
Modelling Bodies in Static Equilibrium Using Python Programming: Bridging Theory and

Practice

Choon Kit Chan1 , Pankaj Dumka2* , Kuldip Dodiya3 , Dhananjay R. Mishra2 , Rishika Chauhan4 ,

Chandrakant Sonawane5,6 , ArunKumar Bongale5 , Subhav Singh7,8 , Deekshant Varshney9,10

1 Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia
2 Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Raghogarh 473226, India
3 Mechanical Engineering Department, Vishwakarma Government Engineering College, Chandkheda 382424, India
4 Department of Electronics and Communication Engineering, Jaypee University of Engineering and Technology,

Raghogarh 473226, India
5 Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune 412115, India
6 Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International Deemed University, Pune 412115, India
7 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
8 Division of Research and Development, Lovely Professional University, Phagwara 144411, India
9 Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, India
10 Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India

Corresponding Author Email: p.dumka.ipec@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120635 ABSTRACT

Received: 14 February 2025

Revised: 7 April 2025

Accepted: 15 April 2025

Available online: 30 June 2025

This study explores the static equilibrium, which is a foundational concept in physics

and engineering, using Python programming. Python’s computational capabilities

bridge theoretical concepts with the practical problem solving by enabling the analysis

of forces and stability in mechanical systems. The methodology involves using

computation and numerical analysis with NumPy to solve equilibrium equations.

Visualization tools such as Matplotlib help illustrate force interactions and support

conditions. Real-world examples, including force balance in beams and rigid bodies,

are used to demonstrate applications. This work provides students and engineers with

hands-on experience in analyzing static systems, promoting deeper understanding and

enhanced problem-solving skills through computational thinking.

Keywords:

static equilibrium, Python programming, force

analysis, mechanical systems, process

innovation

1. INTRODUCTION

Static equilibrium is a fundamental concept in physics and

engineering, governing the stability and balance of objects and

structures at rest [1, 2]. Solving static equilibrium problems is

essential for engineers, physicists, and others analyzing the

forces in real-world structures [3]. This article aims to bridge

theoretical knowledge and practical problem-solving by

utilizing the Python programming to simulate and analyze

static equilibrium problems.

Classical analytical methods such as free-body diagrams

and equilibrium equations have long been used to evaluate the

force and moment balance in structures [4, 5]. Researchers

have refined these methods for application in more complex

structural systems, with early studies focusing on graphical

and analytical techniques for solving equilibrium problems

[6].

To address the limitations of classical methods, numerical

techniques such as the finite element methods (FEM) have

become instrumental in real-world static equilibrium analysis.

A detailed review of FEM approaches for structural stability

has been presented by Stein [7]. More recent advancements in

numerical techniques, such as the boundary element method

(BEM) [8, 9] and mesh-free methods [10, 11], have further

refined the accuracy and efficiency of equilibrium modeling.

Experimental methods have also contributed to the

understanding of static equilibrium. Laboratory-based studies

using strain gauges and digital image correlation (DIC) have

provided valuable validation for theoretical models [12-14].

These methods complement numerical simulations and

enhance confidence in structural analysis.

In structural engineering, stability analysis has become

increasingly important in recent years, particularly in the

design and optimization of load-bearing systems [15].

Methods like the limit analysis techniques [16] and structural

optimization frameworks [17] has enabled the development of

more efficient and resilient structures. Additionally,

advancements in computational mechanics have enabled

researchers to simulate complex equilibrium problems,

leading to improved structural safety and reliability.

Python, which is renowned for its simplicity, versatility, and

rich ecosystem of libraries/modules [18], has emerged as a

valuable tool for solving complex problems in the physics and

engineering [19, 20]. For students, engineers, and researchers,

the Python programming provides a flexible platform to model

static equilibrium systems efficiently [21].

