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A timely and accurate diagnosis of skin cancer is crucial, as it is a potentially life-
threatening condition. However, implementing traditional machine learning algorithms in
healthcare presents substantial challenges, particularly in maintaining data privacy and
effectively managing distributed, non-11D datasets. To address these issues, we propose a
Custom Federated Weighted Learning (CFWL) model for melanoma detection, leveraging
federated learning (FL) to ensure privacy preservation while enhancing the accuracy and
convergence of the central model. The proposed approach incorporates two advanced deep
learning architectures, CNN and VGGL186, to improve feature extraction and classification
performance. Our model is evaluated on a skin cancer dataset under non-11D conditions and
compared with existing FL techniques, including FedAvg, FedProx, FedAdagrad,
FedAdam, and FedYogi. Experimental results demonstrate that our CFWL model with
VGG model outperforms these baseline approaches in terms of classification accuracy, loss,
and model robustness. This work highlights the potential of FL, augmented by advanced
deep learning methods, to deliver scalable, privacy-preserving solutions for melanoma

detection and other critical healthcare applications.

1. INTRODUCTION

Skin cancer is the most prevalent type of cancer globally.
Initial diagnosis typically involves clinical screenings,
followed by confirmatory procedures such as biopsies,
histological tests, and dermoscopy [1]. Skin cancer develops
when the normal growth of skin cells is disrupted, leading to
DNA mutations that result in malignant cell growth. While
ultraviolet (UV) radiation is the primary cause of skin cancer,
other contributing factors include fair skin, exposure to
radiation and harmful chemicals, severe skin injuries or burns,
weakened immunity, aging, and smoking. Early diagnosis is
critical, and researchers are increasingly leveraging artificial
intelligence-based techniques to achieve this goal. Skin
cancers can be broadly classified into melanoma and non-
melanoma types, with the latter being generally less aggressive
and more treatable. These cancers, though less severe than
melanoma, still require timely diagnosis and treatment to
prevent complications [2].

Significant advancements have been achieved in the use of
Al for identifying disease patterns from medical imaging [3].
In dermatology, Al-based tools and applications are being
developed to assess the severity of conditions such as psoriasis
and to perform specialized dermatological tasks, such as
classifying skin lesions as melanoma or nonmelanoma skin
cancer. These tools utilize sophisticated algorithms capable of
self-learning and improving their accuracy over time [4].

The integration of federated learning (FL), deep learning,
and transfer learning technologies [5] offers substantial
benefits to both patients and dermatologists by enhancing the
prediction and diagnosis of suspicious skin lesions. In this
work, we explored various federated averaging techniques and
deep learning algorithms, benchmarked public datasets, and
examined for melanoma classification. This work provides a
comprehensive resource on the application of deep and FL
techniques for diagnosing malignant melanoma and non-
melanoma skin cancers, aiming to advance research and
clinical applications in the field.

1.1 FL and its working

A distributed machine learning approach called FL enables
several devices or edge nodes to work together to train models
without exchanging local data. By storing data locally and
sending only model updates to a central server, this method
solves privacy and security issues with data. Data from
multiple sources is combined on a single server for training in
a standard centralized machine learning arrangement, which
presents privacy concerns, particularly in delicate industries
like healthcare and finance [4]. By allowing each participating
device to independently train a model on its own data and then
transmitting just the trained model parameters—Ilike gradients
or weights—to the central server, FL gets around this problem.
To enhance a global model, the server gathers these updates,
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frequently by averaging them. The global model is returned to
the devices for additional improvement as part of this iterative
process. Figure 1 illustrates the working mechanism of FL
within a healthcare system.
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Figure 1. Working of FL within healthcare system

FL 's main benefits go beyond privacy; they also include
lower latency and data transfer. Furthermore, as every client
(device) may have different data distributions, FL is
appropriate for handling extremely diverse data. But FL also
has to deal with issues like heterogencous models,
connectivity limitations, and disparate device data quality.
Furthermore, FL-participating devices frequently have limited
memory and power, necessitating the use of effective model
updating techniques. In order to overcome these obstacles and
guarantee that FL keeps providing privacy-preserving,
effective, and scalable solutions across industries, it is
necessary to create strong aggregation techniques, increase
communication efficiency, and integrate strategies for
managing non-iid (non-independent and identically
distributed) data.

1.2 FL in healthcare

FL, which permits cooperative machine learning model
training across several healthcare facilities while protecting
data privacy, is quickly becoming a game-changing strategy in
the healthcare industry. Sensitive by nature, healthcare data
includes private health information that is subject to stringent
privacy laws such as the General Data Protection Regulation
(GDPR) and the Health Insurance Portability and
Accountability Act (HIPAA). With the abundance of digital
health data—from wearable technology to medical imaging
and electronic health records (EHRs).

Each medical facility (such as hospitals, clinics, and
research centers) keeps its own local patient data and uses it to
train a model locally in a FL configuration for healthcare. The
institution does not share the raw data with a central server;
instead, it shares the learnt parameters, like gradients or model
weights. By combining these updates, the central server
improves a global model that takes advantage of the various
data sources spread throughout different institutions. Due to
regional variations in patient demographics, disease incidence,
and treatment practices, the global model can achieve high
predictive accuracy and generalization capacity by repeating
this procedure. This is particularly crucial in the healthcare
industry.

Implementing FL in healthcare faces challenges such as
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non-IID data distribution across institutions, high
communication costs for large medical datasets, and the need
for privacy-preserving techniques like secure multiparty
computation and differential privacy, which increase
complexity. Despite these challenges, FL holds promise for
developing secure, collaborative models that enhance clinical
outcomes, enabling powerful diagnostic and predictive tools
to improve healthcare and patient care.

