
Modelling Bodies in Static Equilibrium Using Python Programming: Bridging Theory and 

Practice 

Choon Kit Chan1 , Pankaj Dumka2* , Kuldip Dodiya3 , Dhananjay R. Mishra2 , Rishika Chauhan4 , 

Chandrakant Sonawane5,6 , ArunKumar Bongale5 , Subhav Singh7,8 , Deekshant Varshney9,10  

1 Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia 
2 Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Raghogarh 473226, India 
3 Mechanical Engineering Department, Vishwakarma Government Engineering College, Chandkheda 382424, India 
4 Department of Electronics and Communication Engineering, Jaypee University of Engineering and Technology,  

Raghogarh 473226, India 
5 Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune 412115, India 
6 Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International Deemed University, Pune 412115, India 
7 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India 
8 Division of Research and Development, Lovely Professional University, Phagwara 144411, India 
9 Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, India 
10 Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India 

Corresponding Author Email: p.dumka.ipec@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120635 ABSTRACT 

Received: 14 February 2025 

Revised: 7 April 2025 

Accepted: 15 April 2025 

Available online: 30 June 2025 

This study explores the static equilibrium, which is a foundational concept in physics 

and engineering, using Python programming. Python’s computational capabilities 

bridge theoretical concepts with the practical problem solving by enabling the analysis 

of forces and stability in mechanical systems. The methodology involves using 

computation and numerical analysis with NumPy to solve equilibrium equations. 

Visualization tools such as Matplotlib help illustrate force interactions and support 

conditions. Real-world examples, including force balance in beams and rigid bodies, 

are used to demonstrate applications. This work provides students and engineers with 

hands-on experience in analyzing static systems, promoting deeper understanding and 

enhanced problem-solving skills through computational thinking. 
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1. INTRODUCTION

Static equilibrium is a fundamental concept in physics and 

engineering, governing the stability and balance of objects and 

structures at rest [1, 2]. Solving static equilibrium problems is 

essential for engineers, physicists, and others analyzing the 

forces in real-world structures [3]. This article aims to bridge 

theoretical knowledge and practical problem-solving by 

utilizing the Python programming to simulate and analyze 

static equilibrium problems. 

Classical analytical methods such as free-body diagrams 

and equilibrium equations have long been used to evaluate the 

force and moment balance in structures [4, 5]. Researchers 

have refined these methods for application in more complex 

structural systems, with early studies focusing on graphical 

and analytical techniques for solving equilibrium problems 

[6]. 

To address the limitations of classical methods, numerical 

techniques such as the finite element methods (FEM) have 

become instrumental in real-world static equilibrium analysis. 

A detailed review of FEM approaches for structural stability 

has been presented by Stein [7]. More recent advancements in 

numerical techniques, such as the boundary element method 

(BEM) [8, 9] and mesh-free methods [10, 11], have further 

refined the accuracy and efficiency of equilibrium modeling. 

Experimental methods have also contributed to the 

understanding of static equilibrium. Laboratory-based studies 

using strain gauges and digital image correlation (DIC) have 

provided valuable validation for theoretical models [12-14]. 

These methods complement numerical simulations and 

enhance confidence in structural analysis. 

In structural engineering, stability analysis has become 

increasingly important in recent years, particularly in the 

design and optimization of load-bearing systems [15]. 

Methods like the limit analysis techniques [16] and structural 

optimization frameworks [17] has enabled the development of 

more efficient and resilient structures. Additionally, 

advancements in computational mechanics have enabled 

researchers to simulate complex equilibrium problems, 

leading to improved structural safety and reliability. 

Python, which is renowned for its simplicity, versatility, and 

rich ecosystem of libraries/modules [18], has emerged as a 

valuable tool for solving complex problems in the physics and 

engineering [19, 20]. For students, engineers, and researchers, 

the Python programming provides a flexible platform to model 

static equilibrium systems efficiently [21].  
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This article explores the core principles of static 

equilibrium, the mathematical foundations of force analysis, 

and their implementation using Python. By integrating 

numerical computation with visualization tools, the study 

demonstrates how Python simplifies the analysis of various 

equilibrium problems—from simple structures to complex 

systems—thereby equipping users with both conceptual 

clarity and practical skills. As one goes deeper into this 

exploration, it will become clear that how Python enables one 

to model and simulate equilibrium situations. Therefore, 

Python programming serves as a versatile and powerful ally in 

the quest to unravel the secrets of static equilibrium [22, 23].  