Mathematical Modelling of Engineering Problems
Vol. 12, No. 6, June, 2025, pp. 2195-2201

Journal homepage: http://iieta.org/journals/mmep

2195

https://orcid.org/0000-0001-7478-7334
https://orcid.org/0000-0001-5799-6468
https://orcid.org/0000-0002-0117-2731
https://orcid.org/0000-0002-5107-0012
https://orcid.org/0000-0001-8483-865X
https://orcid.org/0000-0002-3408-5060
https://orcid.org/0000-0002-1942-9179
https://orcid.org/0009-0009-0586-6034
https://orcid.org/0000-0003-3485-0284
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120635&domain=pdf

This article explores the core principles of static

equilibrium, the mathematical foundations of force analysis,

and their implementation using Python. By integrating

numerical computation with visualization tools, the study

demonstrates how Python simplifies the analysis of various

equilibrium problems—from simple structures to complex

systems—thereby equipping users with both conceptual

clarity and practical skills. As one goes deeper into this

exploration, it will become clear that how Python enables one

to model and simulate equilibrium situations. Therefore,

Python programming serves as a versatile and powerful ally in

the quest to unravel the secrets of static equilibrium [22, 23].

One of Python’s key strengths is its support for both

symbolic and numerical computations. Libraries such as

SymPy [24, 25] allows the users to formulate equilibrium

equations symbolically before substituting numerical values.

This flexibility facilitates parametric studies and system

optimization, streamlining the analysis process.

Furthermore, Python's visualization tools significantly

enhance the comprehension of static equilibrium concepts [26-

29]. Through libraries like Matplotlib and Plotly, force

diagrams, moment distributions, and equilibrium plots can be

generated dynamically. These visual aids provide an intuitive

way to understand force interactions, stress distributions, and

support reactions in mechanical structures by bridging the gap

between theoretical analysis and real-world applications.

Python’s integration with numerical libraries like NumPy

[29-32] and SciPy [29, 33, 34] empowers users to automate

complex equilibrium analyses. These tools enable precise

stability assessments and are particularly effective for

analyzing large-scale or non-trivial force systems.

To facilitate learning and experimentation, the authors have

used Jupyter notebook [32] with Python 3.7 to develop

reusable functions and visualization tools for solving

equilibrium problems. Jupyter Notebook offers an interactive

computing environment that facilitates documentation,

visualization, and execution of code in a single platform [35].

This makes it an ideal tool for demonstrating equilibrium

problems, allowing users to modify parameters dynamically

and observe their effects in real time [36].

2. THEORETICAL BACKGROUND

Figure 1. A typical system in static equilibrium

In most of the engineering problems which are related to

systems in static equilibrium normally two forces are unknown

as shown in Figure 1. The forces 𝐹1 and 𝐹2 are unknown

whereas 𝑊1 to 𝑊3 are known forces. Let say that the unknown

forces are making an angle of 𝜃1 and 𝜃2 whereas, the 𝑊1 to

𝑊3 forces are making angles of 𝜃𝑤1 , 𝜃𝑤2 , and 𝜃𝑤3 form the

positive 𝑥-axis, respectively. As the body is in equilibrium

under all the forces so the net force along x and its

perpendicular direction should add up to zero. On resolving

the forces along 𝑥 and its perpendicular direction following

equations are obtained [37]:

𝐹1𝑐𝑜𝑠(𝜃1) + 𝐹2𝑐𝑜𝑠(𝜃2) + 𝑊1𝑐𝑜𝑠(𝜃𝑤1) +
𝑊2𝑐𝑜𝑠(𝜃𝑤2) + 𝑊3𝑐𝑜𝑠(𝜃𝑤3) = 0

(1)

𝐹1𝑠𝑖𝑛(𝜃1) + 𝐹2𝑠𝑖𝑛(𝜃2) + 𝑊1𝑠𝑖𝑛(𝜃𝑤1) +
𝑊2𝑠𝑖𝑛(𝜃𝑤2) + 𝑊3𝑠𝑖𝑛(𝜃𝑤3) = 0

(2)

Now rearranging Eqs. (1) and (2) will result in Eqs. (3) and

(4) as shown below:

𝐹1𝑐𝑜𝑠(𝜃1) + 𝐹2𝑐𝑜𝑠(𝜃2) = − ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑐𝑜𝑠(𝜃𝑤𝑖) (3)

𝐹1𝑠𝑖𝑛(𝜃1) + 𝐹2𝑠𝑖𝑛(𝜃2) = − ∑ 𝑊𝑖
𝑁
𝑖=1 𝑠𝑖𝑛(𝜃𝑤𝑖) (4)

where, N is the number of known forces. Now in matrix

notation the above equations can be written as:

[
𝑐𝑜𝑠(𝜃1) 𝑐𝑜𝑠(𝜃2)
𝑠𝑖𝑛(𝜃1) 𝑠𝑖𝑛(𝜃1)

] [
𝐹1

𝐹2
] = [

− ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑐𝑜𝑠(𝜃𝑤𝑖)

− ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑠𝑖𝑛(𝜃𝑤𝑖)

] (5)

Now this is in a simple matrix form AX=b, which can be

easily solved using any of the existing functions present in

linear algebra function of NumPy. Here, A, X, and b are as

follows:

𝐴 = [
𝑐𝑜𝑠(𝜃1) 𝑐𝑜𝑠(𝜃2)
𝑠𝑖𝑛(𝜃1) 𝑠𝑖𝑛(𝜃1)

]

𝑋 = [
𝐹1

𝐹2
]

𝑏 = [
− ∑ 𝑊𝑖

𝑖=𝑁
𝑖=1 𝑐𝑜𝑠(𝜃𝑤𝑖)

− ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑠𝑖𝑛(𝜃𝑤𝑖)

]

While classical analytical methods, such as resolving forces

and solving linear equations manually provide a clear insight

into the static equilibrium, they often become cumbersome and

error-prone when dealing with complex force systems or

multiple unknowns. Additionally, graphical interpretations

and hand calculations can be time-consuming and less flexible

for parametric studies or iterative design processes. Python

programming addresses these challenges by offering

numerical solvers and visualization tools that automate and

streamline the analysis. This not only enhances computational

efficiency but also reduces human error and allows the

engineers and students to focus more on interpretation and

design rather than tedious calculations.

3. PYTHON FUNCTION FOR STATIC EQUILIBRIUM

To facilitate the solution procedure the following function

has been developed:

First the module numpy has to be imported to work with

arrays (from numpy import *). In line no. 1, the function is

defined with the name Eqli_Eqn_solve which accepts three

arguments viz.

i. List of angles at which the unknown forces are acting:

θ_un

ii. List of known forces: W

2196

iii. List of angles at which known forces are acting: θ_w

In lines 10 to 12 the list of θ_un, W, and θ_w are converted

into numpy arrays. As the arguments of trigonometric

functions should be in radians, so θ_un and θ_w are converted

into radians using function radians()in line 15 and 18,

respectively. Then a two-dimensional array (A matrix) is

created in line 20 and in lines 21 and 22 the rows are assigned

with cosines and sines of respective angles. In line 25, the

right-hand side vector b is created and in line 27 and 28 the

elements are assigned the values as shown in Eq. (5). Finally,

linalg.solve() function has been used to solve 𝐴𝑋 = 𝑏 which

will return the values of forces 𝐹1 and 𝐹2.

The choice of the NumPy library is deliberate due to its

efficiency and reliability in handling numerical computations

involving arrays and matrices, which are essential in solving

equilibrium equations. The linalg.solve() function is

particularly advantageous as it is optimized for solving linear

systems of the form 𝐴𝑋 = 𝑏 using LU decomposition,

making it more efficient and accurate than writing custom

solvers or using basic Python data structures. Compared to

alternatives like manually implementing Gaussian elimination

or using general-purpose libraries like math, NumPy offers

faster performance, better error handling, and compatibility

with large-scale scientific computations. This makes it highly

suitable for educational and practical applications in

engineering analysis.

def Eqli_Eqn_solve(θ_un,W,θ_w):

 '''

 This function evaluates the unknown forces in

equilibrium

 Inputs: θ_un-angles for unknown forces

 W-known force magnitude

 θ_w-angles of known weight

 Outputs: Array of unknown forces

 '''

 #converting forces and angles in array

 W=array(W)

 θ_un=array(θ_un)

 θ_w=array(θ_w)

 # converting unknown force angles in radians

 θ_un=radians(θ_un)

 # converting known force angles in radians

 θ_w=radians(θ_w)

 # Array creation (Constructing the coefficient

matrix A)

 A=empty((len(θ_un),len(θ_un)))

 A[0,:]=cos(θ_un[:])

 A[-1,:]=sin(θ_un[:])

 # RHS vector (Constructing the right-hand side

vector b (net known forces))

 b=empty(len(θ_un))

 b[:]=array([-sum(W[:]*cos(θ_w[:])),-

sum(W[:]*sin(θ_w[:]))])

 # Solving the linear system A·x = b to find

unknown forces

 return linalg.solve(A,b)

Now, let us apply the above function on some numerical

problems to obtain the unknown forces.

