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Agriculture plays a vital role in food production and economic stability, yet plant 

diseases significantly affect crop yield, leading to global losses. Efficient and accurate 

disease detection is crucial for sustainable farming. This study presents a deep learning-

based approach for plant disease detection using a Convolutional Neural Network 

(CNN). The proposed model incorporates batch normalization, the Adam optimizer 

with a power-exponential learning rate, and the ReLU activation function to enhance 

learning efficiency and generalization. A dataset of 70,000 images is utilized for 

training and evaluation. The model successfully classifies plant leaves as healthy or 

diseased and identifies specific diseases with an accuracy of 99.4%. Performance 

metrics such as precision (96.77%) and recall (96%) further validate the robustness of 

the proposed system. Compared to conventional methods, the integration of advanced 

optimization techniques improves convergence speed and classification accuracy, 

making the model highly suitable for real-world agricultural applications. The findings 

demonstrate the potential of AI-driven smart agricultural systems in early disease 

detection, enabling timely interventions and improving overall crop health. 
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1. INTRODUCTION

Plant diseases can significantly impact crop yield and food 

production, leading to reduced agricultural productivity and 

global losses. In severe cases, plant diseases caused by pests 

can hinder plant development at various growth stages, 

affecting harvests. Over the years, numerous methods have 

been proposed for disease identification in plants. However, 

these methods often require specialized expertise, making 

them difficult for non-experts to implement effectively. 

Among various approaches, deep learning-based models have 

demonstrated significant promise in identifying plant diseases 

using leaf images. These models aid in diagnosing diseased 

plants by distinguishing them from healthy ones through 

digital analysis, benefiting small-scale farmers in low-income 

regions. 

Despite their effectiveness, deep learning models face 

challenges such as overfitting, computational complexity, and 

handling large datasets. These issues can be addressed using 

Convolutional Neural Networks (CNNs), which optimize 

computational efficiency by reducing the number of layers. 

The incorporation of data augmentation techniques, such as 

image rotation and resizing, further enhances model 

performance and accuracy. 

This paper proposes a plant disease detection system that 

comprises three key steps: 

• Image Acquisition-Capturing high-quality images

of plant leaves. 

• Feature Extraction–Identifying key features from

the images.

• Detection Using CNN Model-Classifying plant

leaves as healthy or diseased.

A neural network consists of multiple neurons organized in 

a layered structure, where adjacent layers are interconnected 

to enable intelligent learning. This network intelligence allows 

neurons to process user input and generate accurate outputs. In 

this study, a CNN is employed due to its efficiency in handling 

large datasets. The dataset used in this research comprises 

70,000 images, making CNN a suitable choice for processing 

extensive agricultural data. Table 1 summarizes the diseases 

against various plants and datasets for analysis. 

A. Pre-processing layer

Images are imported to the input layer. Before that, certain

pre-processing operations are to be performed, like image 

resizing rotation, etc. CNN requires fewer pre-processing 

operations when it’s compared to other neural network 

models, which makes it more efficient. 

B. Convolutional layer

The convolutional layer is responsible for condensing the

input image by extracting features and producing a feature 

map. Convolutional layers have various parameters like input 

image size, kernel/filter size, depth, and stride. A non-linear 

activation function is required for the breaking of the simple 

linear combination of the input. ReLU activation function is 
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being since it is widely regarded for activation convolutional 

outputs. 
 

ReLU(a)=max(0,a) 
 

Batch normalization comes under the normalization 

technique, which is done between the hidden layers of the 

neural network to increase the learning rates and skip the 

intermediate layers based on the knowledge obtained 

previously. 

C. Pooling layer 

Pooling increases the efficiency of the CNN model by 

preventing overfitting, thus reducing the dimensionality of the 

data thus leading to the reduction of calculations. Max pooling 

and average pooling are the most frequently used in the CNN 

model. 

D. Fully connected classification layer 

It takes the convoluted feature map and returns a column 

vector where each row indicated a class (the estimation of each 

class) In general, input images after pre-processing phase, the 

data flows into convolutional layers (the number of layers 

depends upon the choice of the designer), then to the next layer 

which is pooling layers which is responsible for feature 

extraction, and redundancy is reduced efficiently. 