One of Python’s key strengths is its support for both 

symbolic and numerical computations. Libraries such as 

SymPy [24, 25] allows the users to formulate equilibrium 

equations symbolically before substituting numerical values. 

This flexibility facilitates parametric studies and system 

optimization, streamlining the analysis process. 

Furthermore, Python's visualization tools significantly 

enhance the comprehension of static equilibrium concepts [26-

29]. Through libraries like Matplotlib and Plotly, force 

diagrams, moment distributions, and equilibrium plots can be 

generated dynamically. These visual aids provide an intuitive 

way to understand force interactions, stress distributions, and 

support reactions in mechanical structures by bridging the gap 

between theoretical analysis and real-world applications. 

Python’s integration with numerical libraries like NumPy 

[29-32] and SciPy [29, 33, 34] empowers users to automate 

complex equilibrium analyses. These tools enable precise 

stability assessments and are particularly effective for 

analyzing large-scale or non-trivial force systems. 

To facilitate learning and experimentation, the authors have 

used Jupyter notebook [32] with Python 3.7 to develop 

reusable functions and visualization tools for solving 

equilibrium problems. Jupyter Notebook offers an interactive 

computing environment that facilitates documentation, 

visualization, and execution of code in a single platform [35]. 

This makes it an ideal tool for demonstrating equilibrium 

problems, allowing users to modify parameters dynamically 

and observe their effects in real time [36].  

 

 

2. THEORETICAL BACKGROUND 

 

 
 

Figure 1. A typical system in static equilibrium 

 

In most of the engineering problems which are related to 

systems in static equilibrium normally two forces are unknown 

as shown in Figure 1. The forces 𝐹1  and 𝐹2  are unknown 

whereas 𝑊1 to 𝑊3 are known forces. Let say that the unknown 

forces are making an angle of 𝜃1 and 𝜃2 whereas, the 𝑊1 to 

𝑊3 forces are making angles of 𝜃𝑤1 , 𝜃𝑤2 , and 𝜃𝑤3  form the 

positive 𝑥-axis, respectively. As the body is in equilibrium 

under all the forces so the net force along x and its 

perpendicular direction should add up to zero. On resolving 

the forces along 𝑥 and its perpendicular direction following 

equations are obtained [37]: 

 

𝐹1𝑐𝑜𝑠(𝜃1) + 𝐹2𝑐𝑜𝑠(𝜃2) + 𝑊1𝑐𝑜𝑠(𝜃𝑤1) +
𝑊2𝑐𝑜𝑠(𝜃𝑤2) + 𝑊3𝑐𝑜𝑠(𝜃𝑤3) = 0  

(1) 

 

𝐹1𝑠𝑖𝑛(𝜃1) + 𝐹2𝑠𝑖𝑛(𝜃2) + 𝑊1𝑠𝑖𝑛(𝜃𝑤1) +
𝑊2𝑠𝑖𝑛(𝜃𝑤2) + 𝑊3𝑠𝑖𝑛(𝜃𝑤3) = 0  

(2) 

 

Now rearranging Eqs. (1) and (2) will result in Eqs. (3) and 

(4) as shown below: 

 

𝐹1𝑐𝑜𝑠(𝜃1) + 𝐹2𝑐𝑜𝑠(𝜃2) = − ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑐𝑜𝑠(𝜃𝑤𝑖)  (3) 

 

𝐹1𝑠𝑖𝑛(𝜃1) + 𝐹2𝑠𝑖𝑛(𝜃2) = − ∑ 𝑊𝑖
𝑁
𝑖=1 𝑠𝑖𝑛(𝜃𝑤𝑖)  (4) 

 

where, N is the number of known forces. Now in matrix 

notation the above equations can be written as: 

