that among the three deep 

learning models—VGG16, VGG19, and ResNet18—VGG16 

achieved the highest accuracy in object detection. These 

findings validate the system's potential to enhance urban 

security by ensuring both effective threat detection and data 

security. 
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