After that, the obtained features are combined and then 

labeled as a class. At last, the selected features are passed to 

the fully connected layer, and then estimation is provided. 
 

Table 1. Vegetable and fruit leaves with diseases 
 

Plant Disease Number of Images 

Grape 

Black Rot 1913 

Early Blight 1988 

Esca Measles 1816 

Healthy 1987 

Orange 

Citrus Greening 1760 

Bacterial Spot 2016 

Healthy 2008 

Potato 

Late Blight 1888 

Early Blight 1920 

Healthy 1692 

Coffee 
Bacterial Spot 1722 

Healthy 2010 

Cotton  

Black Rot 1838 

Cedar Cotton rust 1728 

Cotton Scab 1939 

Tea 
Healthy 1781 

Powdery Mildew 2022 

Tomato 

Bacterial Spot 1736 

Late Blight 1824 

Early Blight 1774 

Healthy 1642 

Leaf Mold 1907 

Septoria Leaf Spot 1908 

Spider Mites 1826 

Target Spot 1683 

Mosaic Virus 1702 

Leaf Curl 1920 

Sugarcane  

Northern Leaf Blight 1926 

Common Rust 1851 

Cercospora  1822 

Healthy 1745 

Strawberry 
Healthy 1731 

Leaf scorch 1827 
 

 

2. RELATED WORKS 
 

Conventional disease detection systems primarily rely on 

image analysis techniques that require prior domain 

knowledge to describe visual symptoms using parameters such 

as shape, color, and texture. Numerous deep learning-based 

plant disease identification models have been developed to 

overcome these limitations [1]. Among these, CNNs have 

demonstrated superior efficiency due to their ability to 

autonomously learn features from input images [2, 3]. 

However, CNN models typically consist of multiple layers, 

increasing parameter complexity and leading to overfitting 

during training. To mitigate this, transfer learning techniques 

have been deployed, where pre-trained CNN models on large 

datasets are fine-tuned on smaller datasets to enhance 

generalization [4]. 

 

2.1 CNN-based approaches in plant disease detection 

 

CNN-based plant disease detection techniques utilize image 

classification methods, where features are extracted through 

multiple convolutional layers. Binary classification models 

typically categorize leaves into diseased-positive and 

diseased-negative classes, as demonstrated in studies focusing 

on Huanglongbing (HLB) disease classification [5]. Some 

models extend to multi-class classification using a two-stage 

approach: first identifying diseased versus healthy leaves, then 

classifying specific diseases in the second stage [6]. 

Alternatively, a single-phase multi-class classification model 

can differentiate between multiple diseases and healthy cases 

simultaneously [7]. 

Recent advancements have explored EfficientNetV2 [8] and 

U2-Net architectures, which improve classification accuracy 

while reducing computational costs. Additionally, 

segmentation techniques such as k-means clustering and U-

Net are used to remove background data and isolate diseased 

regions before classification [9]. Sparse representation 

techniques further refine classification by analyzing color-

based segmented portions. Ocular-attention deep neural 

networks have been employed to improve interpretability by 

highlighting crucial regions in the feature maps [10]. 
 

2.2 Object detection and optimization techniques 
 

Region-based deep learning models, such as single-shot 

multi-box detectors (SSD) combined with Visual Geometry 

Group (VGG) networks, have been utilized for precise leaf 

disease detection [11]. Other studies incorporate multiple pre-

trained deep learning models for enhanced classification 

accuracy [12]. Transfer learning has been successfully 

implemented to address overfitting, as seen in applications 

using AlexNet for cucumber and tomato disease detection 

[13], ResNet and DenseNet for apple and soybean leaf disease 

classification [14], and CNN-based models for peach leaf 

disease recognition [15]. 
 

2.3 IoT and smart agriculture integration 

 

Low-power embedded systems with machine learning 

capabilities have enabled autonomous pest detection in fruit 

orchards using pheromone-based traps, with integrated energy 

harvesting ensuring continuous operation without farmer 

intervention [16]. An IoT-based deep learning framework, 

APDDCM-SHODL, enhances plant disease detection and 

crop management by employing DenseNet201 for feature 

extraction and a recurrent spiking neural network (RSNN) for 

classification, achieving 98.60% accuracy [17]. Similarly, an 

automated system integrating IoT, blockchain, and deep 

1872



 

learning has improved pest detection in paddy cultivation, 

reaching 98.91% accuracy using VGG19 and ensemble 

classifiers [18]. 