 

[
𝑐𝑜𝑠(𝜃1) 𝑐𝑜𝑠(𝜃2)
𝑠𝑖𝑛(𝜃1) 𝑠𝑖𝑛(𝜃1)

] [
𝐹1

𝐹2
] = [

− ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑐𝑜𝑠(𝜃𝑤𝑖)

− ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑠𝑖𝑛(𝜃𝑤𝑖)

]  (5) 

 

Now this is in a simple matrix form AX=b, which can be 

easily solved using any of the existing functions present in 

linear algebra function of NumPy. Here, A, X, and b are as 

follows: 

 

𝐴 = [
𝑐𝑜𝑠(𝜃1) 𝑐𝑜𝑠(𝜃2)
𝑠𝑖𝑛(𝜃1) 𝑠𝑖𝑛(𝜃1)

] 

𝑋 = [
𝐹1

𝐹2
]  

𝑏 = [
− ∑ 𝑊𝑖

𝑖=𝑁
𝑖=1 𝑐𝑜𝑠(𝜃𝑤𝑖)

− ∑ 𝑊𝑖
𝑖=𝑁
𝑖=1 𝑠𝑖𝑛(𝜃𝑤𝑖)

]  

 

While classical analytical methods, such as resolving forces 

and solving linear equations manually provide a clear insight 

into the static equilibrium, they often become cumbersome and 

error-prone when dealing with complex force systems or 

multiple unknowns. Additionally, graphical interpretations 

and hand calculations can be time-consuming and less flexible 

for parametric studies or iterative design processes. Python 

programming addresses these challenges by offering 

numerical solvers and visualization tools that automate and 

streamline the analysis. This not only enhances computational 

efficiency but also reduces human error and allows the 

engineers and students to focus more on interpretation and 

design rather than tedious calculations. 

 

 

3. PYTHON FUNCTION FOR STATIC EQUILIBRIUM 

 

To facilitate the solution procedure the following function 

has been developed: 

First the module numpy has to be imported to work with 

arrays (from numpy import *). In line no. 1, the function is 

defined with the name Eqli_Eqn_solve which accepts three 

arguments viz.  

i. List of angles at which the unknown forces are acting: 

θ_un 

ii. List of known forces: W 
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iii. List of angles at which known forces are acting: θ_w 

In lines 10 to 12 the list of θ_un, W, and θ_w are converted 

into numpy arrays. As the arguments of trigonometric 

functions should be in radians, so θ_un and θ_w are converted 

into radians using function radians()in line 15 and 18, 

respectively. Then a two-dimensional array (A matrix) is 

created in line 20 and in lines 21 and 22 the rows are assigned 

with cosines and sines of respective angles. In line 25, the 

right-hand side vector b is created and in line 27 and 28 the 

elements are assigned the values as shown in Eq. (5). Finally, 

linalg.solve() function has been used to solve 𝐴𝑋 = 𝑏 which 

will return the values of forces 𝐹1 and 𝐹2.  

The choice of the NumPy library is deliberate due to its 

efficiency and reliability in handling numerical computations 

involving arrays and matrices, which are essential in solving 

equilibrium equations. The linalg.solve() function is 

particularly advantageous as it is optimized for solving linear 

systems of the form 𝐴𝑋 =  𝑏  using LU decomposition, 

making it more efficient and accurate than writing custom 

solvers or using basic Python data structures. Compared to 

alternatives like manually implementing Gaussian elimination 

or using general-purpose libraries like math, NumPy offers 

faster performance, better error handling, and compatibility 

with large-scale scientific computations. This makes it highly 

suitable for educational and practical applications in 

engineering analysis. 

 
def Eqli_Eqn_solve(θ_un,W,θ_w): 

    ''' 

    This function evaluates the unknown forces in 

equilibrium 

    Inputs: θ_un-angles for unknown forces 

            W-known force magnitude 

            θ_w-angles of known weight 

    Outputs: Array of unknown forces 

    ''' 

    #converting forces and angles in array 

    W=array(W) 

    θ_un=array(θ_un) 

    θ_w=array(θ_w) 

     

