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A timely and accurate diagnosis of skin cancer is crucial, as it is a potentially life-

threatening condition. However, implementing traditional machine learning algorithms in 

healthcare presents substantial challenges, particularly in maintaining data privacy and 

effectively managing distributed, non-IID datasets. To address these issues, we propose a 

Custom Federated Weighted Learning (CFWL) model for melanoma detection, leveraging 

federated learning (FL) to ensure privacy preservation while enhancing the accuracy and 

convergence of the central model. The proposed approach incorporates two advanced deep 

learning architectures, CNN and VGG16, to improve feature extraction and classification 

performance. Our model is evaluated on a skin cancer dataset under non-IID conditions and 

compared with existing FL techniques, including FedAvg, FedProx, FedAdagrad, 

FedAdam, and FedYogi. Experimental results demonstrate that our CFWL model with 

VGG model outperforms these baseline approaches in terms of classification accuracy, loss, 

and model robustness. This work highlights the potential of FL, augmented by advanced 

deep learning methods, to deliver scalable, privacy-preserving solutions for melanoma 

detection and other critical healthcare applications. 
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1. INTRODUCTION

Skin cancer is the most prevalent type of cancer globally. 

Initial diagnosis typically involves clinical screenings, 

followed by confirmatory procedures such as biopsies, 

histological tests, and dermoscopy [1]. Skin cancer develops 

when the normal growth of skin cells is disrupted, leading to 

DNA mutations that result in malignant cell growth. While 

ultraviolet (UV) radiation is the primary cause of skin cancer, 

other contributing factors include fair skin, exposure to 

radiation and harmful chemicals, severe skin injuries or burns, 

weakened immunity, aging, and smoking. Early diagnosis is 

critical, and researchers are increasingly leveraging artificial 

intelligence-based techniques to achieve this goal. Skin 

cancers can be broadly classified into melanoma and non-

melanoma types, with the latter being generally less aggressive 

and more treatable. These cancers, though less severe than 

melanoma, still require timely diagnosis and treatment to 

prevent complications [2]. 

Significant advancements have been achieved in the use of 

AI for identifying disease patterns from medical imaging [3]. 

In dermatology, AI-based tools and applications are being 

developed to assess the severity of conditions such as psoriasis 

and to perform specialized dermatological tasks, such as 

classifying skin lesions as melanoma or nonmelanoma skin 

cancer. These tools utilize sophisticated algorithms capable of 

self-learning and improving their accuracy over time [4]. 

The integration of federated learning (FL), deep learning, 

and transfer learning technologies [5] offers substantial 

benefits to both patients and dermatologists by enhancing the 

prediction and diagnosis of suspicious skin lesions. In this 

work, we explored various federated averaging techniques and 

deep learning algorithms, benchmarked public datasets, and 

examined for melanoma classification. This work provides a 

comprehensive resource on the application of deep and FL 

techniques for diagnosing malignant melanoma and non-

melanoma skin cancers, aiming to advance research and 

clinical applications in the field. 

1.1 FL and its working 

A distributed machine learning approach called FL enables 

several devices or edge nodes to work together to train models 

without exchanging local data. By storing data locally and 

sending only model updates to a central server, this method 

solves privacy and security issues with data. Data from 

multiple sources is combined on a single server for training in 

a standard centralized machine learning arrangement, which 

presents privacy concerns, particularly in delicate industries 

like healthcare and finance [4]. By allowing each participating 

device to independently train a model on its own data and then 

transmitting just the trained model parameters—like gradients 

or weights—to the central server, FL gets around this problem. 

To enhance a global model, the server gathers these updates, 
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frequently by averaging them. The global model is returned to 

the devices for additional improvement as part of this iterative 

process. Figure 1 illustrates the working mechanism of FL 

within a healthcare system. 

 

 
 

Figure 1. Working of FL within healthcare system 

 

FL 's main benefits go beyond privacy; they also include 

lower latency and data transfer. Furthermore, as every client 

(device) may have different data distributions, FL is 

appropriate for handling extremely diverse data. But FL also 

has to deal with issues like heterogeneous models, 

connectivity limitations, and disparate device data quality. 

Furthermore, FL-participating devices frequently have limited 

memory and power, necessitating the use of effective model 

updating techniques. In order to overcome these obstacles and 

guarantee that FL keeps providing privacy-preserving, 

effective, and scalable solutions across industries, it is 

necessary to create strong aggregation techniques, increase 

communication efficiency, and integrate strategies for 

managing non-iid (non-independent and identically 

distributed) data. 

 

1.2 FL in healthcare 

 

FL, which permits cooperative machine learning model 

training across several healthcare facilities while protecting 

data privacy, is quickly becoming a game-changing strategy in 

the healthcare industry. Sensitive by nature, healthcare data 

includes private health information that is subject to stringent 

privacy laws such as the General Data Protection Regulation 

(GDPR) and the Health Insurance Portability and 

Accountability Act (HIPAA). With the abundance of digital 

health data—from wearable technology to medical imaging 

and electronic health records (EHRs). 

Each medical facility (such as hospitals, clinics, and 

research centers) keeps its own local patient data and uses it to 

train a model locally in a FL configuration for healthcare. The 

institution does not share the raw data with a central server; 

instead, it shares the learnt parameters, like gradients or model 

weights. By combining these updates, the central server 

improves a global model that takes advantage of the various 

data sources spread throughout different institutions. Due to 

regional variations in patient demographics, disease incidence, 

and treatment practices, the global model can achieve high 

predictive accuracy and generalization capacity by repeating 

this procedure. This is particularly crucial in the healthcare 

industry.  