Advanced AI-driven models have enhanced disease 

detection, forecasting, and control in crops such as potatoes by 

integrating image and climate data, achieving near-perfect 

accuracy [19]. CNN-based image recognition combined with 

unmanned aerial vehicles (UAVs) has further improved large-

scale agricultural disease monitoring, highlighting the tradeoff 

between robustness and computational efficiency [20]. Edge 

intelligence and motion-static collaboration techniques, 

leveraging YOLO-FDAC and ant colony optimization, have 

been explored to enhance real-time crop disease detection 

using IoT-integrated image acquisition systems [21]. 

 

2.4 Optimization strategies for deep learning models 

 

Most existing agricultural disease detection models rely on 

CNN architectures optimized using standard Adam or SGD 

optimizers. However, these approaches often suffer from slow 

convergence, unstable training dynamics, and suboptimal 

feature extraction due to inconsistent learning rates and lack of 

adaptive regularization [22]. While batch normalization has 

been utilized to improve feature learning, its synergy with 

learning rate scheduling remains underexplored. To address 

these challenges, this study proposes a novel power-

exponential learning rate scheduler combined with batch 

normalization within the Adam optimizer. This technique 

enhances convergence speed, model stability, and 

generalization capabilities, making the model more robust for 

real-world agricultural disease classification. The proposed 

method facilitates automated pest detection and early disease 

identification in crops, enabling timely interventions to 

prevent yield loss and improve crop health. 

 

2.5 Impact of proposed study in relevant to existing 

methodology 

 

This study addresses several gaps in existing works, 

emphasizing its originality in the following ways: 

• Improved Learning Rate Scheduling: Most 

existing agricultural disease detection models rely on 

CNN-based architectures optimized using standard 

Adam or SGD optimizers, which can suffer from 

slow convergence and unstable training dynamics. 

• The power-exponential learning rate scheduler 

combined with batch normalization in the Adam 

optimizer, leading to faster convergence, improved 

stability, and better generalization. 

• Enhanced Feature Extraction and 

Regularization: While batch normalization has been 

used in some models, its integration with adaptive 

learning rate scheduling has been largely unexplored. 

• The model leverages the combination, enhancing 

feature learning and reducing overfitting, which is a 

persistent challenge in deep learning-based plant 

disease detection. 

• The previous relevant studies work with datasets 

containing a few thousand images. This study stands 

out by utilizing a dataset of 70,000 images, 

demonstrating the scalability and robustness of your 

approach. 

• Existing models often struggle with computational 

complexity and overfitting when dealing with large 

datasets. The proposed approach addresses this with 

augmentation techniques, CNN optimization, and 

efficient feature extraction. 

• Higher Accuracy and Performance Gains: 

Compared to previous models with accuracies 

ranging from 91.7% to 99.9%, the proposed model 

achieves 99.4% accuracy, outperforming most prior 

approaches. 

• The model also reports precision (96.77%) and recall 

(96%), ensuring a more reliable classification system. 

• Incorporation of Advanced Preprocessing 

Techniques: Many previous models do not 

emphasize data augmentation as a key factor in 

improving model generalization. This approach 

applies image rotation, resizing, and other 

augmentation techniques to enhance model 

robustness. 

• The model automates pest and disease detection, 

enabling early intervention for farmers, which is 

critical for minimizing crop loss. It bridges the gap 

between high computational efficiency and real-

world agricultural applications, making it more 

applicable for deployment in smart farming solutions. 

 

 

3. PROPOSED METHODOLOGY 

 

Models that are developed using deep learning find their 

purpose in image processing and well as image reorganization 

domains. This paper takes the novelty of proposing a model 

which has been developed by applying the concepts of deep 

learning in the agricultural sector to produce results with 

improved efficiency when compared to the previously 

established models. The design flow of the proposed method 

is shown in Figure 1. 