    # converting unknown force angles in radians 

    θ_un=radians(θ_un) 

 

    # converting known force angles in radians 

    θ_w=radians(θ_w) 

    # Array creation (Constructing the coefficient 

matrix A) 

    A=empty((len(θ_un),len(θ_un))) 

    A[0,:]=cos(θ_un[:]) 

    A[-1,:]=sin(θ_un[:]) 

 

    # RHS vector (Constructing the right-hand side 

vector b (net known forces)) 

    b=empty(len(θ_un)) 

 

    b[:]=array([-sum(W[:]*cos(θ_w[:])),-

sum(W[:]*sin(θ_w[:]))]) 

 

    # Solving the linear system A·x = b to find 

unknown forces 

    return linalg.solve(A,b) 

 

Now, let us apply the above function on some numerical 

problems to obtain the unknown forces. 

 

 

4. IMPLEMENTATION OF PYTHON FUNCTION 

 

Example 1: A 150 N weight is suspended by two cables (as 

shown below) attached to a rigid support, forming angles of 

45° and 60° with the horizontal. Assuming the system is in 

static equilibrium, determine the tensions 𝑇1 and 𝑇2 in the two 

cables by resolving forces in both the horizontal and vertical 

directions [37] as shown in Figure 2. 

 

 
(a) Force developed in wires 

 
(b) Free body diagram (FBD) 

 

Figure 2. Static equilibrium of a suspended mass supported 

by two cables at different angles 

 

Solution: 

 
Main Program 

# Input Data 

# List of unknown force angles (in deg) 

θ_un=[60,135] 

# List of known weights (in kN) 

W=[150] 

# List of known weights angles (in deg) 

θ_w=[270] 

# Calling function to evaluate tensions 

T1,T2=Eqli_Eqn_solve(θ_un,W,θ_w) 

print(f"T1[{θ_un[0]}]={round(T1,3)} kN; 

T2[{θ_un[1]}]={round(T2,3)} kN") 

Output 

T1[60]=109.808 kN; T2[135]=77.646 kN 

 

The computed values are 𝑇1  =  109.808 kN at an angle of 

60° and 𝑇2  =  77.646 kN at an angle of 135°. These results 

indicate that the left cable (corresponding to 𝑇1) bears a higher 

load due to its steeper angle, thereby providing more vertical 
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force to counteract the 150 N weight. The right cable 

(corresponding to 𝑇2 ) carries a comparatively lower force 

since its inclination distributes more of the force horizontally 

rather than vertically. This solution confirms the balance of 

forces in both axes, ensuring the system remains in 

equilibrium.  

Example 2: A 400 N sphere is resting in equilibrium 

between two smooth inclined surfaces (as shown below), 

which form angles of 45° and 60° with the horizontal. The 

sphere experience’s normal reaction forces 𝑅1  and 𝑅2  from 

the inclined surfaces. Assuming the system is in static 

equilibrium, determine the magnitudes of the reaction forces 

𝑅1  and 𝑅2  by resolving forces in both the horizontal and 

vertical directions [37] (see Figure 3). 

 

 
(a) Sphere on wedge 

 
(b) FBD 

 

Figure 3. Equilibrium of a sphere resting between two 

inclined surfaces 

 

Solution: 

 
Main Program 

# Input Data 

# List of unknown force angles (in deg) 

θ_un=[270-60,270+45] 

# List of known weights (in kN) 

W=[400] 

# List of known weights angles (in deg) 

θ_w=[90] 

# Calling function to evaluate reactions  

T1,T2=Eqli_Eqn_solve(θ_un,W,θ_w) 

print(f"T1[{θ_un[0]}]={round(T1,3)} kN; 

T2[{θ_un[1]}]={round(T2,3)} kN") 

Output 

R1[210]=292.82 kN; R2[315]=358.63 kN 

 

The computed values, 𝑅1  =  292.82 kN and 𝑅2  = 358.63 

kN, indicate that the reaction force on the right surface (𝑅2) is 

greater, implying that this surface provides more resistance in 

counteracting the vertical force. The sum of these reaction 

forces ensures equilibrium by balancing both the vertical and 

horizontal force components acting on the sphere. The 

directional angles correspond to the orientation of the inclined 

surfaces, ensuring the net force in the system remains zero. 

