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In this article, the modeling and model-based control of a motorcycle like inverted 

pendulum system with a gyroscope controller are addressed. The mathematical model 

of the system which includes an inverted pendulum and two gyroscopic flywheels is 

derived using the Lagrange equations. A problem arising from the derived dynamic 

model is that the system is highly nonlinear and unstable. Hence, the derived model is 

linearized to obtain a state-space model. Based on the linearized model, a controller and 

a state observer are designed. The controller is designed to generate required moment 

for stabilization using the two flywheel gyroscopes in the system. The observability and 

controllability of the designed observer and controller is verified based on the locations 

of the system eigenvalues. Several simulations are carried out in this work using the 

derived state-space model and the designed controller to ensure the efficiency of the 

model-based controlled system. 
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1. INTRODUCTION

Urban environments are increasingly burdened by traffic 

congestion, limited parking, and air pollution, which have 

prompted growing interest in compact, smart, and 

environmentally friendly transportation alternatives [1]. 

Among these, motorcycles are widely used due to their 

lightweight and narrow profile, offering improved 

maneuverability and fuel efficiency. However, motorcycles 

are also among the most accident-prone vehicles due to their 

poor inherent stability, particularly when stationary or at low 

speeds. In response to global road safety concerns, the United 

Nations launched the Decade of Action for Road Safety 2021-

2030, aiming to reduce fatalities through innovative safety 

solutions [2]. 

From a control systems perspective, a motorcycle behaves 

similarly to an inverted pendulum an unstable and nonlinear 

system that has served as a benchmark problem for testing 

advanced control algorithms [3]. Numerous configurations of 

inverted pendulum systems have been studied, including 

single-link, double, and triple pendulum models, as well as 

systems incorporating inertial wheels and gyroscopes [4-8]. 

Yet, many of these systems rely on external force or torque 

input from stationary platforms or mobile carts, rendering 

them unsuitable for self-balancing motorcycle applications. A 

well-known commercial application of inverted pendulum 

control is the Segway two-wheeled vehicle. 

Counterbalancing mechanisms such as inertial wheels and 

Control Moment Gyroscopes (CMGs) have been proposed for 

improving balance in single-track vehicles [9-11]. Recent 

reviews have explored the application of CMGs as 

stabilization mechanisms in electric two-wheelers, 

highlighting their potential integration into Intelligent Balance 

Assistance Systems (IBAS). Pedapati and Chidambaram [12] 

provided a comprehensive overview of gyroscopic 

configurations, advanced control strategies, and sensor fusion 

approaches for enhancing the stability and adaptability of two-

wheeled vehicles in real-world traffic conditions. While 

CMGs offer effective dynamic stabilization, challenges such 

as energy consumption and mechanical complexity remain key 

barriers to widespread implementation. Their work also 

emphasized the importance of networking and vehicle-to-

infrastructure communication in developing smart, self-

balancing electric two-wheelers. Inertial wheels operate by 

adjusting rotational acceleration, but they require high-

performance motors and often struggle with real-time 

disturbances. Aranovskiy et al. [13] focused on the dynamic 

stabilization of a two-dimensional inverted pendulum using a 

scissored pair of CMGs. This configuration was motivated by 

applications in non-anthropomorphic bipedal robots, where 

such simplified pendulum dynamics can approximate the 

robot's motion. The researchers developed a mathematical 
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model of the inverted pendulum that intentionally omits non-