Implementing FL in healthcare faces challenges such as 

non-IID data distribution across institutions, high 

communication costs for large medical datasets, and the need 

for privacy-preserving techniques like secure multiparty 

computation and differential privacy, which increase 

complexity. Despite these challenges, FL holds promise for 

developing secure, collaborative models that enhance clinical 

outcomes, enabling powerful diagnostic and predictive tools 

to improve healthcare and patient care. 

 

1.3 FL averaging techniques 

 

Aggregation techniques are extremely important in FL, as 

they are responsible for combining model updates from many 

client devices that are located in different locations in order to 

develop a robust global model. These aggregation strategies 

are meant to accommodate varied data distributions, client 

unpredictability, and bandwidth limits while simultaneously 

ensuring that the final model is accurate and safe. Both of these 

goals are accomplished simultaneously. The following is a list 

of some of the most important aggregation techniques that are 

typically utilized in FL. Various federated aggregation 

techniques are presented in Figure 2 and elaborated below. 

 

 
 

Figure 2. FL aggregation approach 

 

1.3.1 FedAvg  

Clients use Federated Averaging (FedAvg), training locally 

and sending model updates to a central server, which averages 

them to create a global model. It’s efficient and effective when 

client data is similar but may struggle with non-iid data. It’s 

widely used in homogeneous settings for its simplicity and 

performance. 

 

1.3.2 FedSGD  

Federated Stochastic Gradient Descent (FedSGD) modifies 

SGD for FL, sending gradient updates instead of model 

parameters. It reduces local training but is communication-

intensive and less suitable for bandwidth-limited applications. 

It's fast but not scalable for large, decentralized networks. 

 

1.3.3 Adaptive federated optimization  

Techniques like FedAdam, FedYogi, and FedAdagrad 

adjust learning rates to handle data heterogeneity, stabilizing 

training and speeding up convergence, especially with non-iid 

data. However, they are computationally intensive and require 

more resources on both client and server. 

The challenges of privacy and communication efficiency 

drive the need for innovative approaches in healthcare, 

particularly for skin cancer prediction. In this paper, we 

propose a custom FL averaging technique integrated with deep 

learning for melanoma detection, aiming to improve both 

communication efficiency and prediction accuracy while 
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addressing data privacy concerns. Our approach introduces a 

decentralized, privacy-aware model tailored for skin cancer 

prediction in healthcare settings. 

Key contributions include: 

(1) An in-depth review of FL-based AI applications in 

healthcare, covering foundational concepts of FL, 

essential AI principles, and FL averaging techniques are 

discussed. 

(2) Introduced a novel approach leveraging CNNs and 

VGG16 at client nodes, integrated with a customized FL 

averaging strategy for global model aggregation.  

(3) Conducted a comprehensive evaluation on a skin cancer 

dataset, showcasing that our proposed approach 

outperforms baseline FL methods by delivering faster 

convergence, improved prediction accuracy, and 

enhanced communication efficiency. 

The paper is organized as follows: Section 2 covers prior FL 

reviews; Section 3 introduces the proposed methodology of FL 

averaging and algorithms used for classification of melanoma 

disease; Section 4 provides experimental setup, performance 

parameters, result analysis and comparative analysis of 

proposed results with similar systems; Section 5 discusses 

conclusion and future scope and references are mention at end 

of article. 

 

 

2. LITERATURE REVIEW 

 

The literature review compares various techniques, 

including machine learning, deep learning, and transfer 

learning algorithms, applied to healthcare datasets within a FL 

environment. It also examines different FL frameworks and 

federated averaging methods, analysing their effectiveness in 

addressing challenges such as data privacy, communication 

efficiency, and model convergence. This comprehensive 

analysis highlights the strengths and limitations of these 

approaches in healthcare applications. 

 

2.1 Machine learning techniques 

 

Non-melanoma skin cancers (NMSCs) have been 

extensively studied in recent research, with a particular focus 

on their biology and clinical features [2]. This study 

emphasized the importance of early detection and personalized 

treatment approaches, while also detailing the epidemiology, 

risk factors, and clinical manifestations of these tumors. 

Available treatment options, including both surgical and non-

surgical methods, have been thoroughly examined, along with 

emerging therapies that target specific molecular alterations in 

NMSCs.  

Recent research has examined the challenges faced by 

traditional machine learning algorithms and explored the 

integration of FL into privacy-aware healthcare systems for 

skin cancer prediction [6]. The study provides a comparative 

analysis of the performance of various machine learning and 

FL algorithms in detecting skin lesions, along with an 

evaluation of different datasets used for skin cancer prediction. 

Mobile-based artificial intelligence approaches show promise 

for improving melanoma identification in skin cancer 

diagnosis, enabling rapid and accurate detection through 

mobile devices [7]. The suggested system provides a viable 

method for early melanoma diagnosis in resource-constrained 

environments by combining machine learning models with 

image processing methods.  

The artificial bee colony (ABC) optimization method has 

been adapted for FL feature selection to enhance the accuracy 

and efficiency of heart disease diagnosis in clinical settings, 

combining the strengths of both FL techniques and ABC 

optimization [8].  

FL has been comprehensively reviewed with detailed 

examination of its core technologies, communication 

protocols, and diverse application domains [9]. The growing 

interest in FL which has surfaced as a viable paradigm for data 

privacy-preserving collaborative machine learning across 

decentralized devices is the subject of this survey. A 

comparative analysis between FL and traditional machine 

learning approaches was conducted using COVID-19 chest X-

ray datasets, evaluating the impact of key parameters including 

activation functions, optimizers, learning rates, training 

iterations, and dataset sizes on model accuracy and loss 

metrics [10]. Results showed that FL outperformed traditional 

models in accuracy and loss, particularly with SGD optimizers 

and softmax activation, though it required more computational 

time. 