1.3 FL averaging techniques

Aggregation techniques are extremely important in FL, as
they are responsible for combining model updates from many
client devices that are located in different locations in order to
develop a robust global model. These aggregation strategics
are meant to accommodate varied data distributions, client
unpredictability, and bandwidth limits while simultaneously
ensuring that the final model is accurate and safe. Both of these
goals are accomplished simultaneously. The following is a list
of some of the most important aggregation techniques that are
typically utilized in FL. Various federated aggregation
techniques are presented in Figure 2 and elaborated below.
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Figure 2. FL aggregation approach

1.3.1 FedAvg

Clients use Federated Averaging (FedAvg), training locally
and sending model updates to a central server, which averages
them to create a global model. It’s efficient and effective when
client data is similar but may struggle with non-iid data. It’s
widely used in homogeneous settings for its simplicity and
performance.

1.3.2 FedSGD

Federated Stochastic Gradient Descent (FedSGD) modifies
SGD for FL, sending gradient updates instead of model
parameters. It reduces local training but is communication-
intensive and less suitable for bandwidth-limited applications.
It's fast but not scalable for large, decentralized networks.

1.3.3 Adaptive federated optimization

Techniques like FedAdam, FedYogi, and FedAdagrad
adjust learning rates to handle data heterogeneity, stabilizing
training and speeding up convergence, especially with non-iid
data. However, they are computationally intensive and require
more resources on both client and server.

The challenges of privacy and communication efficiency
drive the need for innovative approaches in healthcare,
particularly for skin cancer prediction. In this paper, we
propose a custom FL averaging technique integrated with deep
learning for melanoma detection, aiming to improve both
communication efficiency and prediction accuracy while



addressing data privacy concerns. Our approach introduces a
decentralized, privacy-aware model tailored for skin cancer
prediction in healthcare settings.

Key contributions include:

(1) An in-depth review of FL-based Al applications in
healthcare, covering foundational concepts of FL,
essential Al principles, and FL averaging techniques are
discussed.

Introduced a novel approach leveraging CNNs and
VGG16 at client nodes, integrated with a customized FL
averaging strategy for global model aggregation.
Conducted a comprehensive evaluation on a skin cancer
dataset, showcasing that our proposed approach
outperforms baseline FL methods by delivering faster
convergence, improved prediction accuracy, and
enhanced communication efficiency.

The paper is organized as follows: Section 2 covers prior FL
reviews; Section 3 introduces the proposed methodology of FL
averaging and algorithms used for classification of melanoma
disease; Section 4 provides experimental setup, performance
parameters, result analysis and comparative analysis of
proposed results with similar systems; Section 5 discusses
conclusion and future scope and references are mention at end
of article.

)

3)

2. LITERATURE REVIEW

The literature review compares various techniques,
including machine learning, deep learning, and transfer
learning algorithms, applied to healthcare datasets within a FL
environment. It also examines different FL frameworks and
federated averaging methods, analysing their effectiveness in
addressing challenges such as data privacy, communication
efficiency, and model convergence. This comprehensive
analysis highlights the strengths and limitations of these
approaches in healthcare applications.

2.1 Machine learning techniques

Non-melanoma skin cancers (NMSCs) have been
extensively studied in recent research, with a particular focus
on their biology and clinical features [2]. This study
emphasized the importance of early detection and personalized
treatment approaches, while also detailing the epidemiology,
risk factors, and clinical manifestations of these tumors.
Available treatment options, including both surgical and non-
surgical methods, have been thoroughly examined, along with
emerging therapies that target specific molecular alterations in
NMSCs.

Recent research has examined the challenges faced by
traditional machine learning algorithms and explored the
integration of FL into privacy-aware healthcare systems for
skin cancer prediction [6]. The study provides a comparative
analysis of the performance of various machine learning and
FL algorithms in detecting skin lesions, along with an
evaluation of different datasets used for skin cancer prediction.
Mobile-based artificial intelligence approaches show promise
for improving melanoma identification in skin cancer
diagnosis, enabling rapid and accurate detection through
mobile devices [7]. The suggested system provides a viable
method for early melanoma diagnosis in resource-constrained
environments by combining machine learning models with
image processing methods.
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The artificial bee colony (ABC) optimization method has
been adapted for FL feature selection to enhance the accuracy
and efficiency of heart disease diagnosis in clinical settings,
combining the strengths of both FL techniques and ABC
optimization [8].

FL has been comprehensively reviewed with detailed
examination of its core technologies, communication
protocols, and diverse application domains [9]. The growing
interest in FL which has surfaced as a viable paradigm for data
privacy-preserving collaborative machine learning across
decentralized devices is the subject of this survey. A
comparative analysis between FL and traditional machine
learning approaches was conducted using COVID-19 chest X-
ray datasets, evaluating the impact of key parameters including
activation functions, optimizers, learning rates, training
iterations, and dataset sizes on model accuracy and loss
metrics [10]. Results showed that FL outperformed traditional
models in accuracy and loss, particularly with SGD optimizers
and softmax activation, though it required more computational
time.

A novel framework combining secure multiparty
computation and differential privacy has been developed to
optimize the accuracy-privacy trade-off in collaborative
machine learning systems [11, 12]. By integrating these
strategies, the suggested approach preserves privacy without
jeopardizing a certain degree of confidence by reducing the
noise level as the number of participants increases. The study
[12] also presented an innovative use of FL to safeguard
privacy in healthcare data. This project investigates the use of
FL to improve data privacy and facilitate cross-institutional
collaborative machine learning. This strategy addresses
privacy issues associated with traditional centralised
techniques by maintaining patient data localised and only
exchanging model changes, guaranteeing the confidentiality
of sensitive information.

A groundbreaking framework utilizing federated electronic
health records (EHRs) has been developed for predictive
modeling through FL approaches [13]. In order to protect
patient privacy, this work tackles the difficulty of collaborative
predictive modelling across dispersed healthcare systems. The
authors provide a method for training prediction models on
decentralised EHR data sources without revealing sensitive
patient information by utilising FL techniques.