essential dynamics to allow for analytical tractability and 

control design. A linear control law was designed based on this 

simplified model, and the team conducted experimental 

validation to demonstrate its effectiveness in maintaining 

upright balance. The work emphasizes the feasibility of using 

scissored CMG systems for lightweight, real-time balance 

control in robotics, particularly in situations where traditional 

actuation methods are not practical. In contrast, CMGs use the 

principle of angular momentum conservation to resist changes 

in orientation, offering better stability and disturbance 

rejection [3]. These systems have been successfully applied in 

spacecraft attitude control and ship stabilization and are now 

being explored in terrestrial mobility platforms. Badgujar and 

Mohite [14] designed, implemented, and tested a CMG 

mechanism for self-balancing an electric moped (Okinawa 

IPRAISE Scooter), capable of maintaining stability both when 

stationary and in motion. The system uses two continuously 

spinning flywheels driven by DC motors around the vertical 

axis, paired with stepper motor-driven gimbals to generate 

corrective torque about the horizontal axis. A feedback loop 

with an IMU sensor and a PID controller provides dynamic 

balance correction by sensing tilt and adjusting gimbal motion. 

The CMG mechanism demonstrated superior performance 

compared to traditional stabilization approaches like steering 

control or mass shifting, due to its torque amplification and 

momentum storage capacity. Simulation and analysis were 

performed using CREO for modeling and ANSYS for 

structural evaluation. Despite increased power consumption 

(+10%), added weight (+25%), and cost (+9%), the 

mechanism proved to be a compact and effective solution for 

enhancing ride stability, particularly in urban or uneven road 

conditions. Zheng et al. [15] presented a dynamic modeling 

and control approach for an unmanned motorcycle that 

integrates both steering actuation and a dual CMG system to 

improve stability. Unlike earlier studies that lock the steering 

mechanism and rely solely on CMG-based inverted pendulum 

models, this work emphasizes the importance of utilizing 

steering as an additional stabilizing component . 

The authors developed a multibody dynamic model using 

Lagrange equations of the first kind for accurate physical 

simulation. For control design, a simplified model was 

derived, enabling the development of a combined balance 

controller that coordinates inputs from both the steering 

system and dual CMGs. Simulation results confirmed that the 

combined control strategy significantly outperformed both 

standalone steering and traditional CMG-only control systems 

in terms of roll stabilization and maneuverability. Jin et al. [3] 

proposed a novel inverted pendulum system that utilizes the 

gyroscopic precession effect as its core stabilization 

mechanism. Unlike traditional inertia-wheel pendulum 

systems which rely on accelerating and decelerating a 

flywheel to generate torque their design offers a more 

efficient, responsive, and compact alternative. The system 

leverages a high-speed gyroscopic rotor to produce significant 

precession torque, enabling rapid and stable equilibrium 

control. Both disturbance-free and disturbance-response 

experiments were conducted using a physical prototype, 

demonstrating effective stabilization and strong anti-

interference performance. Additionally, the stabilizing 

mechanism was successfully applied to a bicycle posture 

control system, validating its practical applicability and 

robustness. 

Recent advancements, such as Honda’s Riding Assist 

technology, demonstrate the feasibility of motorcycle self-

balancing using gyroscopic systems. However, most existing 

works focus on single-gyroscope configurations, leaving a 

clear gap in the literature concerning the modeling and control 

of dual-gyroscope systems for enhanced stabilization . 

To address this gap, this paper presents the modeling and 

control of a motorcycle-like inverted pendulum system using 

two counter-rotating flywheel gyroscopes. The dynamic 

model is formulated via the Euler-Lagrange approach and 

subsequently linearized to facilitate controller design. A 

Linear Quadratic Regulator (LQR) controller, in combination 

with a Kalman filter, is developed to stabilize the roll motion 

of the system. It is important to clarify that the presented 

system is a scaled-down prototype, with parameters such as 

the 1.25 kg body mass selected for simulation and controller 

validation purposes. The key contributions of this study 

include: the development of a dual-gyroscope dynamic model, 

observer-based LQR control system design, and validation of 

stabilization performance through simulations under various 

disturbance conditions. 

 

 

2. MATHEMATICAL MODEL OF INVERTED 

PENDULUM WITH DOUBLE GYROSCOPES  

 

This section aims to explain the stages of the system 

modeling carried out, namely mathematical modeling, three-

dimensional modeling, determining the parameters used, and 

the stages of system design. 