A novel framework combining secure multiparty 

computation and differential privacy has been developed to 

optimize the accuracy-privacy trade-off in collaborative 

machine learning systems [11, 12]. By integrating these 

strategies, the suggested approach preserves privacy without 

jeopardizing a certain degree of confidence by reducing the 

noise level as the number of participants increases. The study 

[12] also presented an innovative use of FL to safeguard 

privacy in healthcare data. This project investigates the use of 

FL to improve data privacy and facilitate cross-institutional 

collaborative machine learning. This strategy addresses 

privacy issues associated with traditional centralised 

techniques by maintaining patient data localised and only 

exchanging model changes, guaranteeing the confidentiality 

of sensitive information.  

A groundbreaking framework utilizing federated electronic 

health records (EHRs) has been developed for predictive 

modeling through FL approaches [13]. In order to protect 

patient privacy, this work tackles the difficulty of collaborative 

predictive modelling across dispersed healthcare systems. The 

authors provide a method for training prediction models on 

decentralised EHR data sources without revealing sensitive 

patient information by utilising FL techniques.  

 

2.2 Deep learning techniques 

 

Significant advancements in automated non-melanoma skin 

cancer (NMSC) detection have been achieved through the 

development of Multi-Site Cross-Organ Calibrated Deep 

Learning (MuSCID), a calibrated deep learning framework 

designed to maintain consistent diagnostic accuracy across 

diverse clinical settings while addressing data variability from 

multiple healthcare institutions [14]. The MuSClD model 

improves its generalisation ability by utilising a large dataset 

that includes a variety of pictures of NMSC from different 

organs. 

Deep residual networks have been successfully applied to 

enhance melanoma diagnostic accuracy by leveraging their 

powerful feature extraction capabilities [15], while 

simultaneously addressing common challenges in 

dermoscopic image analysis including lesion variability and 

imaging artifacts through an optimized network architecture. 

Hybrid fully convolutional networks (FCNs) incorporating 

deep features offer a novel solution for improving both skin 
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lesion segmentation and melanoma detection accuracy [16]. 

The suggested technique delivers robust melanoma detection 

and improves segmentation performance by combining FCNs 

with deep features taken from pre-trained convolutional neural 

networks (CNNs). Optimized deep learning features 

significantly advance melanoma diagnosis capabilities [17]. 

The objective of the research is to improve melanoma 

diagnosis accuracy by the optimisation of deep learning 

features derived from CNNs. By utilising sophisticated 

methods for feature extraction and selection, the authors show 

enhanced ability to distinguish between benign lesions and 

malignant melanomas.  

Neural network depth, learning process design, and high-

quality training data critically impact model performance [18] 

By employing deep learning architectures and large datasets, 

the scientists hope to improve the precision and dependability 

of melanoma diagnosis. In order to enhance screening 

performance, the study looks into a number of design options, 

such as data augmentation and model optimisation strategies. 

Fine-tuning strategies and source task selection 

significantly affect transfer learning performance for 

melanoma detection [19]. Additionally, they evaluate the 

performance gains by using deeper and more complex models. 

Their results show that deeper models, pretrained on ImageNet, 

perform far better when optimised for particular applications. 

Using two different skin-lesion datasets, the study assesses 

these models and shows that deeper, more refined models 

significantly increase prediction accuracy. 

A hybrid approach integrating support vector machines, 

deep learning, and sparse coding techniques demonstrates 

enhanced performance for melanoma identification in 

dermoscopic images [20]. The combination of natural image 

feature transfer and unsupervised learning eliminates the 

necessity for annotated data in the target task, which is a major 

benefit. Using a technique akin to that of clinical specialists, 

the system is able to compare dermoscopic visual patterns with 

observations from the real world. 

 

2.3 Transfer learning techniques 

 

The VGG16 CNN architecture effectively detects and 

mitigates data poisoning attacks in deep learning systems [21]. 

This method allows for collaborative model training while 

protecting sensitive medical data, and it is implemented inside 

a FL architecture that involves 10 healthcare institutions. To 

effectively diagnose skin cancer, the FL technique makes use 

of VGG16's powerful feature extraction capabilities. Using 

strict criteria and outlier detection algorithms to identify and 

assess suspicious model alterations, the study presented a 

complete approach to FL data poisoning threat identification. 

A comprehensive taxonomy classifies both malignant and 

non-malignant skin cancers while reviewing state-of-the-art 

federated and transfer learning algorithms for malignant lesion 

detection [22]. 

FedPacket introduces a FL framework for mobile packet 

classification that enhances both privacy protection and 

network performance [23]. FedPacket maintains excellent 

classification accuracy while protecting user privacy by 

allowing decentralised training across several devices without 

exchanging raw data. The authors carry out thorough analyses, 

showing that FedPacket performs better in terms of efficacy 

and privacy preservation than conventional centralised 

methods. By providing a solid method for packet 

categorization that respects privacy, this study makes a 

substantial contribution to the field of mobile computing.  

FL demonstrates transformative potential in healthcare by 

enabling privacy-preserving collaborative research across 

institutions, with distinct applications ranging from neuro-

oncology to comparative oncology. In brain lesion analysis—

including traumatic injuries, gliomas, and stroke—FL 

improves predictive accuracy while maintaining data security 

[2]. The framework similarly enhances diagnostic precision in 

broader medical applications through secure distributed model 

training [4]. Complementary translational research further 

illustrates FL's value in comparative oncology, where canine 

melanoma models provide insights into human tumor behavior 

and treatment responses [8]. These collective advances 

highlight FL's dual capacity to accelerate medical innovation 

while addressing critical data privacy constraints in healthcare 

research. 