4. IMPLEMENTATION OF PYTHON FUNCTION

Example 1: A 150 N weight is suspended by two cables (as

shown below) attached to a rigid support, forming angles of

45° and 60° with the horizontal. Assuming the system is in

static equilibrium, determine the tensions 𝑇1 and 𝑇2 in the two

cables by resolving forces in both the horizontal and vertical

directions [37] as shown in Figure 2.

(a) Force developed in wires

(b) Free body diagram (FBD)

Figure 2. Static equilibrium of a suspended mass supported

by two cables at different angles

Solution:

Main Program

Input Data

List of unknown force angles (in deg)

θ_un=[60,135]

List of known weights (in kN)

W=[150]

List of known weights angles (in deg)

θ_w=[270]

Calling function to evaluate tensions

T1,T2=Eqli_Eqn_solve(θ_un,W,θ_w)

print(f"T1[{θ_un[0]}]={round(T1,3)} kN;

T2[{θ_un[1]}]={round(T2,3)} kN")

Output

T1[60]=109.808 kN; T2[135]=77.646 kN

The computed values are 𝑇1 = 109.808 kN at an angle of

60° and 𝑇2 = 77.646 kN at an angle of 135°. These results

indicate that the left cable (corresponding to 𝑇1) bears a higher

load due to its steeper angle, thereby providing more vertical

2197

force to counteract the 150 N weight. The right cable

(corresponding to 𝑇2) carries a comparatively lower force

since its inclination distributes more of the force horizontally

rather than vertically. This solution confirms the balance of

forces in both axes, ensuring the system remains in

equilibrium.

Example 2: A 400 N sphere is resting in equilibrium

between two smooth inclined surfaces (as shown below),

which form angles of 45° and 60° with the horizontal. The

sphere experience’s normal reaction forces 𝑅1 and 𝑅2 from

the inclined surfaces. Assuming the system is in static

equilibrium, determine the magnitudes of the reaction forces

𝑅1 and 𝑅2 by resolving forces in both the horizontal and

vertical directions [37] (see Figure 3).

(a) Sphere on wedge

(b) FBD

Figure 3. Equilibrium of a sphere resting between two

inclined surfaces

Solution:

Main Program

Input Data

List of unknown force angles (in deg)

θ_un=[270-60,270+45]

List of known weights (in kN)

W=[400]

List of known weights angles (in deg)

θ_w=[90]

Calling function to evaluate reactions

T1,T2=Eqli_Eqn_solve(θ_un,W,θ_w)

print(f"T1[{θ_un[0]}]={round(T1,3)} kN;

T2[{θ_un[1]}]={round(T2,3)} kN")

Output

R1[210]=292.82 kN; R2[315]=358.63 kN

The computed values, 𝑅1 = 292.82 kN and 𝑅2 = 358.63

kN, indicate that the reaction force on the right surface (𝑅2) is

greater, implying that this surface provides more resistance in

counteracting the vertical force. The sum of these reaction

forces ensures equilibrium by balancing both the vertical and

horizontal force components acting on the sphere. The

directional angles correspond to the orientation of the inclined

surfaces, ensuring the net force in the system remains zero.

These results confirm the correct application of equilibrium

conditions, reinforcing the balance of forces acting on the

sphere.

Example 3: A sphere at point A is subjected to three known

forces: a 7 kN force acting at a 45° angle, a 5 kN horizontal

force, and a 10 kN vertical downward force. Additionally, the

sphere is in contact with bar (𝐴𝐵) at a 30° angle, which exerts

a reaction force 𝑆. The system is in static equilibrium, with a

reaction force 𝑅 acting at the contact point. Determine the

magnitudes of the reaction forces 𝑆 and 𝑅 by resolving the

forces into horizontal and vertical components. Verify that the

sum of forces in both directions is zero, ensuring the

equilibrium condition is satisfied [5] as shown in Figure 4.