The general model of inverted pendulum as shown in Figure 

1 has a mechanical base of inverted pendulum which consists 

of the following parts: 

(i) Base of the inverted pendulum. 

(ii) Mechanical rotating flywheel gyroscopes. 

 

 
 

Figure 1. The sketch of the inverted pendulum system with 

double gyroscopes 

 

Given the dynamics and size of the inverted pendulum, the 

balancing torque required to stabilize the pendulum is 

estimated. 

The system can be made in two ways, namely by using one 

or two flywheel gyroscopes. Considerations in this research 

prefer to use two flywheel gyroscopes rather than one because 

to get mass properties so as to increase the value of precession 

torque, the greater the effect of the gyroscope produced will 

provide torque roll-motion inverted pendulum to maintain 

stability when deviating from its upright position. 

 

2.2 Rigid body dynamics 

 

In this research the use the Euler-Lagrange approach is 

implemented [8], which considers the system as a whole. Two 
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key terms in this process are generalized variables and 

generalized forces. The main idea of this procedure is to find 

expressions for the total kinetic energy (T) and total potential 

energy (V) of the system. potential energy (V) of the system. 

Then, the equations of motion will be determined by solving 

the generalized equations of motion. The Lagrange formula is 

[16]: 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞𝑖

) −
𝜕𝐿

𝜕𝑞𝑖

= 𝑄𝑖 

 

where, 𝑞𝑖  are generalized coordinates, 𝑄𝑖  are generalized 

forces, and 𝐿 = 𝑇 − 𝑉  is the Lagrangian. In this study, the 

generalized coordinates are the roll angle 𝑞1 = 𝜑  of the 

inverted pendulum and the precession angle of the gyroscope 

is 𝑞2 = 𝛼. Therefore, a 2nd order differential equation can be 

obtained which is written with equation [17]: 

 

[
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞𝑖̇

) −
𝜕𝑇

𝜕𝑞1

] − [
𝑑

𝑑𝑡
(
𝜕𝑉

𝜕𝑞1̇

) −
𝜕𝑉

𝜕𝑞1

] = 𝑄1 

 

[
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞2̇

) −
𝜕𝑇

𝜕𝑞2

] − [
𝑑

𝑑𝑡
(
𝜕𝑉

𝜕𝑞2̇

) −
𝜕𝑉

𝜕𝑞2

] = 𝑄2 

 

 
 

Figure 2. Sketch diagram of the system coordinates 

 

Figure 2 illustrates an coordinates view of the system. It is 

assumed that the inverted pendulum consists of a main body 

(B), gyro-cages (G) and gyro-flywheel (F), then the total 

kinetic energy and total potential energy can be expressed as 

[18-22]: 

 

𝑇 = 𝑇𝐵 + 𝑇𝐺1 + 𝑇𝐹1 + 𝑇𝐺2 + 𝑇𝐹2 

 

𝑉 = 𝑉𝐵 + 𝑉𝐺1 + 𝑉𝐹1 + 𝑉𝐺2 + 𝑉𝐹2 

 

Before determining each part of the kinetic energy, first 

create a list table for the static inverted pendulum parameters 

(Table 1). 

Furthermore, the velocity variables that occur are as 

follows: 

 

𝜔𝐺𝑖
= (𝜑̇ cos 𝛼𝑖)𝑥𝐺𝑖

+ 𝛼𝑖̇ 𝑦𝐺𝑖
+ (𝜑̇ sin 𝛼𝑖)𝑧𝐺𝑖

 

 

𝜔𝐹𝑖
= (𝜑̇ cos 𝛼𝑖)𝑥𝐹𝑖

+ 𝛼𝑖̇ 𝑦𝐹𝑖
+ (𝜑̇ sin 𝛼𝑖)𝑧𝐹𝑖

+ 𝜃̇𝑧𝐹𝑖
 

 