2.2 Deep learning techniques

Significant advancements in automated non-melanoma skin
cancer (NMSC) detection have been achieved through the
development of Multi-Site Cross-Organ Calibrated Deep
Learning (MuSCID), a calibrated deep learning framework
designed to maintain consistent diagnostic accuracy across
diverse clinical settings while addressing data variability from
multiple healthcare institutions [14]. The MuSCID model
improves its generalisation ability by utilising a large dataset
that includes a variety of pictures of NMSC from different
organs.

Deep residual networks have been successfully applied to
enhance melanoma diagnostic accuracy by leveraging their
powerful feature extraction capabilities [15], while
simultaneously  addressing common  challenges in
dermoscopic image analysis including lesion variability and
imaging artifacts through an optimized network architecture.
Hybrid fully convolutional networks (FCNs) incorporating
deep features offer a novel solution for improving both skin



lesion segmentation and melanoma detection accuracy [16].
The suggested technique delivers robust melanoma detection
and improves segmentation performance by combining FCNs
with deep features taken from pre-trained convolutional neural
networks (CNNs). Optimized deep learning features
significantly advance melanoma diagnosis capabilities [17].
The objective of the research is to improve melanoma
diagnosis accuracy by the optimisation of deep learning
features derived from CNNs. By utilising sophisticated
methods for feature extraction and selection, the authors show
enhanced ability to distinguish between benign lesions and
malignant melanomas.

Neural network depth, learning process design, and high-
quality training data critically impact model performance [18]
By employing deep learning architectures and large datasets,
the scientists hope to improve the precision and dependability
of melanoma diagnosis. In order to enhance screening
performance, the study looks into a number of design options,
such as data augmentation and model optimisation strategies.

Fine-tuning strategies and source task selection
significantly affect transfer learning performance for
melanoma detection [19]. Additionally, they evaluate the
performance gains by using deeper and more complex models.
Their results show that deeper models, pretrained on ImageNet,
perform far better when optimised for particular applications.
Using two different skin-lesion datasets, the study assesses
these models and shows that deeper, more refined models
significantly increase prediction accuracy.

A hybrid approach integrating support vector machines,
deep learning, and sparse coding techniques demonstrates
enhanced performance for melanoma identification in
dermoscopic images [20]. The combination of natural image
feature transfer and unsupervised learning eliminates the
necessity for annotated data in the target task, which is a major
benefit. Using a technique akin to that of clinical specialists,
the system is able to compare dermoscopic visual patterns with
observations from the real world.

2.3 Transfer learning techniques

The VGG16 CNN architecture effectively detects and
mitigates data poisoning attacks in deep learning systems [21].
This method allows for collaborative model training while
protecting sensitive medical data, and it is implemented inside
a FL architecture that involves 10 healthcare institutions. To
effectively diagnose skin cancer, the FL technique makes use
of VGG16's powerful feature extraction capabilities. Using
strict criteria and outlier detection algorithms to identify and
assess suspicious model alterations, the study presented a
complete approach to FL data poisoning threat identification.

A comprehensive taxonomy classifies both malignant and
non-malignant skin cancers while reviewing state-of-the-art
federated and transfer learning algorithms for malignant lesion
detection [22].

FedPacket introduces a FL framework for mobile packet
classification that enhances both privacy protection and
network performance [23]. FedPacket maintains excellent
classification accuracy while protecting user privacy by
allowing decentralised training across several devices without
exchanging raw data. The authors carry out thorough analyses,
showing that FedPacket performs better in terms of efficacy
and privacy preservation than conventional -centralised
methods. By providing a solid method for packet
categorization that respects privacy, this study makes a
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substantial contribution to the field of mobile computing.

FL demonstrates transformative potential in healthcare by
enabling privacy-preserving collaborative research across
institutions, with distinct applications ranging from neuro-
oncology to comparative oncology. In brain lesion analysis—
including traumatic injuries, gliomas, and stroke—FL
improves predictive accuracy while maintaining data security
[2]. The framework similarly enhances diagnostic precision in
broader medical applications through secure distributed model
training [4]. Complementary translational research further
illustrates FL's value in comparative oncology, where canine
melanoma models provide insights into human tumor behavior
and treatment responses [8]. These collective advances
highlight FL's dual capacity to accelerate medical innovation
while addressing critical data privacy constraints in healthcare
research.

The literature review highlights the transformative role of
FL in healthcare, focusing on its ability to enable collaborative
data analysis while preserving patient privacy. These works
also address challenges such as communication overhead, data
heterogeneity, and privacy concerns, proposing future
research directions. Together, the review underscores FL’s
potential to revolutionize healthcare by balancing privacy,
collaboration, and innovation.

3. RELATED WORK

In this section, we focus on various federated averaging
techniques, including FedAvg, FedProx, FedYogi,
FedAdagrad, and FedAdam. Each of these methods is
explained in detail, highlighting their unique approaches to
model aggregation and their impact on communication
efficiency, convergence, and overall performance in FL
environments.

3.1 Federated averaging (FedAvg)

With the introduction of FL, the most fundamental
aggregating technique is known as Federated Averaging
(FedAvg). This technique was developed to enable
decentralized model training without the need to share raw
data. In order to enhance a global model, the fundamental
concept is to take the average of model updates from a number
of different clients (for example, devices or institutions). In
FedAvg, every client N is responsible for updating its local
model by executing several epochs of stochastic gradient
descent (SGD) on its local data, which is represented by Dk.
At the same time, a loss function Lk (w) is applied, which is
dependent on the distribution of the client's data.

Each client computes a weight update Awy locally as:

Aw,, = Wﬁ - UVLk(Wﬁ)

where, wt wkt is the model parameters for client k at round
t, and 7 is the learning rate. After multiple local updates, the
central server aggregates these by taking a weighted average
based on the number of data samples ni at each client,
updating the global model as follows:

t+1

K
D=1 T " Wy
wttl =

K
Wi =1 Mg

The updated global model is denoted by the symbol w1,



while the total number of customers is denoted by the symbol
n. In contexts where the data from all of the clients is
consistent, FedAvg is a straightforward, efficient, and
effective solution. On the other hand, FedAvg may have
difficulty generalizing successfully among clients when data
distributions are very heterogeneous (non-iid). This is because
the averaging of gradients, which may represent competing
updates from different data distributions, might make it
difficult for FedAvg to generalize well.