(a) Sphere on ground and tied by bar CA

(b) FBD

Figure 4. Force analysis of a sphere resting on the ground

with an inclined support at point B

Solution:

Main Program

Input Data

List of unknown force angles (in deg)

θ_un=[30,90]

List of known weights (in kN)

W=[5,-7,10]

List of known weights angles (in deg)

θ_w=[0,45,270]

Calling function to evaluate reaction and tension

S,R=Eqli_Eqn_solve(θ_un,W,θ_w)

print(f"S[{θ_un[0]}]={round(S,3)} kN;

R[{θ_un[1]}]={round(R,3)} kN")

Output

S[30]=-0.058 kN; R[90]=14.979 kN

The computed values, 𝑆 = −0.058 kN and 𝑅 = 14.979

kN, indicate that the support reaction along the inclined plane

is nearly negligible, implying that the applied forces are

primarily balanced by the vertical reaction force 𝑅 . The

negative value of 𝑆 suggests that the assumed direction might

2198

be opposite to the actual reaction force or that its contribution

is minimal. The significant value of 𝑅 confirms that most of

the equilibrium condition is maintained by the vertical reaction

force, effectively counteracting the downward 10 kN force

while also accounting for the vertical components of other

applied forces.

Example 4: A pulley is mounted at point A and is supported

by two bars, AB and AC, which are attached to a fixed vertical

wall. A cable is hinged at point D and passes over the pulley,

supporting a 20 kN load at point G. The angles between the

members and the horizontal or vertical directions are given as

30°, 60°, and 30°. Determine the forces 𝐹1 and 𝐹2 in the

supporting members by resolving forces along the x and y

directions [5] (see Figure 5).

(a) Arrangement of rope, pully, bar, and weight

(b) FBD

Figure 5. Structure and its free-body diagram showing

applied forces and corresponding force components at point

A

Solution:

As the pully is frictionless so the tension on the chord AD

will be same as the external weight, i.e., 20 kN.

Main Program

Input Data

List of unknown force angles (in deg)

θ_un=[90+60,60]

List of known weights (in kN)

W=[20,20]

List of known weights angles (in deg)

θ_w=[210,270]

Calling function to evaluate tensions

F1,F2=Eqli_Eqn_solve(θ_un,W,θ_w)

print(f"F1[{θ_un[0]}]={round(F1,3)} kN;

F2[{θ_un[1]}]={round(F2,3)} kN")

Output

F1[150]=0.0 kN; F2[60]=34.641 kN

The calculated results indicate that force 𝐹1 along the 150°

direction is zero, meaning that there is no force required in this

direction to maintain equilibrium. This is due to the geometric

symmetry of the force system about the vertical axis.

However, the force 𝐹2 , acting at 60°, is determined to be

34.641 kN, which balances the applied loads and maintains

static equilibrium. This suggests that the system primarily

relies on the force in the 60° direction to support the given

loads while no force contribution is needed in the 150°

direction.

Note that in all the examples the forces going away from

node are considered. If the forces come to the node, then one

can evaluate its angle when it is the opposite side and

correspondingly write the angle. Table 1 presents the

comparison of the results obtained from Python programming

and the one mentioned in the literature for all the examples.

The Python results exactly matches with the results found in

the literature.

Table 1. Comparison of obtained results with the theory

Example Theoretical [37] From Python Code

1
T1[60]=109.8 kN

T2[135]=77.6 kN

T1[60]=109.808 kN

T2[135]=77.646 kN

2
R1[210]=292.8 kN

R2[315]=358.6 kN

R1[210]=292.82 kN

R2[315]=358.63 kN

3
S[30]=-0.058 kN

R[90]=14.98 kN

S[30]=-0.058 kN

R[90]=14.979 kN

4
F1[150]=0.0 kN

F2[60]=34.64 kN

F1[150]=0.0 kN

F2[60]=34.641 kN

Across all examples, it has been observed that the steeper

force directions (closer to vertical) bear higher load

magnitudes due to their superior capacity to counteract the

gravitational forces. Conversely, shallower angles result in

lower vertical components, thus smaller tensions or reactions.