The kinetic energy at each part of the inverted pendulum can 

be expressed by equation as follows: 

 

𝑇𝐵 =
1

2
𝑚𝐵(𝜑̇ℎ𝐵)2 +

1

2
𝐼𝐵𝑥𝑥𝜑̇

2 

 

𝑇𝐺𝑖
=

1

2
𝑚𝐺𝑖

(𝜑̇ℎ𝐺𝑖
)
2
 

+
1

2
[𝐼𝐺𝑖𝑥

(𝜑̇ cos 𝛼𝑖)
2 + 𝐼𝐺𝑖𝑦

(𝛼̇𝑖)
2 + 𝐼𝐺𝑖𝑧

(𝜑̇ sin 𝛼𝑖)
2] 

 

𝑇𝐹𝑖
=

1

2
𝑚𝐹𝑖

(𝜑̇ℎ𝐹𝑖
)
2
 

+
1

2
[𝐼𝐹𝑖𝑥

(𝜑̇ cos 𝛼𝑖)
2 + 𝐼𝐹𝑖𝑦

(𝛼̇𝑖)
2 + 𝐼𝐹𝑖𝑧

(𝜑̇ sin 𝛼𝑖 + 𝜃̇𝑖)
2
] 

 

Table 1. Static inverted pendulum parameters 

 
Parameter Symbol 

Body mass and height of center of gravity (COG) 𝑚𝐵, 𝑙𝐵 

Gyro- mass and height of COG 𝑚𝐺 , 𝑙𝐺 

Gyro- flywheel and mass of COG 𝑚𝐹 , 𝑙𝐹 

Body inertia 𝐼𝐵𝑥 

Gyro-cover inertia [𝐼𝐺𝑥  𝐼𝐺𝑦 𝐼𝐺𝑧] 

Gyro-flywheel inertia [𝐼𝐹𝑥 𝐼𝐹𝑦 𝐼𝐹𝑧] 

Gravity acceleration 𝑔 

Flywheel rotation speed 𝜃̇ 

 

Total kinetic energy can be found with the following 

equation 

 

𝑇 = [𝑇𝐵] + [𝑇𝐺1 + 𝑇𝐹1] + [𝑇𝐺2 + 𝑇𝐹2] 
 

𝑇 =
1

2
𝑚𝐵(𝜑ℎ𝐵)2 +

1

2
[𝐼𝐵𝑥(𝜑)2] +

1

2
𝑚𝐺1

(𝜑̇ℎ𝐺1
)
2

+
1

2
[𝐼𝐺1𝑥(𝜑̇ cos 𝛼1)

2 + 𝐼𝐺1𝑦(𝛼̇1)
2

+ 𝐼𝐺1𝑧(𝜑̇ sin 𝛼1)
2] +

1

2
𝑚𝐹1

(𝜑̇ℎ𝐹1
)
2

+
1

2
[𝐼𝐹1𝑥(𝜑̇ cos 𝛼1)

2 + 𝐼𝐹1𝑦(𝛼̇1)
2

+ 𝐼𝐹1𝑧(𝜑̇ sin 𝛼1 + 𝜃̇1)
2
] +

1

2
𝑚𝐺2

(𝜑̇ℎ𝐺2
)
2

+
1

2
[𝐼𝐺2𝑥(𝜑̇ cos 𝛼2)

2 + 𝐼𝐺2𝑦(𝛼̇2)
2

+ 𝐼𝐺2𝑧(𝜑̇ sin 𝛼2)
2] +

1

2
𝑚𝐹2

(𝜑̇ℎ𝐹2)
2

+
1

2
[𝐼𝐹2𝑥(𝜑̇ cos 𝛼2)

2 + 𝐼𝐹2𝑦(𝛼̇2)
2

+ 𝐼𝐹2𝑧(𝜑̇ sin 𝛼2 + 𝜃̇2)
2
] 

 

The potential energy at each part of the inverted pendulum 

can be expressed by equation as follows: 