3.2 Federated proximal (FedProx)

FedProx is an extension of FedAvg that was developed to
better manage the heterogeneous data distributions that occur
between customers. It does this by incorporating a proximal
term into the loss function, which helps to minimize the
divergence between the local model of each client and the
global model. This helps to address problems that occur when
the data distributions of clients are significantly different from
one another. By punishing departures from the global model,
this term essentially regularizes the updates that each client
makes, so ensuring that stability is maintained during the
aggregation process.

The local optimization objective for each client k in
FedProx is modified as follows:

u
L) = Li(w) +3 |lw = w2

where, w is the current model on the client, w' is the global
model at round t, and u is a regularization parameter that
controls the influence of the proximal term. The proximal term
% [lw — wt||? encourages the local model w to stay close to

the global model wt, thereby mitigating the effects of client-
specific data distributions. FedProx performs the aggregation
step similarly to FedAvg, using the weighted average of
updates from each client. By adjusting ¢, FedProx can balance
model convergence and stability, especially in non-iid settings,
making it a powerful tool for FL with high client variability.

3.3 Federated adagrad (FedAdagrad)

FedAdagrad is a variation of FedAvg that utilizes adaptive
learning rates with the use of the Adagrad algorithm for
optimization. Learning rates in such an algorithm depend on
update frequency and update size. It proves useful in federated
settings with unbalanced distributions of data at the clients,
with FedAdagrad decreasing learning rates for updated
parameters, with a bias towards stabilizing convergence. This
makes FedAdagrad particularly valuable in these kinds of
contexts. In FedAdagrad, each client k updates its model using
a local gradient gk and an adaptive learning rate nk, which
depends on the accumulated squared gradients:

t

n
VG + € Ik

where, G, = ¥.f_, g7 is the sum of squared gradients from
previous rounds up to t, and € is a small constant to prevent
division by zero. The adaptive term " reduces the learning

JGete
rate for frequently updated parameters, leading to more stable
updates. After local training, each client’s model updates are

aggregated using the weighted average method, similar to
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FedAvg. FedAdagrad enhances FedAvg by enabling smoother
convergence, especially for heterogeneous data, as it naturally
adapts to the learning rates based on parameter-specific update
history.

3.4 Federated adam (FedAdam)

By merging the concepts of momentum and adjustable
learning rates, FedAdam is able to apply the Adam
optimization technique to the federated environment.
Accelerating convergence and stabilizing updates are two
benefits that result from the use of exponential moving
averages in Adam, which smoothes gradients. In non-iid
federated contexts, FedAdam is effective because it combines
the adaptive updates of Adagrad with momentum, which helps
eliminate oscillations in gradient updates. This allows
FedAdam to maximize its effectiveness. FedAdam involves
two main update terms for each parameter: the first moment
(mean of gradients) and the second moment (variance of
gradients):

my = pime_s + (1= B1)ge
Ve = Boveg + (1 = Br) g?

where, m; and v, are the first and second moment estimates at
time ¢, f1 and f3, are decay rates, and g; is the gradient at round
t. The model update is then given by:

_n_
vete

wttl =yt m,

A weighted average method is utilized by the central server
in order to compile the updates that are received from each
client. FedAdam is able to deliver smoother convergence in
addition to decreasing fluctuations in updates and making it
resistant against different client data distributions. This is
accomplished by the integration of momentum and adaptive
learning rates.

3.5 Federated yogi (FedYogi)

FedYogi is an adaption of the Yogi optimizer. It adjusts
learning rates based on accumulated gradients in a manner that
is comparable to FedAdam, but it modifies the variance
updating rule. Due to the fact that FedYogi takes a novel
method to managing the second moment of gradients, it is
especially stable in situations that contain a great deal of
heterogeneous data. Yogi adjusts learning rates in a more
conservative manner based on the gradient history, as opposed
to Adam, who constantly increases or decreases them. This
allows Yogi to prevent severe learning rate variations in
conditions that are not iid. FedYogi’s update rule for the
second moment term vt is slightly different from Adam’s:

Ve = Vg — (1= B2) - sign(ve—y — g8) - g¢

By scaling the variance term according to the direction of
the gradient, this adjustment prevents the phenomenon of
over-accumulation in the variance term. The following
formula is then used to compute the update for each parameter
w:

t+1 _ ot

n
JUttTE m



where, m; is the first moment estimate and 7 is the learning
rate. FedYogi is advantageous in FL settings with high client
variability because it stabilizes learning rates over time
without drastically reducing them, which can be crucial for
convergence in non-iid data environments.

4. PROPOSED METHODOLOGY

The proposed methodology begins with loading the
malenoma dataset, followed by a comprehensive pre-
processing step to prepare the data for FL. Pre-processing
involves resizing all images to a uniform dimension of
112x112112, converting them into tensors, and normalizing
the image data to ensure uniformity across the dataset. The
dataset is then split into training and testing subsets using an
80%-20% ratio. The training data is distributed among a
predefined number of clients, simulating the FL environment.
Multiple federated averaging techniques, including FedAvg,
FedProx, FedAdagrad, FedAdam, and FedYogi, are
implemented to evaluate the performance of these approaches.
Additionally, a hybrid averaging technique combining
FedAvg and FedProx is proposed to address challenges like
data heterogeneity and communication efficiency. Then deep
learning models such as CNN and VGG16 are utilized for
classification of malignant and non-malignant images. Finally,
the models are evaluated through performance metrics,
including accuracy and loss, to analyze the effectiveness of the
applied techniques. This approach systematically combines
traditional and advanced FL strategies to improve model
performance in distributed data settings. The detail system
architecture diagram is shown in Figure 3, and detail steps are
explained below.