In symmetric setups, one force can become redundant. These

outcomes reinforce classical principles of force resolution and

equilibrium, validating the Python-based computational

model. Unexpected results, like negative values, often indicate

misassumed directions and highlight the importance of the

vector interpretations in statics.

While the Python implementation using

numpy.linalg.solve() ensures precise and efficient solutions

for systems in static equilibrium, some limitations remain. The

method assumes ideal conditions such as exact input angles

and perfectly known force magnitudes. In real-world

applications, measurement errors, incorrect angle estimation,

and modeling simplifications (e.g., neglecting friction or

assuming point loads) can affect the accuracy of the results.

Additionally, if the input angles are not linearly independent

(e.g., collinear forces), the system matrix may become singular

or ill-conditioned, which would lead to numerical instability

or failure in computation.

5. CONCLUSIONS

In this exploration of solving static equilibrium using

Python programming, one can venture into the realm where

theory and practice converge. Static equilibrium, a cornerstone

of physics and engineering, has been dissected and understood

through the lens of Python's computational prowess. Through

this journey, the essential principles of static equilibrium,

discovering how objects and structures remain at rest under the

influence of various forces are unraveled. Python, with its

libraries and capabilities, has empowered us to go beyond

theory and step into practical problem-solving. A function has

been developed to model the system in equilibrium and it has

2199

been tested on four standard problems. The result of the

program exactly matches the results in the literature [37].

Hence, it has been recognized that Python programming

provides a bridge between the abstract concepts of equilibrium

and the concrete challenges of the physical world. Armed with

this knowledge and practical skill set, one can be better

equipped to solve static equilibrium problems with confidence

and precision, enriching the understanding of the forces that

maintain our world in balance.

While the current study focuses on solving static

equilibrium problems using Python, several directions can be

explored to enhance and extend this work. One potential

improvement is integrating symbolic computation using

libraries such as SymPy to derive analytical solutions

alongside numerical results. Additionally, incorporating

graphical visualization tools like Matplotlib and Plotly can

help in better interpreting force diagrams and equilibrium

conditions. Further, expanding the program's functionality to

analyze dynamic equilibrium problems and structural analysis

in engineering applications can provide a more comprehensive

tool for students and researchers. It is also acknowledged that

the present execution assumes a two-dimensional system with

exactly two unknowns; extending the code to support three-

dimensional force systems and multiple unknowns is a

valuable direction for future development to enhance its

applicability to real-world engineering problems. Finally,

developing an interactive Python-based application or web

interface for solving equilibrium problems in real time could

make this tool more accessible and user-friendly.

REFERENCES

[1] Vasudevan, A., Aanisha, A.C., Mohammad, S.I.,

Manoharan, R., Raja, N., Oqilat, O., Alshurideh, M.T.

(2025). Divided square divisor cordial and Fibonacci

prime labeling of theta graphs in Python. Applied

Mathematics and Information Sciences, 19(1): 149-159.

https://doi.org/10.18576/amis/190113

[2] Mittelstedt, C. (2023). Engineering Mechanics 2:

Strength of Materials. Springer.

https://doi.org/10.1007/978-3-662-66590-9

[3] Meriam, J.L., Kraige, L.G. (2006). Engineering

Mechanics. John Wiley & Sons, Inc.

[4] Carrera, E., Giunta, G., Petrolo, M. (2011). Beam

Structures: Classical and Advanced Theories. John

Wiley & Sons. https://doi.org/10.1002/9781119978565

[5] Lavarenne, J., Mbengue, A. (2025). SARRA-Py: A

Python-based geospatial simulation framework for

agroclimatic modeling. SoftwareX, 30: 102145.

https://doi.org/10.1016/j.softx.2025.102145

[6] Ullman, D.G. (2002). Toward the ideal mechanical

engineering design support system. Research in

Engineering Design, 13: 55-64.