 

𝑉𝐵 = 𝑚𝐵 . 𝑔. ℎ𝐵 cos𝜑 

 

𝑉𝐺𝑖 = 𝑚𝐺𝑖
. 𝑔. ℎ𝐺𝑖

cos𝜑 

 

𝑉𝐹𝑖 = 𝑚𝐹𝑖 . 𝑔. ℎ𝐹𝑖 cos 𝜑 

 

Total potential energy can be known by the following 

equation: 

 

𝑉 = ∑𝑚𝑖

𝑁

𝑖=1

. 𝑔. ℎ𝑖 = [ℎ𝐵𝑚𝐵 + 2ℎ𝐺𝑚𝐺 + 2ℎ𝐹𝑚𝐹]𝑔 cos(𝜑) 
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Application of the kinetic energy and potential energy 

system equations to the Lagrangian equations of motion 

described earlier, so that we obtain the combination of two 

non-linear differential equations: 

 

𝜑̈[ℎ𝐵
2𝑚𝐵 + 2ℎ𝐺

2𝑚𝐺 + 2ℎ𝐹
2𝑚𝐹 + 𝐼𝐵𝑥

+ 2 cos2(𝜑)(𝐼𝐺𝑥 + 𝐼𝐹𝑥)
+ 2 sin2(𝛼)(𝐼𝐺𝑧 + 𝐼𝐹𝑧)] 

−4𝜑̇𝛼̇ cos(𝛼) sin(𝛼) [𝐼𝐺𝑥 + 𝐼𝐹𝑥 − 𝐼𝐺𝑧 − 𝐼𝐹𝑧]

+ 2𝜃̇ cos(𝛼)𝛼̇ 𝐼𝐹𝑧

− [ℎ𝐵𝑚𝐵 + 2(ℎ𝐺𝑚𝐺)
+ 2(ℎ𝐹𝑚𝐹)]𝑔 sin(𝜑) = 𝑄1 

 

2𝛼̈(𝐼𝐺𝑦 + 𝐼𝐹𝑦) + 2𝜑̇2 cos(𝛼) sin(𝛼) [𝐼𝐺𝑥 − 𝐼𝐺𝑧 + 𝐼𝐹𝑥 − 𝐼𝐹𝑧]

− 2𝜑̇ cos(𝛼) 𝜃̇𝐼𝐹𝑧 = 𝑄2 

 

where by defining the above equation: 

 

𝑐 = 𝑐𝑜𝑠 

 

𝑠 = 𝑠𝑖𝑛 

 

𝑎1 = 2(𝐼𝐺𝑥 + 𝐼𝐹𝑥) 

 

𝑎2 = 2(𝐼𝐺𝑦 + 𝐼𝐹𝑦) 

 

𝑎3 = 2(𝐼𝐺𝑧 + 𝐼𝐹𝑧) 

 

𝑎4 = 𝐼𝐵𝑥 

 

𝑎5 = 𝑘1 − 𝑘3 

 

𝑎6 = ℎ𝐵𝑚𝐵 + 2(ℎ𝐺𝑚𝐺) + 2(ℎ𝐹𝑚𝐹) 

 

𝑎7 = ℎ𝐵
2𝑚𝐵 + 2ℎ𝐺

2𝑚𝐺 + 2ℎ𝐹
2𝑚𝐹 

 

The application of the equation of motion can be written as 

follows: 

 

𝜑̈[𝑎4 + 𝑎7 + 𝑎1𝑐
2 𝛼 + 𝑎3𝑠

2𝛼] 

−2𝑎5𝜑̇𝛼̇𝑐𝛼𝑠𝛼 + 2𝜃̇𝑐𝛼𝛼̇𝐼𝐹𝑧 − 𝑎6𝑔𝑠𝜑 = 𝑄1 

 

𝑎2𝛼̈ + 𝑎5𝜑̇
2𝑐𝛼𝑠𝛼 − 2𝜑̇𝑐𝛼𝜃̇𝐼𝐹𝑧 = 𝑄2 

 

where, 𝑄𝑖  is the generalized forces. 