“_. Melanoma Datast

Feature Scaling

Data Preprocessing Resizing
< Reaizing

Splitting Data

Testing (20%)

Training (80% )

Local VGG16_model on local dataset |

= e onn)

device 1 device 4

LCocal

device * ’

Result Analysis

. .
! Hybrid FedAvg + FedProx |,
! Averaging Technique |}

Global Server ¢

Figure 3. Proposed FL-based melanoma classification
architecture diagram

4.1 Input dataset

The ISIC 2018 dataset is a widely recognized resource for
skin lesion analysis, specifically aimed at advancing
melanoma detection. The dataset supports three primary tasks:
Lesion Segmentation, Lesion Attribute Detection, and Disease
Classification [24]. These tasks are designed to enhance the
accuracy and reliability of automated systems in diagnosing
skin diseases, particularly melanoma. The dataset comprises
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10,015 dermoscopic images representing seven distinct
categories of skin diseases. For the purposes of this study, we
focus on two key classes: Melanoma and Benign lesions. The
third task, Disease Classification, is particularly relevant to our
work, as it seeks to improve the automated prediction of
disease categories in dermoscopic images. By leveraging this
dataset, we aim to contribute to the development of more
robust and accurate classification models for early and precise
melanoma detection. The image sample of dataset are shown
in Figure 4.

Melanoma

Benign

Figure 4. Melanoma dataset sample
4.2 Dataset pre-processing

Pre-processing is a crucial step to ensure that the melanoma
images are correctly formatted, standardized, and ready for
input into a deep learning model. The following steps describe
the pre-processing pipeline used for melanoma image analysis:

4.2.1 Image resizing (112112 pixels)

To standardize the input data and ensure compatibility with
deep learning models, the first step involves resizing the
original images to a fixed dimension of 112x112 pixels. This
step is necessary because images in the dataset can vary in size,
and deep learning models require inputs of a consistent shape.
The resizing process uses interpolation methods, such as
bilinear interpolation, to preserve the aspect ratio and prevent
distortion, ensuring that important image features remain
intact. The choice of a 112x112 resolution is a compromise
between retaining sufficient image detail and reducing the
computational complexity, allowing the model to process the
images efficiently.

4.2.2 Convert to tensor

Once the images have been resized, they need to be
converted into a format suitable for deep learning models. In
this step, the images are transformed from their original format
(such as a NumPy array or a PIL image) into a PyTorch tensor
using the ‘ToTensor’ function. This conversion changes the
structure of the image from a 2D array (height x width) with 3
color channels (RGB) to a 3D tensor with the shape ‘channels,
height, width’. Additionally, the pixel values, which originally
range from 0 to 255, are scaled to a range of 0.0 to 1.0. This
scaling is done automatically during the conversion to tensor,
ensuring that the neural network can process the pixel values
in a standardized range, which aids in more efficient learning.

4.2.3 Image normalization

Normalization adjusts the pixel values to have a mean of
zero and a standard deviation of one. This is typically achieved
by subtracting the dataset's mean and dividing by its standard



deviation for each color channel (R, G, B). This step helps to
center the data around zero, ensuring that all input features (i.c.,
pixel values) are on a similar scale. By performing
normalization, the model is able to train more efficiently, as it
prevents certain features from dominating the learning process
due to larger numerical ranges.

4.2.4 Select number of clients

Once the dataset has been pre-processed the next step in a
FL workflow is to determine how many clients will participate
in the training. This process is important because, in FL,
training occurs across multiple devices or nodes (clients), with
each client using its own local data for training without
sending raw data to a central server. Instead, the clients send
model updates (such as weights or gradients) to the server,
which then aggregates these updates to improve the global
model.

4.3 Perform train-test split (80%-20%)

Before starting the FL process, it is essential to split the data
into two subsets: one for training and one for testing. This
ensures that the model is trained on one portion of the data and
validated on a separate, unseen portion to evaluate its
performance.

4.3.1 80% for training

80% of the available data is used for training the model.
This portion is distributed across the selected clients in the FL
setup, where each client trains the model on its local data. The
local updates are then sent to the central server for aggregation.

4.3.2 20% for testing
20% of the data is reserved for testing the model. This data
is not used during training but is essential for evaluating the
final performance of the trained model after the FL process.
The purpose of this split is to ensure that the model
generalizes well on unseen data and does not overfit to the
training data.

4.4 Distribute data into clients

Once the data has been split into training and testing sets,
the training data needs to be distributed among the clients
participating in the FL process. This step is important because
FL allows clients to work on local data without directly
sharing it, thus ensuring data privacy.

4.4.1 Data distribution

The training data is distributed across a set of clients, where
each client holds a portion of the data. Each client trains the
model independently on its local dataset and shares model
updates (such as gradients or weights) with the central server.

4.5 Apply deep learning model

The next step is to apply a deep learning model to the FL
setup. Here, CNNs and VGG16 models are commonly used
for image classification tasks, such as melanoma detection.
CNN Architecture: Convolutional Neural Networks are
widely used for image classification tasks. They consist of
multiple layers of convolutions, pooling, and fully
connected layers to learn hierarchical features from
images. CNNs are particularly suited for image
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processing due to their ability to capture spatial
hierarchies of features in images.

Federated Training: Each client in FL will use its share of
the data to train its local CNN, then communicate the
model modifications to the central server.

VGG16 Architecture: VGG16 is a deep convolutional
neural network model that consists of 16 layers with very
small convolution filters (3>3) and uses max-pooling
layers to downsample the image. It has proven to be
highly effective in various image classification tasks,
making it a suitable model for FL tasks like melanoma
detection.

FL Setup: Just like CNN, VGG16 will be trained on each
client's local data, with model updates shared back to the
central server. VGG16’s deeper architecture can capture
more complex features in the images, which is useful for
detecting intricate patterns like those found in melanoma
lesions.