The literature review highlights the transformative role of 

FL in healthcare, focusing on its ability to enable collaborative 

data analysis while preserving patient privacy. These works 

also address challenges such as communication overhead, data 

heterogeneity, and privacy concerns, proposing future 

research directions. Together, the review underscores FL’s 

potential to revolutionize healthcare by balancing privacy, 

collaboration, and innovation. 

 

 

3. RELATED WORK 

 

In this section, we focus on various federated averaging 

techniques, including FedAvg, FedProx, FedYogi, 

FedAdagrad, and FedAdam. Each of these methods is 

explained in detail, highlighting their unique approaches to 

model aggregation and their impact on communication 

efficiency, convergence, and overall performance in FL 

environments. 

 

3.1 Federated averaging (FedAvg) 

 

With the introduction of FL, the most fundamental 

aggregating technique is known as Federated Averaging 

(FedAvg). This technique was developed to enable 

decentralized model training without the need to share raw 

data. In order to enhance a global model, the fundamental 

concept is to take the average of model updates from a number 

of different clients (for example, devices or institutions). In 

FedAvg, every client Ν is responsible for updating its local 

model by executing several epochs of stochastic gradient 

descent (SGD) on its local data, which is represented by 𝐷k. 

At the same time, a loss function 𝐿k (𝑤) is applied, which is 

dependent on the distribution of the client's data. 

Each client computes a weight update Δwk locally as: 
 

∆𝑤𝑘 = 𝑤𝑘
𝑡 − 𝜂∇𝐿𝑘(𝑤𝑘

𝑡) 

 

where, 𝑤𝑘
𝑡   𝑤𝑘𝑡 is the model parameters for client 𝑘 at round 

𝑡, and 𝜂 is the learning rate. After multiple local updates, the 

central server aggregates these by taking a weighted average 

based on the number of data samples 𝑛k at each client, 

updating the global model as follows: 

 

𝑤𝑡+1 =
∑ 𝑛𝑘 ∙ 𝑤𝑘

𝑡+1𝐾
𝑘=1

𝑤𝑘=1
𝐾 𝑛𝑘

 

 

The updated global model is denoted by the symbol 𝑤𝑡+1, 
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while the total number of customers is denoted by the symbol 

n. In contexts where the data from all of the clients is 

consistent, FedAvg is a straightforward, efficient, and 

effective solution. On the other hand, FedAvg may have 

difficulty generalizing successfully among clients when data 

distributions are very heterogeneous (non-iid). This is because 

the averaging of gradients, which may represent competing 

updates from different data distributions, might make it 

difficult for FedAvg to generalize well. 

 

3.2 Federated proximal (FedProx) 

 

FedProx is an extension of FedAvg that was developed to 

better manage the heterogeneous data distributions that occur 

between customers. It does this by incorporating a proximal 

term into the loss function, which helps to minimize the 

divergence between the local model of each client and the 

global model. This helps to address problems that occur when 

the data distributions of clients are significantly different from 

one another. By punishing departures from the global model, 

this term essentially regularizes the updates that each client 

makes, so ensuring that stability is maintained during the 

aggregation process. 

The local optimization objective for each client 𝑘 in 

FedProx is modified as follows: 

 

𝐿𝑘(𝑤) =  𝐿𝑘(𝑤) +
𝜇

2
 ||𝑤 − 𝑤𝑡||2 

 

where, 𝑤 is the current model on the client, 𝑤t is the global 

model at round 𝑡, and 𝜇 is a regularization parameter that 

controls the influence of the proximal term. The proximal term 
𝜇

2
 ||𝑤 − 𝑤𝑡||2 encourages the local model 𝑤 to stay close to 

the global model 𝑤t, thereby mitigating the effects of client-

specific data distributions. FedProx performs the aggregation 

step similarly to FedAvg, using the weighted average of 

updates from each client. By adjusting 𝜇, FedProx can balance 

model convergence and stability, especially in non-iid settings, 

making it a powerful tool for FL with high client variability. 

 

3.3 Federated adagrad (FedAdagrad) 

 

FedAdagrad is a variation of FedAvg that utilizes adaptive 

learning rates with the use of the Adagrad algorithm for 

optimization. Learning rates in such an algorithm depend on 

update frequency and update size. It proves useful in federated 

settings with unbalanced distributions of data at the clients, 

with FedAdagrad decreasing learning rates for updated 

parameters, with a bias towards stabilizing convergence. This 

makes FedAdagrad particularly valuable in these kinds of 

contexts. In FedAdagrad, each client 𝑘 updates its model using 

a local gradient 𝑔k and an adaptive learning rate 𝜂k, which 

depends on the accumulated squared gradients: 

 

𝑤𝑡+1 =  𝑤𝑡 −
𝜂

√𝐺𝑡 + 𝜖
∙ 𝑔𝑘 

 

where, 𝐺𝑡 = ∑ 𝑔𝑖
2𝑡

𝑖=1   is the sum of squared gradients from 

previous rounds up to 𝑡, and 𝜖 is a small constant to prevent 

division by zero. The adaptive term 
𝜂

√𝐺𝑡+𝜖
  reduces the learning 

rate for frequently updated parameters, leading to more stable 

updates. After local training, each client’s model updates are 

aggregated using the weighted average method, similar to 

FedAvg. FedAdagrad enhances FedAvg by enabling smoother 

convergence, especially for heterogeneous data, as it naturally 

adapts to the learning rates based on parameter-specific update 

history. 