 

 
 

Figure 1. Design flow of the model proposed model 

 

The design flow has been explained in detailed with their 

respective mathematical equations below. 

Step 1: Image acquisition 

The first step in the design flow is image acquisition where 

the images will be acquired from our Diseased leaf detection 

database. This database consists of over 70,000 images of 

different leaves with different sizes and resolutions. 

i. Structure of the digital image 

Digital images in general, are actually a combination of 

numerous matrices of numbers and each number being 

represented in the matrix is a representation of the brightness 

of a single pixel. In the case of traditional black-and-white 

images, there is a requirement for only one matrix. When it 

comes to color images, it is made up of three matrices that 

individually represent 3 color channels which are red, blue, 

and green. The matrices contain a range of values from 0 to 
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255. 

Step 2: Image resizing and data augmentation 

The images in the dataset are in different formats and also 

have different resolutions. Thus, all images are pre-processed 

before using them. The images are resized to 256×256 pixels. 

Several operations are performed on the images like rotation, 

resizing, etc. 

The mathematical equation for rotation is shown below: 

 

𝑥2 = cos(𝛼) ∗ (𝑥1 − 𝑥0) + sin(𝛼) ∗ (𝑦1 − 𝑦0) (1) 

 

𝑦2 = −sin(𝛼) ∗ (𝑥1 − 𝑥0) + cos(𝛼) ∗ (𝑦1 − 𝑦0) (2) 

 

where, (𝑥1, 𝑦1) are the original coordinated being rotated by 

an angle (𝛼) around (𝑥0, 𝑦0) finally producing (𝑥2, 𝑦2). 

The mathematical equation for resizing is as follows: 

 

w1 = (𝑎 ∗ 𝑟)
1
2 (3) 

 

ℎ1 = 𝑤1/𝑟 (4) 

 

where, 𝑤1 and ℎ1 denote the resized width and height of the 

image and r is the aspect ratio, which can be deduced as: 

 

𝑟 = 𝑤/ℎ (5) 

 

where, 𝑤  and ℎ denote the original width and height of the 

image. 

Step 3: Feature extraction and classification 

In image processing, convolution has been considered an 

efficient method for feature extraction since it effectively 

reduces the dimensions of the data thus providing a lesser 

redundant data set which can also be called a feature map. 

 

3.1 Convolution 

 

Kernel convolution is a concept widely applied across many 

simple and complex computer algorithms. A kernel is nothing 

but a small matrix consisting of numbers. Kernel convolution 

is a process where we take the kernel and transformation is 

done by passing it over the given image. Considering our input 

image to be i and our kernel to be k, rows and column index is 

represented by m and n respectively the process can be 

mathematically represented as the following: 

 

𝐺[𝑚 + 𝑛] = (𝑖 ∗ 𝑘)[𝑚, 𝑛] = ∑ ∑ 𝑘[𝑗, 𝑘]𝑖[𝑚 − 𝑗, 𝑛 − 𝑘]

𝑘𝑗

 (6) 

 

By selecting a particular pixel and placing the filter over that 

particular pixel, multiplication by pairs is done by taking each 

and every value from the kernel with the corresponding values 

in the image. Last, performing a sum operation and then 

representing the result in its corresponding position in the 

output which is a feature map. 

 

3.2 Padding 

 

By performing convolution, the image tends to shrink every 

time the operation is performed. This makes the feasibility of 

the operation to be performed a limited number of times. If the 

threshold is crossed this might lead to the image getting 

disappeared completely. Thus, we lose the information 

contained in the image. To solve this problem, padding an 

image with an additional border is being done. The additional 

padding is usually filled with zeros. There are 2 types of 

convolutions whether padding is being used or not. If padding 

is done, then width of padding can be calculated using the 

following equation. Here, w is the width k is the kernel 

dimension. The equation is represented below: 

 

w =
𝑘 − 1

2
 (7) 

 

The dimensions of the output matrix when padding and 

stride is taken into account is represented below: 

 

𝑛𝑜𝑢𝑡 = 1 +
𝑛𝑖𝑛 + 2𝑤 − 𝑘

𝑠
 (8) 

 

3.3 Activation function 

 

In CNN, the purpose of an activated function is to calculate 

the weighted sum and add bias to it, and based on the result 

decision is made on whether to activate the particular neuron 

or not. Its main purpose is to add non-linearity to a neuron’s 

output. Rectified linear activation function, or ReLU, is a 

piecewise linear function that produces an output in response 

to an input. Positive input results in positive output, whereas 

negative input results in zero output. 