4.6 Select federated averaging techniques

FL typically uses techniques to aggregate model updates
from the clients and update the global model. The Federated
Averaging (FedAvg) algorithm is the most commonly used
technique for this purpose, but other variants like FedProx,
FedAdagrad, FedAdam, and FedYogi can be explored to
improve training performance, especially in cases of non-IID
(non-independent and identically distributed) data.

4.6.1 FedAvg (Federated averaging)

FedAvg is the most common FL algorithm. It involves
averaging the model weights sent by each client to update the
global model. Each client performs local training for several
epochs, and then the local models are averaged to form a
global model. The process is repeated over multiple rounds.

4.6.2 FedProx (Federated proximal)

FedProx is a modification of FedAvg designed to address
challenges when clients’ data distributions are heterogeneous
(non-IID data). It introduces a proximal term in the
optimization process to mitigate the effect of highly skewed or
non-IID data.

4.6.3 FedAdagrad (Federated adagrad)

FedAdagrad adapts the learning rate for each parameter
based on the past gradients, which can help improve training
in environments where there are sparse updates or highly
variable data. It adjusts learning rates locally for each client,
enhancing efficiency.

4.6.4 FedAdam (Federated adam)

FedAdam is based on the Adam optimizer, which adjusts
the learning rate using both first and second moments of the
gradients. It is particularly useful for models that have large
amounts of data or require more sophisticated updates to
improve convergence.

4.6.5 FedYogi (Federated yogi)

FedYogi is an extension of the Adam optimizer and is
designed to handle the challenges of non-convex optimization,
which often occurs in deep learning models. It adjusts the
learning rate dynamically for each parameter and is robust to
noisy data.



4.7 Proposed federated averaging technique (FedAvg +
FedProx)

The proposed federated averaging technique (CWFL)
combines the strengths of FedAvg and FedProx. The idea
behind this hybrid approach is to leverage the simplicity and
effectiveness of FedAvg while incorporating the robustness of
FedProx to handle non-IID data.

In this combined approach, the basic FedAvg procedure is
augmented with the proximal term from FedProx. This ensures
that the updates from clients are more aligned with the global
model, helping mitigate issues related to data heterogeneity
while maintaining the efficiency of FedAvg.

4.7.1 Performance analysis

Once the FL model has been trained, the next step is to
evaluate its performance using various metrics. Performance
parameters such as accuracy, loss, accuracy and loss curve are
used.

4.7.2 Algorithm: Hybrid averaging approach algorithm
(FedAvg + FedProx)

This algorithm combines FedAvg and FedProx to handle
heterogeneity in client data and ensure stable convergence
while aggregating model parameters.

Input:

N: Number of clients

w) fobal Global model parameters at round ¢

wf: Local model parameters for client k

Dy.: Size of the dataset for client k

u: Proximal constant (hyperparameter controlling
regularization)

Dy.: Local dataset for client k

K: Number of communication rounds

E: Number of local epochs (each client trains on its
data for E epochs)

e 7: Learning rate for local training

Output:
global
e  Updated global model parameters w;, ;
Algorithm:

1. Initialize:

Set global model parameters Wéqlobal

random or pre-trained).

For eachroundt =0,1,2,.. K — 1

a. Client selection: Select a subset of clients S, C
{1,2, ..., N} for this round.

b. Local Model Updates (on each selected client): For each
client in k € S;, perform the following:

2. Train locally:

Perform local training on client k data D, for E epochs
using the local optimizer:

(initialization can be

wf = Train (Wk, Dy, 1)

3. Compute local update:
Compute the difference between the local model and the
global model parameters:

k _ ..k global
Awe = wi —wy

4. Apply proximal regularization (FedProx):
Apply the proximal term regularization to the local update:

1184

wi

— Wiqlobal + (1 _ M)Awg{

The term p helps in regularizing the local update,
encouraging the local models to stay close to the global model
parameters.

5. Server aggregation (FedAvg + FedProx):

Aggregate the updated local models w from all selected
clients S; to compute the global model parameters:

NG
— w.
Se1 2

keS¢

global __
Wiyr =

The aggregation is done via simple averaging, but the local
updates have been regularized through the proximal term.

6. Return:

After Krounds, the final global model wZ"*"®
are returned.

parameters

5. RESULT ANALYSIS

In this section, we outline the dataset and evaluation metrics
utilized in this study, providing a detailed explanation of their
relevance and application. We also present and analyze the
experimental results of the proposed architecture, discussing
its performance, key insights, and implications for the research
objectives.

5.1 Experimental setup

For the experiment, the development environment was
configured using a Jupyter notebook, which provided an
interactive platform for coding and experimentation, having
additionally, 113 GB of Google Drive storage, 13 GB of RAM
and 15 GB of GPU RAM. The flower framework and FL
models was implemented, trained, and validated using the
TensorFlow backend alongside the Keras 2.4.3 framework,
both of which were instrumental in streamlining the
development and evaluation processes. This setup ensured
efficient handling of the computational demands associated
with training and validating the model.

5.2 Performance analysis

In evaluating the performance of classification models,
various metrics are employed to assess overall effectiveness.
In this study, we have used accuracy, precision, recall, F1-
score, loss, and the confusion matrix to evaluate the models.
Below are the performance parameters formulas;

Number of Correctly Classified Sample

A =
ccuracy Total Number of Sample
Procision — Number of True Positive Sample
recision = Number of TP + Number of FP
Number of TP
Recall =

Number of TP + Number of FN

Precision X Recall
F1 — Score =2 X

Precision + Recall

where,



TP = True Positive Sample
TN = True Negitive Sample
FP = False Positive Sample
FN = False Negitive Sample

In the result section, we compared various averaging
techniques applied to both CNN and VGG16 models. To
ensure the reliability of the results, each model was
independently trained and evaluated five times using different

random initializations. The average test accuracy and final loss
across the five runs were computed and compared against
baseline models to assess performance improvements. The
hyper parameters used for performing the experiment with
various averaging techniques are listed in Table 1. This table
includes both the FL strategy parameters and the additional
parameters related to the TensorFlow model architecture,
optimizer, and layers. It provides a comprehensive overview
of the complete set of hyper parameters used in the simulation
and model training.