 

3.4 Federated adam (FedAdam) 

 

By merging the concepts of momentum and adjustable 

learning rates, FedAdam is able to apply the Adam 

optimization technique to the federated environment. 

Accelerating convergence and stabilizing updates are two 

benefits that result from the use of exponential moving 

averages in Adam, which smoothes gradients. In non-iid 

federated contexts, FedAdam is effective because it combines 

the adaptive updates of Adagrad with momentum, which helps 

eliminate oscillations in gradient updates. This allows 

FedAdam to maximize its effectiveness. FedAdam involves 

two main update terms for each parameter: the first moment 

(mean of gradients) and the second moment (variance of 

gradients): 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

 

where, mt and vt are the first and second moment estimates at 

time t, β1 and β2 are decay rates, and gt  is the gradient at round 

𝑡. The model update is then given by: 

 

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝑣𝑡+𝜖
𝑚𝑡 

 

A weighted average method is utilized by the central server 

in order to compile the updates that are received from each 

client. FedAdam is able to deliver smoother convergence in 

addition to decreasing fluctuations in updates and making it 

resistant against different client data distributions. This is 

accomplished by the integration of momentum and adaptive 

learning rates. 

 

3.5 Federated yogi (FedYogi) 

 

FedYogi is an adaption of the Yogi optimizer. It adjusts 

learning rates based on accumulated gradients in a manner that 

is comparable to FedAdam, but it modifies the variance 

updating rule. Due to the fact that FedYogi takes a novel 

method to managing the second moment of gradients, it is 

especially stable in situations that contain a great deal of 

heterogeneous data. Yogi adjusts learning rates in a more 

conservative manner based on the gradient history, as opposed 

to Adam, who constantly increases or decreases them. This 

allows Yogi to prevent severe learning rate variations in 

conditions that are not iid. FedYogi’s update rule for the 

second moment term 𝑣t is slightly different from Adam’s: 

 

𝑣𝑡 = 𝑣𝑡−1 − (1 − 𝛽2) ∙ 𝑠𝑖𝑔𝑛(𝑣𝑡−1 − 𝑔𝑡
2) ∙ 𝑔𝑡

2 

 

By scaling the variance term according to the direction of 

the gradient, this adjustment prevents the phenomenon of 

over-accumulation in the variance term. The following 

formula is then used to compute the update for each parameter 

w: 

 

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝑣𝑡+𝜖
𝑚𝑡 
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where, 𝑚t is the first moment estimate and 𝜂 is the learning 

rate. FedYogi is advantageous in FL settings with high client 

variability because it stabilizes learning rates over time 

without drastically reducing them, which can be crucial for 

convergence in non-iid data environments. 

 

 

4. PROPOSED METHODOLOGY 

 

The proposed methodology begins with loading the 

malenoma dataset, followed by a comprehensive pre-

processing step to prepare the data for FL. Pre-processing 

involves resizing all images to a uniform dimension of 

112×112112, converting them into tensors, and normalizing 

the image data to ensure uniformity across the dataset. The 

dataset is then split into training and testing subsets using an 

80%-20% ratio. The training data is distributed among a 

predefined number of clients, simulating the FL environment. 

Multiple federated averaging techniques, including FedAvg, 

FedProx, FedAdagrad, FedAdam, and FedYogi, are 

implemented to evaluate the performance of these approaches. 

Additionally, a hybrid averaging technique combining 

FedAvg and FedProx is proposed to address challenges like 

data heterogeneity and communication efficiency. Then deep 

learning models such as CNN and VGG16 are utilized for 

classification of malignant and non-malignant images. Finally, 

the models are evaluated through performance metrics, 

including accuracy and loss, to analyze the effectiveness of the 

applied techniques. This approach systematically combines 

traditional and advanced FL strategies to improve model 

performance in distributed data settings. The detail system 

architecture diagram is shown in Figure 3, and detail steps are 

explained below. 

 

 
 

Figure 3. Proposed FL-based melanoma classification 

architecture diagram 

 

4.1 Input dataset 

 

The ISIC 2018 dataset is a widely recognized resource for 

skin lesion analysis, specifically aimed at advancing 

melanoma detection. The dataset supports three primary tasks: 

Lesion Segmentation, Lesion Attribute Detection, and Disease 

Classification [24]. These tasks are designed to enhance the 

accuracy and reliability of automated systems in diagnosing 

skin diseases, particularly melanoma. The dataset comprises 

10,015 dermoscopic images representing seven distinct 

categories of skin diseases. For the purposes of this study, we 

focus on two key classes: Melanoma and Benign lesions. The 

third task, Disease Classification, is particularly relevant to our 

work, as it seeks to improve the automated prediction of 

disease categories in dermoscopic images. By leveraging this 

dataset, we aim to contribute to the development of more 

robust and accurate classification models for early and precise 

melanoma detection. The image sample of dataset are shown 

in Figure 4. 

 

 
 

Figure 4. Melanoma dataset sample 

 

4.2 Dataset pre-processing 

 

Pre-processing is a crucial step to ensure that the melanoma 

images are correctly formatted, standardized, and ready for 

input into a deep learning model. The following steps describe 

the pre-processing pipeline used for melanoma image analysis: 

 

4.2.1 Image resizing (112×112 pixels) 

To standardize the input data and ensure compatibility with 

deep learning models, the first step involves resizing the 

original images to a fixed dimension of 112×112 pixels. This 

step is necessary because images in the dataset can vary in size, 

and deep learning models require inputs of a consistent shape. 