These results confirm the correct application of equilibrium 

conditions, reinforcing the balance of forces acting on the 

sphere.  

Example 3: A sphere at point A is subjected to three known 

forces: a 7 kN force acting at a 45° angle, a 5 kN horizontal 

force, and a 10 kN vertical downward force. Additionally, the 

sphere is in contact with bar (𝐴𝐵) at a 30° angle, which exerts 

a reaction force 𝑆. The system is in static equilibrium, with a 

reaction force 𝑅  acting at the contact point. Determine the 

magnitudes of the reaction forces 𝑆  and 𝑅  by resolving the 

forces into horizontal and vertical components. Verify that the 

sum of forces in both directions is zero, ensuring the 

equilibrium condition is satisfied [5] as shown in Figure 4. 

 

 
(a) Sphere on ground and tied by bar CA 

 
(b) FBD 

 

Figure 4. Force analysis of a sphere resting on the ground 

with an inclined support at point B 

 

Solution:  

 
Main Program 

# Input Data 

# List of unknown force angles (in deg) 

θ_un=[30,90] 

# List of known weights (in kN) 

W=[5,-7,10] 

# List of known weights angles (in deg) 

θ_w=[0,45,270] 

# Calling function to evaluate reaction and tension 

S,R=Eqli_Eqn_solve(θ_un,W,θ_w) 

print(f"S[{θ_un[0]}]={round(S,3)} kN; 

R[{θ_un[1]}]={round(R,3)} kN") 

Output 

S[30]=-0.058 kN; R[90]=14.979 kN 

 

The computed values, 𝑆 = −0.058  kN and 𝑅 = 14.979 

kN, indicate that the support reaction along the inclined plane 

is nearly negligible, implying that the applied forces are 

primarily balanced by the vertical reaction force 𝑅 . The 

negative value of 𝑆 suggests that the assumed direction might 
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be opposite to the actual reaction force or that its contribution 

is minimal. The significant value of 𝑅 confirms that most of 

the equilibrium condition is maintained by the vertical reaction 

force, effectively counteracting the downward 10 kN force 

while also accounting for the vertical components of other 

applied forces.  

Example 4: A pulley is mounted at point A and is supported 

by two bars, AB and AC, which are attached to a fixed vertical 

wall. A cable is hinged at point D and passes over the pulley, 

supporting a 20 kN load at point G. The angles between the 

members and the horizontal or vertical directions are given as 

30°, 60°, and 30°. Determine the forces 𝐹1  and 𝐹2  in the 

supporting members by resolving forces along the x and y 

directions [5] (see Figure 5). 

 

 
(a) Arrangement of rope, pully, bar, and weight 

 
(b) FBD 

 

Figure 5. Structure and its free-body diagram showing 

applied forces and corresponding force components at point 

A 

 

Solution:  

As the pully is frictionless so the tension on the chord AD 

will be same as the external weight, i.e., 20 kN. 

 
Main Program 

# Input Data 

# List of unknown force angles (in deg) 

θ_un=[90+60,60] 

# List of known weights (in kN) 

W=[20,20] 

# List of known weights angles (in deg) 

θ_w=[210,270] 

# Calling function to evaluate tensions 

F1,F2=Eqli_Eqn_solve(θ_un,W,θ_w) 

print(f"F1[{θ_un[0]}]={round(F1,3)} kN; 

F2[{θ_un[1]}]={round(F2,3)} kN") 

Output 

F1[150]=0.0 kN; F2[60]=34.641 kN 

 

The calculated results indicate that force 𝐹1 along the 150° 

direction is zero, meaning that there is no force required in this 

direction to maintain equilibrium. This is due to the geometric 

symmetry of the force system about the vertical axis. 

However, the force 𝐹2 , acting at 60°, is determined to be 

34.641 kN, which balances the applied loads and maintains 

static equilibrium. This suggests that the system primarily 

relies on the force in the 60° direction to support the given 

loads while no force contribution is needed in the 150° 

direction.  