 

ReLU(a)=max(0,a) (9) 

 

3.4 Adam optimizer 

 

The feature maps which are the output of the convolutional 

layer are the input to the pooling layer which reduces the 

dimension of the feature extracted earlier. The fully connected 

layer uses these redefined features for the classification of the 

input image into the categories defined by the user earlier. 

Instead of a traditional Adam optimizer, Adam optimizer 

deployed with a power exponential learning rate is used for 

increasing the optimization rate in the CNN model since the 

adjustment with respect to the learning rate can be done 

according to the previous stages’ learning rate. This help in 

concision of learning rate in the minimum possible way 

leading to the stabilization of the parameters thus enhancing 

the effectiveness of the model. 

The power- exponential learning rate adapts dynamically 

based on previous learning rates and gradients, improving 

convergence. Unlike step decay (which reduces the learning 

rate at fixed intervals) and cosine decay (which follows a 

sinusoidal pattern), the power-exponential scheduler 

dynamically adapts based on prior learning rates and gradient 

behavior. This allows smoother convergence and better 

stability across epochs. Empirical ablation studies comparing 

it to standard Adam and cosine decay schedulers will be 

presented in future work. 

 

Pseudo Code 1: Adam optimizer deployed with power 

exponential learning rate 

 

Algorithm: Adam optimizer deployed with a power-

exponential learning rate, 

𝜃: parameters, 

m, 𝑣: first and second moment estimates,  

𝛽0, 𝛽1: exponential decay rates, 

Requirement: 
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𝜂1 = 0.1, 𝛽0 = 0.9, 𝛽1 = 0.999, 𝜀 = 0.9999, 𝑄 = 0.8  

Requirement: Initialize time step t0, parameter 𝜃, 

first/second-moment estimation 𝑚𝑡0̂ , 𝑣𝑡0̂ while stopping 

criterion is not met do, 

Updating first/second moment: 

 

𝑚𝑡0 ← 𝛽0𝑚𝑡0−1 + (1 − 𝛽0)𝑔𝑡 , 
𝑣 𝑡0 ← 𝛽1 𝑣𝑡0−1 + (1 − 𝛽1)𝑔𝑡

2 

 

Moment correction: 

 

𝑚𝑡0̂ ←
𝑚𝑡0

1
− 𝛽0

𝑡 , 𝑣𝑡0̂ ←
𝑣𝑡0

1
− 𝛽1

𝑡 

  

Power-exponential learning rate 

 

𝜂 ← 𝜂1𝑚−𝑘 , 𝑚 ← 1 +
𝑡

𝑟
; 𝜂(𝑡) ← 𝜂1 [1 +

𝑡

𝑟
]

−𝑘

 

 

Update parameters: 

 

𝜃𝑡0 ← 𝜃𝑡0−1 − 𝜂1 [1 +
𝑡

𝑟
]

−𝑘 𝑚𝑡0̂

√𝑣𝑡0̂ + ɛ
 

Return optimized parameters 𝜃 

 

3.5 Batch normalization 

 

Batch normalization comes under the normalization 

technique, which is done between the hidden layers of the 

neural network to increase the learning rates and skip the 

intermediate layers based on the knowledge obtained 

previously. In general, a neuron without performing batch 

normalization is computed in the following manner. 

 

𝑓(𝑤, 𝑥) + 𝑏 = i (10) 

 

𝑔(𝑖) = A (11) 

 

where, f() is the linear transformation, w is the weight, b is the 

bias and g() is the activation function of the neuron. 