The resizing process uses interpolation methods, such as 

bilinear interpolation, to preserve the aspect ratio and prevent 

distortion, ensuring that important image features remain 

intact. The choice of a 112x112 resolution is a compromise 

between retaining sufficient image detail and reducing the 

computational complexity, allowing the model to process the 

images efficiently. 

 

4.2.2 Convert to tensor  

Once the images have been resized, they need to be 

converted into a format suitable for deep learning models. In 

this step, the images are transformed from their original format 

(such as a NumPy array or a PIL image) into a PyTorch tensor 

using the ‘ToTensor’ function. This conversion changes the 

structure of the image from a 2D array (height x width) with 3 

color channels (RGB) to a 3D tensor with the shape ‘channels, 

height, width’. Additionally, the pixel values, which originally 

range from 0 to 255, are scaled to a range of 0.0 to 1.0. This 

scaling is done automatically during the conversion to tensor, 

ensuring that the neural network can process the pixel values 

in a standardized range, which aids in more efficient learning. 

 

4.2.3 Image normalization  

Normalization adjusts the pixel values to have a mean of 

zero and a standard deviation of one. This is typically achieved 

by subtracting the dataset's mean and dividing by its standard 
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deviation for each color channel (R, G, B). This step helps to 

center the data around zero, ensuring that all input features (i.e., 

pixel values) are on a similar scale. By performing 

normalization, the model is able to train more efficiently, as it 

prevents certain features from dominating the learning process 

due to larger numerical ranges.  

 

4.2.4 Select number of clients  

Once the dataset has been pre-processed the next step in a 

FL workflow is to determine how many clients will participate 

in the training. This process is important because, in FL, 

training occurs across multiple devices or nodes (clients), with 

each client using its own local data for training without 

sending raw data to a central server. Instead, the clients send 

model updates (such as weights or gradients) to the server, 

which then aggregates these updates to improve the global 

model. 

 

4.3 Perform train-test split (80%-20%) 

 

Before starting the FL process, it is essential to split the data 

into two subsets: one for training and one for testing. This 

ensures that the model is trained on one portion of the data and 

validated on a separate, unseen portion to evaluate its 

performance. 

 

4.3.1 80% for training  

80% of the available data is used for training the model. 

This portion is distributed across the selected clients in the FL 

setup, where each client trains the model on its local data. The 

local updates are then sent to the central server for aggregation. 

 

4.3.2 20% for testing 

20% of the data is reserved for testing the model. This data 

is not used during training but is essential for evaluating the 

final performance of the trained model after the FL process. 

The purpose of this split is to ensure that the model 

generalizes well on unseen data and does not overfit to the 

training data. 

 

4.4 Distribute data into clients 

 

Once the data has been split into training and testing sets, 

the training data needs to be distributed among the clients 

participating in the FL process. This step is important because 

FL allows clients to work on local data without directly 

sharing it, thus ensuring data privacy. 

 

4.4.1 Data distribution  

The training data is distributed across a set of clients, where 

each client holds a portion of the data. Each client trains the 

model independently on its local dataset and shares model 

updates (such as gradients or weights) with the central server. 

 

4.5 Apply deep learning model 

 

The next step is to apply a deep learning model to the FL 

setup. Here, CNNs and VGG16 models are commonly used 

for image classification tasks, such as melanoma detection. 

• CNN Architecture: Convolutional Neural Networks are 

widely used for image classification tasks. They consist of 

multiple layers of convolutions, pooling, and fully 

connected layers to learn hierarchical features from 

images. CNNs are particularly suited for image 

processing due to their ability to capture spatial 

hierarchies of features in images. 

• Federated Training: Each client in FL will use its share of 

the data to train its local CNN, then communicate the 

model modifications to the central server. 

• VGG16 Architecture: VGG16 is a deep convolutional 

neural network model that consists of 16 layers with very 

small convolution filters (3×3) and uses max-pooling 

layers to downsample the image. It has proven to be 

highly effective in various image classification tasks, 

making it a suitable model for FL tasks like melanoma 

detection.  

• FL Setup: Just like CNN, VGG16 will be trained on each 

client's local data, with model updates shared back to the 

central server. VGG16’s deeper architecture can capture 

more complex features in the images, which is useful for 

detecting intricate patterns like those found in melanoma 

lesions. 

 

4.6 Select federated averaging techniques 

 

FL typically uses techniques to aggregate model updates 

from the clients and update the global model. The Federated 

Averaging (FedAvg) algorithm is the most commonly used 

technique for this purpose, but other variants like FedProx, 

FedAdagrad, FedAdam, and FedYogi can be explored to 

improve training performance, especially in cases of non-IID 

(non-independent and identically distributed) data. 

 

4.6.1 FedAvg (Federated averaging) 

FedAvg is the most common FL algorithm. It involves 

averaging the model weights sent by each client to update the 

global model. Each client performs local training for several 

epochs, and then the local models are averaged to form a 

global model. The process is repeated over multiple rounds. 

 

4.6.2 FedProx (Federated proximal) 

FedProx is a modification of FedAvg designed to address 

challenges when clients’ data distributions are heterogeneous 

(non-IID data). It introduces a proximal term in the 

optimization process to mitigate the effect of highly skewed or 

non-IID data. 

 

4.6.3 FedAdagrad (Federated adagrad) 

FedAdagrad adapts the learning rate for each parameter 

based on the past gradients, which can help improve training 

in environments where there are sparse updates or highly 

variable data. It adjusts learning rates locally for each client, 

enhancing efficiency. 