Table 1. Hyper parameters

Hyper Parameters Value Description
Number of Clients 3 Total number of clients participating in the simulation.
Batch Size 16 Batch size for training the model on each client.
Image Size (224, 224) Input size for images, as required by CNN and VGG16.
Lavers Conv2D, MaxPooling2D, Flatten, Convolutional layers with ReLU activation, pooling, and dense layers for
Y Dense classification.
Optimizer adam Adam optimizer used for training the model.
Loss Function binary crossentropy Binary crossentropy used as the loss function for binary classification.
Filters 32/64/128 Number of filters in the convolutional layer.
Kernel Size 3.,3) Kernel size of the convolutional layer.
Pool Size 2,2) Pooling size of the max-pooling layer.
Activation 'relu’ / Sigmoid ReLU activation function for the dense layer and Sigmoid for output layer.
Epoch 10 Number of iterations for which models are run.
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The accuracy and loss curves for the CNN and VGG16
models across various averaging techniques are shown in
Figures 5-8. Figures 5 and 6 show the accuracy and loss curve
of averaging techniques using CNN model, while Figures 7
and 8 show the accuracy and loss curve of averaging
techniques using VGG16 model.

Figure 9 provides a comparative analysis of our
experimental results. The VGG16 model with the proposed
hybrid approach, combining FedAVG (Federated Averaging)
and FedProx (Federated Proximal), outperformed all other
models in terms of global accuracy. Specifically, this hybrid
model achieved an impressive 90% accuracy, significantly
higher than the other techniques tested. Additionally, the loss
associated with this model was considerably low, reaching
approximately 0.25, indicating better generalization and less
overfitting. This suggests that the hybrid approach not only
enhanced the model's ability to learn from decentralized data
but also helped improve its convergence, resulting in a more
robust and accurate performance compared to traditional
averaging methods.

These results demonstrate the effectiveness of combining
FedAvg and FedProx in FL settings, particularly when
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deployed with a powerful architecture like VGG16. The
results of the proposed model demonstrate that strong
performance can be achieved by utilizing the proposed
architecture for melanoma image classification datasets. This
indicates that the model is capable of generalizing well to a
wide range of FL classification problems. Figure 10 shows the
Confusion Matrix of CFWL with VGG16 model.

Perfromance Comparison of Models
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Figure 9. Comparative analysis of models
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6. CONCLUSION

This study underscores the critical importance of timely and
accurate skin cancer diagnosis, a potentially life-threatening
condition, while addressing the significant challenges posed
by traditional machine learning approaches in healthcare, such
as data privacy concerns and the management of distributed,
non-IID datasets. To overcome these challenges, we proposed
the CFWL model for melanoma detection, which leverages FL
to ensure privacy preservation while enhancing the accuracy
and convergence of the central model. By integrating
advanced deep learning architectures, specifically CNN and
VGG16, our model demonstrated superior performance in
feature extraction and classification tasks under non-IID
conditions.

Experimental results revealed that our (CFWL) model,
particularly when paired with the VGG architecture,
outperformed existing FL averaging techniques such as
FedAvg, FedProx, FedAdagrad, FedAdam, and FedYogi in
terms of classification accuracy, loss reduction, and overall
robustness. Notably, the model achieved exceptional accuracy
on the ISIC dataset, correctly classifying 238 out of 265
malignant images and 239 out of 265 benign images.
Furthermore, FL experiments demonstrated an impressive
global accuracy of up to 90.0% in multi-client scenarios,
highlighting the model’s scalability and effectiveness in
privacy-preserving environments.

This work makes a significant contribution to the fields of
medical imaging and Al-driven healthcare by showcasing the
potential of FL combined with advanced deep learning
techniques to deliver scalable, privacy-preserving solutions
for melanoma detection. The findings pave the way for future
research and practical implementations, enabling the adoption
of Al technologies in a manner that prioritizes both accuracy
and patient privacy.

In future work, we aim to address several real-world
challenges commonly encountered in FL environments. These
include handling client dropout, where devices may
intermittently disconnect during training, and managing
communication costs, which can become significant in
bandwidth-constrained settings. Enhancements such as robust
aggregation methods to tolerate partial client participation,
model compression techniques to reduce communication
overhead, and adaptive client selection strategies will be
explored. Incorporating these improvements will make the
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proposed hybrid FedAvg/FedProx approach more practical
and effective for deployment in real-world scenarios.

REFERENCES

[1] Naeem, A, Anees, T., Fiza, M., Nagvi, R.A., Lee, SW.
(2022). SCDNet: A deep learning-based framework for
the multiclassification of skin cancer using dermoscopy
images. Sensors, 22(15): 5652.
https://doi.org/10.3390/522155652

Cives, M., Mannavola, F., Lospalluti, L., Sergi, M.C.,
Cazzato, G., Filoni, E., Tucci, M. (2020). Non-melanoma
skin cancers: Biological and clinical features.
International Journal of Molecular Sciences, 21(15):
5394. https://doi.org/10.3390/ijms21155394

Afza, F., Sharif, M., Khan, M.A., Tarig, U., Yong, H.S.,
Cha, J. (2022). Multiclass skin lesion classification using
hybrid deep features selection and extreme learning
machine. Sensors, 22(3): 799.
https://doi.org/10.3390/s22030799

Naeem, A., Farooq, M.S., Khelifi, A., Abid, A. (2020).
Malignant melanoma classification using deep learning:
Datasets, performance measurements, challenges and
opportunities. IEEE Access, 8: 110575-110597.
https://doi.org/10.1109/ACCESS.2020.3001507