If batch normalization is used, it can be computed in the 

following manner 

 

𝑓(𝑤, 𝑥) = 𝑖 (12) 

 

(𝑖)𝑛 =
𝑖 − 𝑚

𝑠
∗ 𝛼 + 𝛽 (13) 

 

𝑔(𝑖)𝑛 = 𝐴 (14) 

 

where, 𝑖𝑛 is the output of the batch normalization, m is the 

mean, s is the standard deviation of the neuron, 𝛼 and 𝛽 are the 

batch normalization learning parameters. The comprehensive 

hyperparameter details include Batch size: 32, Epochs: 50, 

Architecture: 4-convolutional layers (kernel sizes: 3×3), 

ReLU activations, 2 MaxPooling layers, BatchNorm after each 

conv layer, 2 fully connected layers before output. 

Step 4: Output detection 

Based on the input, features are being extracted and are 

being compared with the corresponding feature values that are 

stored correspondingly in feature dataset. Based on the 

analysis, it can be detected if the input image is healthy or 

diseased. 

Pseudo Code 2: Pseudo code of proposed methodology 

 

Considering input image to be i(x,y) 

i(x,y) undergoes image rotation 

 

𝑥2 = cos(𝛼) ∗ (𝑥1 − 𝑥0) + sin(𝛼) ∗ (𝑦1 − 𝑦0) 

𝑦2 = −sin(𝛼) ∗ (𝑥1 − 𝑥0) + cos(𝛼) ∗ (𝑦1 − 𝑦0) 

 

i(x,y) undergoes resizing 

 

w1 = (𝑎 ∗ 𝑟)
1

2; ℎ1 = 𝑤1/𝑟 

where, 

 

𝑟 = 𝑤/ℎ 

 

i(x,y) undergoes convolution 

 

𝐺[m + n] = (𝑖 ∗ 𝑘)[𝑚, 𝑛] = ∑ ∑ k[j, k]i[m − j, n − k]

𝑘𝑗

 

 

Padding is done to i(x,y) 

 

w =
𝑘 − 1

2
 

𝑛𝑜𝑢𝑡 = 1 +
𝑛𝑖𝑛 + 2𝑤 − 𝑘

𝑠
 

 

ReLU activation function and Adam optimizer is being used 

ReLU(a)=max(0,a) 

 

𝜃𝑡0 ← 𝜃𝑡0−1 − 𝜂1 [1 +
𝑡

𝑟
]

−𝑘 𝑚𝑡0̂

√𝑣𝑡0̂ + ɛ
 

 

Batch normalization is being deployed to enhance the 

efficiency of the model being proposed 

 

𝑓(𝑤, 𝑥) = i 

(𝑖)𝑛 =
𝑖 − 𝑚

𝑠
∗ 𝛼 + 𝛽 

𝑔(𝑖)𝑛 = 𝐴 

 

 

4. RESULTS AND DISCUSSION 

 

The considered dataset consists of 70,000 images of 

different sizes and resolutions. Pre-processing operations such 

as image resizing and rotation are performed on the input 

images to enhance the efficiency of the proposed CNN-based 

model. The dataset is divided into training and testing sets, 

ensuring a balanced distribution for effective learning and 

evaluation. 

The proposed model is specifically trained on face-up leaf 

images, resulting in the highest accuracy when the input 

images are in the same orientation. Due to the use of batch 

normalization, the training process is accelerated by reducing 

the time required for additional calculations and parameter 

adjustments during backpropagation. Unlike traditional 

backpropagation, where the gradients may diminish as the 

number of layers increases-leading to challenges in weight 

initialization-batch normalization helps maintain stable 

gradient flow and optimizes weight updates. Figure 2 shows 

the improved learning rate of the model due to the deployment 

of batch normalization. To validate the generalization 
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capability of the proposed model, 5-fold cross-validation was 

performed in addition to the standard train-test split. The 

dataset was divided into five equal subsets, and the model was 

trained and tested iteratively. The cross-validation results 

showed an average classification accuracy of 98.96%, with 

slight variations across folds, confirming the robustness and 

stability of the proposed architecture. To mitigate mild class 

imbalance observed in the dataset (e.g., Bacterial Spot: 2016, 

Leaf Mold: 1907), random oversampling was applied to 

underrepresented classes during batch formation. To enhance 

model robustness and generalization, data augmentation 

techniques such as random rotation (±25°), horizontal/vertical 

flipping (probability 0.5), brightness adjustment (±10%), and 

zooming (scale 0.9-1.1) were employed. These 

transformations were applied only during training, helping the 

model learn invariant features and reducing the risk of 

overfitting. 