 

𝑄1 = ℎ𝐵𝐹𝑑 cos 𝜑 

 

𝑄2 = 𝑀𝑢 

 

where, 𝑄𝑖  is the general non-conservative force. 𝐹𝑑 represents 

the horizontal disturbance applied to the inverted pendulum as 

well as the model dynamics uncertainty, and 𝑀𝑢 denotes the 

torque generated by the DC motor. 

 

2.3 Linearized full system dynamics 

 

The study investigates the inverted pendulum system and 

validates the performance of controllers designed to stabilize 

a single-track vehicle by using the gyroscopic effects 

generated by two counter-rotating flywheels. The system is 

linearized around the upright equilibrium point, defined by a 

roll angle φ = 0 and a gimbal angle α = 0, while the flywheels 

rotate in opposite directions at a constant speed of 500 rpm. 

Accordingly, the linearization of the dynamic model is 

performed based on these equilibrium conditions: 

 

𝑥 = [𝜑 𝜑̇ 𝛼1 𝛼̇1 𝛼2 𝛼̇2] 
 

Assuming the system with no input ( 𝑀𝑢 =0) and no 

disturbance (𝐹𝑑 = 0), then the equilibrium points in the system 

in the upright position produce the numerical result for the 

linear model is:  

 

𝑥̇ =

[
 
 
 
 
 
 
 
 
 

0 1 0 0 0 0
𝑔. 𝑘6

𝑘1 + 𝑘7 + 𝑘4

0 0 −
𝐼𝐹1𝑧𝜃̇1

𝑘1 + 𝑘7 + 𝑘4

0 −
𝐼𝐹2𝑧𝜃̇2

𝑘1 + 𝑘7 + 𝑘4

0 0 0 1 0 0

0
𝐼𝐹1𝑧𝜃̇1

𝐼𝐹1𝑦 + 𝐼𝐺1𝑦

0 0 0 0

0 0 0 0 0 1

0
𝐼𝐹2𝑧𝜃̇2

𝐼𝐹2𝑦 + 𝐼𝐺2𝑦

0 0 0 0
]
 
 
 
 
 
 
 
 
 

𝑥 +

[
 
 
 
 
 
 
 
 

0 0
0 0
0 0
1

𝐼𝐹1𝑦 + 𝐼𝐺1𝑦

0

0 0

0
1

𝐼𝐹2𝑦 + 𝐼𝐺2𝑦]
 
 
 
 
 
 
 
 

𝑢 

 

where, 𝑥1 represents the roll angle of inverted pendulum, 𝑥2 is 

angular velocity of roll inverted pendulum, 𝑥3  denotes the 

inclination angle of gyroscope 1, 𝑥4 is the angular velocity of 

precision gyroscope 1, 𝑥5 is the precision angle of gyroscope 

2, 𝑥6  is the correspond to the angular velocity of precision 

gyroscope 2. The control input 𝑢 is the input torque generated 

by the flywheel gyroscopes. The constants used in the 

linearized dynamic equations are defined to simplify the 

representation of mass, inertia, and gyroscopic effects. 

Specifically, k1=mb.lb
2 represents the moment of inertia of the 

main body about the pivot axis; k2=mb.g.lb accounts for the 

gravitational torque acting on the pendulum body; and k3=If.ωf 

denotes the gyroscopic torque produced by the rotating 

flywheel, where If is the flywheel inertia and ωf is its angular 

speed. Additionally, k4=mg.lg
2 represents the inertia of the 

gyroscope housing, k5=Ig.ωf corresponds to the gyroscopic 

precession torque generated by the gimbal system, and k6 is a 

composite term that aggregates the total moment of inertia 

from the gimbal and flywheel assemblies, including coupling 

effects. These constants are integrated into the linear state-

space model to express the system matrices A and B compactly 

for control design. These constants represent grouped terms 

involving mass (m), lengths (l), and inertias (I), introduced for 

notational simplicity in the linearized matrix expressions. 