https://doi.org/10.1007/s00163-001-0007-4

[7] Stein, E. (2014). History of the finite element method –

mathematics meets mechanics – Part I: Engineering

developments. In the History of Theoretical, Material

and Computational Mechanics - Mathematics Meets

Mechanics and Engineering. Lecture Notes in Applied

Mathematics and Mechanics, Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-39905-

3_22

[8] Alipour, P. (2024). The dual reciprocity boundary

element method for one-dimensional nonlinear parabolic

partial differential equations. Journal of Mathematical

Sciences, 280: 131-145. https://doi.org/10.1007/s10958-

023-06642-4

[9] Prajapati, D.K., Prakash, C., Saxena, K., Gupta, M.,

Mehta, J.S. (2014). Prediction of contact response using

boundary element method (BEM) for different surface

topography. International Journal on Interactive Design

and Manufacturing, 18: 2725-2732.

https://doi.org/10.1007/s12008-023-01290-z

[10] Qin, X., Shen, Y., Chen, W., Yang, J., Peng, L.X. (2021).

Bending and free vibration analyses of circular stiffened

plates using the FSDT mesh-free method. International

Journal of Mechanical Sciences, 202-203: 106498.

https://doi.org/10.1016/j.ijmecsci.2021.106498

[11] Hoffer, J.G., Geiger, B.C., Ofner, P., Kern, R. (2021).

Mesh-free surrogate models for structural mechanic

FEM simulation: A comparative study of approaches.

Applied Sciences, 11(20): 9411.

https://doi.org/10.3390/app11209411

[12] Thangavel, K., Palanisamy, N., Muthusamy, S., Mishra,

O.P., Sundararajan, S.C.M., Panchal, H., Loganathan,

A.K., Ramamoorthi, P. (2023). A novel method for

image captioning using multimodal feature fusion

employing mask RNN and LSTM models. Soft

Computing, 37: 14205-14218.

https://doi.org/10.1007/s00500-023-08448-7

[13] Long, Y.F., Yu, W.S., Pipes, R.B., Forghani, A.,

Poursartip, A., Gordnian, K. (2022). Simulation of

composites curing using mechanics of structure genome

based shell model. Composites Part A: Applied Science

and Manufacturing, 154: 106766.

https://doi.org/10.1016/j.compositesa.2021.106766

[14] Shin, H.V., Porst, C.F., Vouga, E., Ochsendorf, J.,

Durand, F. (2016). Reconciling elastic and equilibrium

methods: For static analysis. ACM Transactions on

Graphics, 35(2): 1-16. https://doi.org/10.1145/2835173

[15] Mourad, L., Bleyer, J., Mesnil, R., Nseir, J., Sab, K.,

Raphael, W. (2021). Topology optimization of load-

bearing capacity. Structural and Multidisciplinary

Optimization, 64: 1376-1383.

https://doi.org/10.1007/s00158-021-02923-1

[16] Tschuchnigg, F., Schweiger, H.F., Sloan, S.W., Lyamin,

A.V., Raissakis, I. (2015). Comparison of finite-element

limit analysis and strength reduction techniques.

Géotechnique, 65(4): 249-257.

https://doi.org/10.1680/geot.14.P.022

[17] Zhou, Y., Zhan, H., Zhang, W., Zhu, J., Bai, J., Wang,

Q., Gu, Y.T. (2020). A new data-driven topology

optimization framework for structural optimization.

Computers & Structures, 239: 106310.

https://doi.org/10.1016/j.compstruc.2020.106310

[18] Varsha, M., Yashashree, S., Ramdas, D.K., Alex, S.A.

(2019). A review of existing approaches to increase the

computational speed of the python. International Journal

of Research in Engineering, Science and Management,

2(4): 594-598.

[19] Shein, E. (2015). Python for beginners. Communications

of the ACM, 58(3): 19-21.

https://doi.org/10.1145/2716560

[20] Moruzzi, G. (2020). Python basics and the interactive

mode. In Essential Python for the Physicist, Springer,

Cham. pp. 1-39. https://doi.org/10.1007/978-3-030-

45027-4_1

2200

[21] Srinath, K.R. (2017). Python-The fastest growing

programming language. International Research Journal

of Engineering and Technology, 4(12): 354-357.

[22] Pawar, P.S., Mishra, D.R., Dumka, P., Pradesh, M.