 

4.6.4 FedAdam (Federated adam) 

FedAdam is based on the Adam optimizer, which adjusts 

the learning rate using both first and second moments of the 

gradients. It is particularly useful for models that have large 

amounts of data or require more sophisticated updates to 

improve convergence. 

 

4.6.5 FedYogi (Federated yogi) 

FedYogi is an extension of the Adam optimizer and is 

designed to handle the challenges of non-convex optimization, 

which often occurs in deep learning models. It adjusts the 

learning rate dynamically for each parameter and is robust to 

noisy data. 

 

1183



 

4.7 Proposed federated averaging technique (FedAvg + 

FedProx) 

 

The proposed federated averaging technique (CWFL) 

combines the strengths of FedAvg and FedProx. The idea 

behind this hybrid approach is to leverage the simplicity and 

effectiveness of FedAvg while incorporating the robustness of 

FedProx to handle non-IID data. 

In this combined approach, the basic FedAvg procedure is 

augmented with the proximal term from FedProx. This ensures 

that the updates from clients are more aligned with the global 

model, helping mitigate issues related to data heterogeneity 

while maintaining the efficiency of FedAvg. 

 

4.7.1 Performance analysis 

Once the FL model has been trained, the next step is to 

evaluate its performance using various metrics. Performance 

parameters such as accuracy, loss, accuracy and loss curve are 

used. 

 

4.7.2 Algorithm: Hybrid averaging approach algorithm 

(FedAvg + FedProx) 

This algorithm combines FedAvg and FedProx to handle 

heterogeneity in client data and ensure stable convergence 

while aggregating model parameters. 

Input: 

• 𝑁: Number of clients 

• 𝑤𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

: Global model parameters at round 𝑡 

• 𝑤𝑡
𝑘: Local model parameters for client 𝑘 

• 𝐷𝑘: Size of the dataset for client 𝑘 

• 𝜇 : Proximal constant (hyperparameter controlling 

regularization) 

• 𝐷𝑘: Local dataset for client 𝑘 

• 𝐾: Number of communication rounds 

• 𝐸: Number of local epochs (each client trains on its 

data for 𝐸 epochs) 

• 𝜂: Learning rate for local training 

Output: 

• Updated global model parameters 𝑤𝑡+1
𝑔𝑙𝑜𝑏𝑎𝑙

 

Algorithm: 

1. Initialize: 

Set global model parameters 𝑤0
𝑔𝑙𝑜𝑏𝑎𝑙

 (initialization can be 

random or pre-trained). 

For each round 𝑡 = 0,1,2, … 𝐾 − 1 

a. Client selection: Select a subset of clients 𝑆𝑡 ⊆
{1,2, … , 𝑁} for this round. 

b. Local Model Updates (on each selected client): For each 

client in 𝑘 ∈ 𝑆𝑡 , perform the following: 

2. Train locally: 

Perform local training on client 𝑘 data 𝐷𝑘  for 𝐸 epochs 

using the local optimizer: 

 

𝑤𝑡
𝑘 = 𝑇𝑟𝑎𝑖𝑛 (𝑤𝑡

𝑘 , 𝐷𝑘 , 𝜂) 

 

3. Compute local update: 

Compute the difference between the local model and the 

global model parameters: 

 

∆𝑤𝑡
𝑘 = 𝑤𝑡

𝑘 − 𝑤𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

 

 

4. Apply proximal regularization (FedProx): 

Apply the proximal term regularization to the local update: 

 

𝑤𝑡
𝑘 = 𝑤𝑡

𝑔𝑙𝑜𝑏𝑎𝑙
+ (1 − 𝜇)Δ𝑤𝑡

𝑘 

 

The term μ helps in regularizing the local update, 

encouraging the local models to stay close to the global model 

parameters. 

5. Server aggregation (FedAvg + FedProx): 

Aggregate the updated local models 𝑤𝑡
𝑘  from all selected 

clients 𝑆𝑡 to compute the global model parameters: 

 

𝑤𝑡+1
𝑔𝑙𝑜𝑏𝑎𝑙

=
1

|𝑆𝑡|
∑ 𝑤𝑡

𝑘

𝑘𝜖𝑆𝑡

 

 

The aggregation is done via simple averaging, but the local 

updates have been regularized through the proximal term. 

6. Return: 

After Krounds, the final global model 𝑤𝐾
𝑔𝑙𝑜𝑏𝑎𝑙

 parameters 

are returned. 

 

 

5. RESULT ANALYSIS 

 

In this section, we outline the dataset and evaluation metrics 

utilized in this study, providing a detailed explanation of their 

relevance and application. We also present and analyze the 

experimental results of the proposed architecture, discussing 

its performance, key insights, and implications for the research 

objectives. 

 

5.1 Experimental setup 

 

For the experiment, the development environment was 

configured using a Jupyter notebook, which provided an 

interactive platform for coding and experimentation, having 

additionally, 113 GB of Google Drive storage, 13 GB of RAM 

and 15 GB of GPU RAM. The flower framework and FL 

models was implemented, trained, and validated using the 

TensorFlow backend alongside the Keras 2.4.3 framework, 

both of which were instrumental in streamlining the 

development and evaluation processes. This setup ensured 

efficient handling of the computational demands associated 

with training and validating the model. 

 

5.2 Performance analysis 

 

In evaluating the performance of classification models, 

various metrics are employed to assess overall effectiveness. 

In this study, we have used accuracy, precision, recall, F1-

score, loss, and the confusion matrix to evaluate the models. 