 

 

3. CONTROL SYSTEM DESIGN 

 

Inverted pendulum is a system that under normal 

circumstances has an unstable condition and will tend to fall. 
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In order to stabilized, an additional device or force is needed 

to counteract the force that causes the inverted pendulum to 

fall. Gyroscopic uses principle of the gyroscope effect 

produced by a rotating disk as shown in Figure 1. 

As seen in Figure 1, a disk with mass that has inertia equal 

to 𝐼 rotates about the z-axis with angular velocity (𝜃̇). If on y-

axis there is an angular change of 𝛼̇ as shown in Figure 2 then 

the torque generated on the axis can be found by using 

equation of state space. 

Based on the state space model derived earlier control 

system will be designed in order to determine how much 

precession torque is given to the inverted pendulum to meet 

the desired equilibrium point [17].  

 

3.1 LQR control system design 

 

The control used to control the stability in roll angle in this 

research is LQR. LQR controller design can be seen in Figure 

3. LQR control system will be designed for the system, so that 

it can be applied to control the roll angle around the 

equilibrium point. In the calculation of the mathematical 

model, the state space equation is obtained as in equation 

below, in the LQR control design using the equation that has 

been diluted. 

 

 
 

Figure 3. Block diagram of LQR controller 

 

LQR control design uses equations that have been linearized 

by assuming the inverted pendulum deviation angle does not 

exceed the maximum degree boundaries or is considered to 

have very small changes. So that after the parameters are 

entered in the state space model, the state space with linear 

plant numerical form will be used to find the eigenvalues of 

the system to ensure stability [22-24]. 

The value of gain K which represent the controller gain 

matrix; is said to be optimal if it is able to combine the 

efficiency of energy use and performance. This energy 

efficiency will be shown by how much control 

torque/precision torque is needed in the simulation to maintain 

the stability of the inverted pendulum. Meanwhile, 

performance is said to be good if it is still able to prevent the 

inverted pendulum from falling. 

The controller gain is designed using linear quadratic 

regulator in a way to minimize the following cost equation: 

 

𝐽 = ∫ 𝑒2
∞

0

𝑑𝑡 =
1

2
∫ [𝑥𝑇𝑄𝑐𝑥 + 𝑢𝑇𝑅𝑐𝑢]

∞

0

𝑑𝑡 

The ideal values of the controller's 𝑄𝑐 and 𝑅𝑐 matrices are 

obtained by trial and error since there is no unique solution for 

these matrices. The selection of these matrices depends on 

how much influence y and u are desired on the cost function. 

What needs to be considered in this trial-and-error process is 

that matrix 𝑄𝑐  and 𝑅𝑐  must be symmetric and positive 

definite. The controller gain is calculated using the Riccati 

Equation: 

 

𝐾 = 𝑅−1𝐵𝑇𝑃 = [𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6] 
 

𝑘𝑖  is [2 × 1 ] matrix, 𝑃  is determined using the system 

matrices and the 𝑄𝑐, 𝑅𝑐 matrices as follows: 

 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄𝑐 − 𝑃𝐵𝑅𝑐
−1𝐵𝑇𝑃 = 0 

 

Furthermore; a Kalman filter is designed to estimate the 

unmeasured states of the system [8]. The value of Kalman gain 

𝐿 and LQR gain 𝐾 will be calculated to obtain a good Control 

response. The diagram of the mathematical model with 

Control LQR is shown in Figure 4. The 𝑄𝑐 matrix in the LQR 

controller will also be designed to prioritize the roll state as the 

most significantly affected state. 