Note that in all the examples the forces going away from 

node are considered. If the forces come to the node, then one 

can evaluate its angle when it is the opposite side and 

correspondingly write the angle. Table 1 presents the 

comparison of the results obtained from Python programming 

and the one mentioned in the literature for all the examples. 

The Python results exactly matches with the results found in 

the literature. 

 

Table 1. Comparison of obtained results with the theory  

 
Example Theoretical [37] From Python Code 

1 
T1[60]=109.8 kN 

T2[135]=77.6 kN 

T1[60]=109.808 kN 

T2[135]=77.646 kN 

2 
R1[210]=292.8 kN 

R2[315]=358.6 kN 

R1[210]=292.82 kN 

R2[315]=358.63 kN 

3 
S[30]=-0.058 kN 

R[90]=14.98 kN 

S[30]=-0.058 kN 

R[90]=14.979 kN 

4 
F1[150]=0.0 kN 

F2[60]=34.64 kN 

F1[150]=0.0 kN 

F2[60]=34.641 kN 

 

Across all examples, it has been observed that the steeper 

force directions (closer to vertical) bear higher load 

magnitudes due to their superior capacity to counteract the 

gravitational forces. Conversely, shallower angles result in 

lower vertical components, thus smaller tensions or reactions. 

In symmetric setups, one force can become redundant. These 

outcomes reinforce classical principles of force resolution and 

equilibrium, validating the Python-based computational 

model. Unexpected results, like negative values, often indicate 

misassumed directions and highlight the importance of the 

vector interpretations in statics. 

While the Python implementation using 

numpy.linalg.solve() ensures precise and efficient solutions 

for systems in static equilibrium, some limitations remain. The 

method assumes ideal conditions such as exact input angles 

and perfectly known force magnitudes. In real-world 

applications, measurement errors, incorrect angle estimation, 

and modeling simplifications (e.g., neglecting friction or 

assuming point loads) can affect the accuracy of the results. 

Additionally, if the input angles are not linearly independent 

(e.g., collinear forces), the system matrix may become singular 

or ill-conditioned, which would lead to numerical instability 

or failure in computation. 

 

 

5. CONCLUSIONS 

 

In this exploration of solving static equilibrium using 

Python programming, one can venture into the realm where 

theory and practice converge. Static equilibrium, a cornerstone 

of physics and engineering, has been dissected and understood 

through the lens of Python's computational prowess. Through 

this journey, the essential principles of static equilibrium, 

discovering how objects and structures remain at rest under the 

influence of various forces are unraveled. Python, with its 

libraries and capabilities, has empowered us to go beyond 

theory and step into practical problem-solving. A function has 

been developed to model the system in equilibrium and it has 
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been tested on four standard problems. The result of the 

program exactly matches the results in the literature [37]. 

Hence, it has been recognized that Python programming 

provides a bridge between the abstract concepts of equilibrium 

and the concrete challenges of the physical world. Armed with 

this knowledge and practical skill set, one can be better 

equipped to solve static equilibrium problems with confidence 

and precision, enriching the understanding of the forces that 

maintain our world in balance. 

While the current study focuses on solving static 

equilibrium problems using Python, several directions can be 

explored to enhance and extend this work. One potential 

improvement is integrating symbolic computation using 

libraries such as SymPy to derive analytical solutions 

alongside numerical results. Additionally, incorporating 

graphical visualization tools like Matplotlib and Plotly can 

help in better interpreting force diagrams and equilibrium 

conditions. Further, expanding the program's functionality to 

analyze dynamic equilibrium problems and structural analysis 

in engineering applications can provide a more comprehensive 

tool for students and researchers. It is also acknowledged that 

the present execution assumes a two-dimensional system with 

exactly two unknowns; extending the code to support three-

dimensional force systems and multiple unknowns is a 

valuable direction for future development to enhance its 

applicability to real-world engineering problems. Finally, 

developing an interactive Python-based application or web 

interface for solving equilibrium problems in real time could 

make this tool more accessible and user-friendly. 
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