Below are the performance parameters formulas; 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑁
 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

where, 
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𝑇𝑃 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 

𝑇𝑁 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 

𝐹𝑃 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 

𝐹𝑁 =  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 

 

In the result section, we compared various averaging 

techniques applied to both CNN and VGG16 models. To 

ensure the reliability of the results, each model was 

independently trained and evaluated five times using different 

random initializations. The average test accuracy and final loss 

across the five runs were computed and compared against 

baseline models to assess performance improvements. The 

hyper parameters used for performing the experiment with 

various averaging techniques are listed in Table 1. This table 

includes both the FL strategy parameters and the additional 

parameters related to the TensorFlow model architecture, 

optimizer, and layers. It provides a comprehensive overview 

of the complete set of hyper parameters used in the simulation 

and model training. 

 

Table 1. Hyper parameters 

 
Hyper Parameters Value Description 

Number of Clients 3 Total number of clients participating in the simulation. 

Batch Size 16 Batch size for training the model on each client. 

Image Size (224, 224) Input size for images, as required by CNN and VGG16. 

Layers 
Conv2D, MaxPooling2D, Flatten, 

Dense 

Convolutional layers with ReLU activation, pooling, and dense layers for 

classification. 

Optimizer adam Adam optimizer used for training the model. 

Loss Function binary_crossentropy Binary crossentropy used as the loss function for binary classification. 

Filters 32 / 64 / 128 Number of filters in the convolutional layer. 

Kernel Size (3,3) Kernel size of the convolutional layer. 

Pool Size (2,2) Pooling size of the max-pooling layer. 

Activation 'relu' / Sigmoid ReLU activation function for the dense layer and Sigmoid for output layer. 

Epoch 10 Number of iterations for which models are run. 

 

 
 

Figure 5. Accuracy comparison of averaging technique using CNN model 

 

 
 

Figure 6. Loss comparison of averaging technique using CNN model 
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Figure 7. Accuracy comparison of averaging technique using VGG16 model 

 

 
 

Figure 8. Loss comparison of averaging technique using VGG16 model 
 

The accuracy and loss curves for the CNN and VGG16 

models across various averaging techniques are shown in 

Figures 5-8. Figures 5 and 6 show the accuracy and loss curve 

of averaging techniques using CNN model, while Figures 7 

and 8 show the accuracy and loss curve of averaging 

techniques using VGG16 model. 

Figure 9 provides a comparative analysis of our 

experimental results. The VGG16 model with the proposed 

hybrid approach, combining FedAVG (Federated Averaging) 

and FedProx (Federated Proximal), outperformed all other 

models in terms of global accuracy. Specifically, this hybrid 

model achieved an impressive 90% accuracy, significantly 

higher than the other techniques tested. Additionally, the loss 

associated with this model was considerably low, reaching 

approximately 0.25, indicating better generalization and less 

overfitting. This suggests that the hybrid approach not only 

enhanced the model's ability to learn from decentralized data 

but also helped improve its convergence, resulting in a more 

robust and accurate performance compared to traditional 

averaging methods. 

These results demonstrate the effectiveness of combining 

FedAvg and FedProx in FL settings, particularly when 

deployed with a powerful architecture like VGG16. The 

results of the proposed model demonstrate that strong 

performance can be achieved by utilizing the proposed 

architecture for melanoma image classification datasets. This 

indicates that the model is capable of generalizing well to a 

wide range of FL classification problems. Figure 10 shows the 

Confusion Matrix of CFWL with VGG16 model. 

 

 
 

Figure 9. Comparative analysis of models 
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Figure 10. Confusion matrix 

 

 

6. CONCLUSION 

 

This study underscores the critical importance of timely and 

accurate skin cancer diagnosis, a potentially life-threatening 

condition, while addressing the significant challenges posed 

by traditional machine learning approaches in healthcare, such 

as data privacy concerns and the management of distributed, 

non-IID datasets. To overcome these challenges, we proposed 

the CFWL model for melanoma detection, which leverages FL 

to ensure privacy preservation while enhancing the accuracy 

and convergence of the central model. By integrating 

advanced deep learning architectures, specifically CNN and 

VGG16, our model demonstrated superior performance in 

feature extraction and classification tasks under non-IID 

conditions.  

Experimental results revealed that our (CFWL) model, 

particularly when paired with the VGG architecture, 

outperformed existing FL averaging techniques such as 

FedAvg, FedProx, FedAdagrad, FedAdam, and FedYogi in 

terms of classification accuracy, loss reduction, and overall 

robustness. Notably, the model achieved exceptional accuracy 

on the ISIC dataset, correctly classifying 238 out of 265 

malignant images and 239 out of 265 benign images. 

Furthermore, FL experiments demonstrated an impressive 

global accuracy of up to 90.0% in multi-client scenarios, 

highlighting the model’s scalability and effectiveness in 

privacy-preserving environments. 

This work makes a significant contribution to the fields of 

medical imaging and AI-driven healthcare by showcasing the 

potential of FL combined with advanced deep learning 

techniques to deliver scalable, privacy-preserving solutions 

for melanoma detection. The findings pave the way for future 

research and practical implementations, enabling the adoption 

of AI technologies in a manner that prioritizes both accuracy 

and patient privacy. 

In future work, we aim to address several real-world 

challenges commonly encountered in FL environments. These 

include handling client dropout, where devices may 

intermittently disconnect during training, and managing 

communication costs, which can become significant in 

bandwidth-constrained settings. Enhancements such as robust 

aggregation methods to tolerate partial client participation, 

model compression techniques to reduce communication 

overhead, and adaptive client selection strategies will be 

explored. Incorporating these improvements will make the 

proposed hybrid FedAvg/FedProx approach more practical 

and effective for deployment in real-world scenarios. 
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