Additionally, batch normalization regulates the parameters 

entering the activation function, mitigating issues such as 

vanishing gradients and dead neurons in activation functions 

like ReLU. As a result, the proposed method demonstrates an 

improved learning rate and enhanced model generalization, 

contributing to higher classification accuracy in plant disease 

detection. 

 

 
 

Figure 2. Improved learning rate of the model due to the 

deployment of batch normalization 

 

 
 

Figure 3. Detection by the model that input leaf is healthy 

 
 

Figure 4. Detection by the model that input leaf is diseased 

 

 
 

Figure 5. Depicts the size of the dataset considered for the 

existing models 

 
 

Figure 6. Depicts the estimated accuracy of the existing 

models 

 

The proposed model successfully analyzes input leaf 

images and accurately predicts whether the leaf is healthy or 

diseased. If the leaf is diseased, the model further classifies it 

by identifying the specific disease affecting it. The detected 

model of healthy and diseased images is shown in Figures 3 

and 4. 
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Figure 7. Depicts the estimated accuracy of the proposed 

model with 70,000 images 

 

Table 2. Performance comparison of accuracy level with 

various datasets 

 

S. No. Model Type 
No. of Images in 

the Dataset 

Overall 

Accuracy (%) 

1. [4]-Existing 953 95 

2. [5]-Existing 898 91.93 

3. [6]-Existing 199 99.9 

4. [11]-Existing 17,244 98.26 

5. [17]-Existing 16,225 97.50 

6. [18]-Existing 3,355 91.90 

7. Proposed 70,000 99.4 

 

Table 3. Performance metrics analysis of various diseases 

 
S. 

No. 
Disease 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

1. Bacterial Spot 72 65 68 

2. Early Blight 58 35 44 

3. Healthy 50 60 55 

4. Late Blight 50 45 47 

5. Leaf Mold 50 40 44 

6. Mosaic Virus 48 50 49 

7. Septoria Leaf Spot 44 40 42 

8. Spider Mites 52 80 63 

9. Target Spot 47 45 46 

10. 
Yellow Leaf Curl 

Virus 
70 80 74 

 

 
 

Figure 8. Confusion matrix 

By incorporating batch normalization, the Adam optimizer 

with a power-exponential learning rate, and ReLU as the 

activation function, the proposed model achieves significantly 

higher accuracy compared to conventional models. While 

traditional approaches struggle with large datasets, such as the 

one used in this study, comprising 70,000 images, the 

proposed model demonstrates an estimated accuracy of 99.4% 

due to these enhancements. Figures 5-7 depict the size of the 

dataset and accuracy considered for the existing models with 

70,000 images. Table 2 shows the performance comparative 

analysis of accuracy level with various datasets. 

Performance metrics have been calculated for the proposed 

model. Common performance metrics parameters are 

accuracy, precision, recall, and mean F1 score, which is again 

based on precision and recall parameters. 

Mean F1 score can be defined as 

 

F1 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 (15) 

 

Performance metrics for the proposed model have been 

derived using the aforementioned formulae, and the confusion 

matrix has been shown in Figure 8. Table 3 shows the 

performance metrics analysis of various diseases. 

 

 

5. CONCLUSION 

 

This study proposes an advanced deep learning-based plant 

disease detection system that effectively classifies and 

diagnoses plant diseases using a dataset of 70,000 images. By 

integrating batch normalization, the Adam optimizer with a 

power-exponential learning rate, and ReLU activation, the 

proposed model achieves superior performance, addressing 

common challenges such as overfitting and computational 

inefficiency. The system outperforms conventional models 

with an estimated accuracy of 99.4%, precision of 96.77%, and 

recall of 96%, demonstrating its effectiveness in large-scale 

agricultural disease classification. The results highlight the 

potential of AI-driven solutions in precision agriculture, 

enabling farmers to detect plant diseases early and take 

corrective actions to minimize yield losses. Future work can 

focus on expanding the model's applicability by incorporating 

real-time image processing techniques, Internet of Things 

(IoT) integration, and UAV-based monitoring for enhanced 

scalability and field deployment. 
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