Huang, H.Y., Hsiao, Y.P., Mukundan, A., Tsao, Y.M.,
Chang, W.Y., Wang, H.C. (2023). Classification of skin
cancer using novel hyperspectral imaging engineering
via YOLOV5. Journal of Clinical Medicine, 12(3): 1134.
https://doi.org/10.3390/jcm12031134

Yaqoob, M.M., Alsulami, M., Khan, M.A., Alsadie, D.,
Saudagar, A.K.J., AlKhathami, M., Khattak, U.F. (2023).
Symmetry in privacy-based healthcare: A review of skin
cancer detection and classification using federated
learning. Symmetry, 15(7): 1369.
https://doi.org/10.3390/sym15071369

Rivera, D., Grijalva, F., Acurio, B.AA., Alvarez, R.
(2019). Towards a mobile and fast melanoma detection
system. In 2019 IEEE Latin American Conference on
Computational Intelligence  (LA-CCI), pp. 1-6.
https://doi.org/10.1109/LA-CCl47412.2019.9037058
Yaqoob, M.M., Nazir, M., Yousafzai, A., Khan, M.A.,
Shaikh, A.A., Algarni, A.D., Elmannai, H. (2022).
Modified artificial bee colony based feature optimized
federated learning for heart disease diagnosis in
healthcare. ~ Applied  Sciences, 12(23): 12080.
https://doi.org/10.3390/app122312080

Aledhari, M., Razzak, R., Parizi, R.M., Saeed, F. (2020).
Federated learning: A survey on enabling technologies,
protocols, and applications. IEEE Access, 8: 140699-
140725.
https://doi.org/10.1109/ACCESS.2020.3013541

Abdul Salam, M., Taha, S., Ramadan, M. (2021).
COVID-19 detection using federated machine learning.
PloS ONE, 16(6): £0252573.
https://doi.org/10.1371/journal.pone.0252573

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., Zhou, Y. (2019). A hybrid approach to
privacy-preserving federated learning. In Proceedings of
the 12th ACM Workshop on Artificial Intelligence and
Security, pp. 1-11.
https://doi.org/10.1145/3338501.3357370

[12] Stizen, A.A., Simsek, M.A. (2020). A novel approach to

(2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]



[13]

[14]

[15]

[16]

[17]

[18]

machine learning application to protection privacy data
in healthcare: Federated learning. Namik Kemal Tip
Dergisi, 8(1): 22-30.
https://doi.org/10.37696/nkmj.660762

Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A,
Paschalidis, 1.C., Shi, W. (2018). Federated learning of
predictive models from federated electronic health
records. International Journal of Medical Informatics,
112: 59-67.
https://doi.org/10.1016/j.ijmedinf.2018.01.007

Zhou, Y., Koyuncu, C., Lu, C., Grobholz, R., Katz, 1.,
Madabhushi, A., Janowczyk, A. (2023). Multi-site cross-
organ calibrated deep learning (MuSCID): Automated
diagnosis of non-melanoma skin cancer. Medical Image
Analysis, 84: 102702.
https://doi.org/10.1016/j.media.2022.102702

Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A. (2016).
Automated melanoma recognition in dermoscopy images
via very deep residual networks. IEEE Transactions on

Medical Imaging, 36(4): 994-1004.
https://doi.org/10.1109/TM1.2016.2642839
Jayapriya, K., Jacob, 1.J. (2020). Hybrid fully

convolutional networks-based skin lesion segmentation
and melanoma detection using deep feature. International
Journal of Imaging Systems and Technology, 30(2): 348-
357. https://doi.org/10.1002/ima.22377

Majtner, T., Yildirim-Yayilgan, S., Hardeberg, J.Y.
(2019). Optimised deep learning features for improved
melanoma detection. Multimedia Tools and Applications,
78: 11883-11903. https://doi.org/10.1007/s11042-018-
6734-6

Valle, E., Fornaciali, M., Menegola, A., Tavares, J.,
Bittencourt, F.V., Li, L.T., Avila, S. (2017). Data, depth,
and design: Learning reliable models for melanoma

1188

[19]

[20]

[21]

[22]

[23]

[24]

screening. arXiv preprint arXiv:1711.00441, 1(1): 770-
778.

Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F.
V., Avila, S., Valle, E. (2017). Knowledge transfer for
melanoma screening with deep learning. In 2017 IEEE
14th International Symposium on Biomedical Imaging
(1sBl 2017), . 297-300.
https://doi.org/10.1109/ISBI1.2017.7950523

Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern,
A., Smith, J.R. (2015). Deep learning, sparse coding, and
SVM for melanoma recognition in dermoscopy images.
In International Workshop on Machine Learning in
Medical Imaging, pp. 118-126.
https://doi.org/10.1007/978-3-319-24888-2_15

Omran, A.H., Mohammed, S.Y., Aljanabi, M. (2023).
Detecting data poisoning attacks in federated learning for
healthcare applications using deep learning. Iragi Journal
for Computer Science and Mathematics, 4(4): 225-237.
https://doi.org/10.52866/ ijcsm.2023.04.04.018

Riaz, S., Naeem, A., Malik, H., Nagvi, R.A., Loh, W.K.
(2023). Federated and transfer learning methods for the
classification of Melanoma and Nonmelanoma skin
cancers: A prospective study. Sensors, 23(20): 8457.
https://doi.org/10.3390/s23208457

Bakopoulou, E., Tillman, B., Markopoulou, A. (2021).
Fedpacket: A federated learning approach to mobile
packet classification. IEEE Transactions on Mobile
Computing, 21(10): 3609-3628.
https://doi.org/10.1109/TMC.2021.3058627

Ali, R., Hardie, R.C., De Silva, M.S., Kebede, T.M.
(2019). Skin lesion segmentation and classification for
ISIC 2018 by combining deep CNN and handcrafted
features. arXiv preprint arXiv:1908.05730.
https://doi.org/10.48550/arXiv.1908.05730