(2022). Obtaining exact solutions of visco-

incompressible parallel flows using python. International

Journal of Engineering Applied Sciences and

Technology, 6(11): 213-217.

[23] Bäcker, A. (2007). Computational physics education

with python. Computing in Science & Engineering, 9(3):

30-33. https://doi.org/10.1109/MCSE.2007.48

[24] Rocklin, M., Terrel, A.R. (2012). Symbolic statistics

with SymPy. Computing in Science & Engineering,

14(3): 88-93. https://doi.org/10.1109/MCSE.2012.56

[25] Dumka, P., Chauhan, R., Singh, A., Singh, G., Mishra,

D. (2022). Implementation of Buckingham’s Pi theorem

using Python. Advances in Engineering Software, 173:

103232.

https://doi.org/10.1016/j.advengsoft.2022.103232

[26] Kanagachidambaresan, G.R., Manohar Vinoothna, G.

(2021). Visualizations. In Programming with

TensorFlow. EAI/Springer Innovations in

Communication and Computing, Springer, Cham.

https://doi.org/10.1007/978-3-030-57077-4_3

[27] Bisong, E. (2019). Matplotlib and Seaborn. Building

Machine Learning and Deep Learning Models on Google

Cloud Platform. Apress, Berkeley, CA, pp. 151-165.

https://doi.org/10.1007/978-1-4842-4470-8_12

[28] Porcu, V. (2018). Matplotlib. Python for Data Mining

Quick Syntax Reference, Apress, Berkeley, CA, pp. 201-

234. https://doi.org/10.1007/978-1-4842-4113-4_10

[29] Ranjani, J., Sheela, A., Pandi Meena, K. (2019).

Combination of NumPy, SciPy and Matplotlib/Pylab-A

good alternative methodology to MATLAB-A

Comparative analysis. In 2019 1st International

Conference on Innovations in Information and

Communication Technology (ICIICT), Chennai, India,

pp. 1-5. https://doi.org/10.1109/ICIICT1.2019.8741475

[30] Gajula, K., Sharma, V., Sharma, B., Mishra, D.R.,

Dumka, P. (2022). Modelling of energy in transit using

python. International Journal of Innovative Science and

Research Technology, 7(8): 1152-1156.

[31] Bauckhage, C. (2020). NumPy/SciPy recipes for data

science: Subset-constrained vector quantization via mean

discrepancy minimization.

[32] Johansson, R. (2018). Numerical python: Scientific

computing and data science applications with NumPy,

SciPy and matplotlib, Second edition. Apress, Berkeley,

CA. https://doi.org/10.1007/978-1-4842-4246-9

[33] Fuhrer, C., Verdier, O., Solem, J.E., Führer, C., Verdier,

O., Solem, J.E. (2021). Scientific computing with

Python. In High-Performance Scientific Computing with

NumPy, SciPy, and Pandas, Packt Publishing Ltd.

[34] Dumka, P., Chauhan, R., Mishra, D.R., Shaik, F.,

Govindaraj, P., Kumar, A., Sonawane, C., Velkin, V.I.

(2024). Development and implementation of a Python

functions for automated chemical reaction balancing.

Indonesian Journal of Electrical Engineering and

Computer Science, 34(3): 1557-1565.

https://doi.org/10.11591/ijeecs.v34.i3.pp1557-1565

[35] Randles, B.M., Pasquetto, I.V., Golshan, M.S., Borgman,

C.L. (2017). Using the Jupyter notebook as a tool for

open science: An empirical study. In 2017 ACM/IEEE

Joint Conference on Digital Libraries (JCDL), Toronto,

ON, Canada, pp. 1-2.

https://doi.org/10.1109/JCDL.2017.7991618

[36] Kyriakou, F., Maclean, C., Dempster, W., Nash, D.

(2020). Efficiently simulating an endograft deployment:

A methodology for detailed CFD analyses. Annals of

Biomedical Engineering, 48: 2449-2465.

https://doi.org/10.1007/s10439-020-02519-8

[37] Bhavikatti, S.S., Rajashekarappa, K.G. (1994).

Engineering Mechanics. New Age International.

2201