 

 
 

Figure 4. Block diagram of the system with observer and 

controller 

 

 

4. SIMULATION 

 

The system parameters used in the simulation is addressed 

in the Table 2. These parameters are submitted in state space 

equation stated earlier which represent the full state space 

model of the system. The induced constant system matrices 

used to check the controllability and observability of the 

system and also to design the controller and observer gains for 

simulations. 

By using the MATLAB program, the controllability matrix 

is obtained with determinant value is not equal to zero Because 

the controllability matrix has a full rank of 6, so it can be used 

to prove the controllability of the system rank of 6, thus it can 

be concluded that the system can be controlled. The 

observability matrix is also calculated using the MATLAB 

program the observability matrix is obtained with the value of 

the determinant not equal to zero. determinant is not equal to 

zero because the observability matrix has a full rank of 6, 

which is 6, thus it can be concluded that the system is 

observable. 
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Table 2. The system parameters and units 

 
No. Parameter Symbol Value Units 

1 Body mass 𝑚𝐵 1.25 kg 

2 COG Body ℎ𝐵 0.08 m 

3 Inertia 𝐵𝑥𝑥 𝐼𝐵𝑥 0.005 kg, m2 

4 Flywheel Mass 1 & 2 𝑚𝐹 0.25 kg 

5 COG Flywheel ℎ𝐹 0.08 m 

6 Inertia 𝐹𝑥𝑥, 𝐹𝑦𝑦, 𝐹𝑧𝑧 𝐼𝐹𝑥, 𝐼𝐹𝑦 , 𝐼𝐹𝑧 (0.00034; 0.00034; 0.00067) kg, m2 

7 Gyroscope Mass 1 & 2 𝑚𝐺  0.3 kg 

8 COG Gyroscope ℎ𝐺  0.09 m 

9 Inertia 𝐺𝑥𝑥, 𝐺𝑦𝑦, 𝐺𝑧𝑧 𝐼𝐺𝑥 , 𝐼𝐺𝑦 , 𝐼𝐺𝑧 (0.00057; 0.00036; 0.0009) kg, m2 

10 Rotational Speed Flywheel 1 𝛳̇1 3000 rpm 

11 Rotational Speed Flywheel 2 𝛳̇2 -3000 rpm 

12 Gravitational coefficient 𝑔 9.81 m/s2 

 

The weight matrices are 𝑄𝑐 and 𝑅𝑐 matrices. The selection 

of 𝑄𝑐  and 𝑅𝑐  matrices is done by trial and error. With the 

condition that the 𝑄𝑐  matrix is symmetrical, positive 

semidefinite and real (𝑄𝑐> 0). Matrix 𝑄𝑐 is a matrix [6 × 6] 

and diagonal matrix, and when separation will be obtained 

identity matrix multiplied by a constant. While the matrix R is 

a symmetrical matrix, positive definite and real (𝑅𝑐  > 0). 

Matrix 𝑅𝑐 is a matrix of order [2 × 2] and a diagonal matrix, 

and when the separation will be obtained identity matrix 

multiplied by constant. To get the gain 𝐾, first determine the 

weights that will be used for each output of the system/plant. 

Weights are used to prioritize which outputs should have more 

priority to be improved. The values of 𝑄𝑐 and 𝑅𝑐 matrices are 

selected as follow: 

 

𝑄𝑐 =

[
 
 
 
 
 
100 0 0 0 0 0
0 10 0 0 0 0
0 0 100 0 0 0
0 0 0 1 0 0
0 0 0 0 100 0
0 0 0 0 0 1]

 
 
 
 
 

 

 

𝑅𝑐 = [
1 0
0 1

] 

 

From Riccati Equation, the matrix 𝑃 will be known. Matrix 

𝑃 is the solution matrix of the Ricccati equation. If the values 

of matrix 𝑃  are known, then substituted into costfunction 

equation, so that the value of the optimal feedback matrix (K) 

that minimizes the cost function J can be found.  

The amount of data available in the calculation of the 

optimal control vector value K requires the help of a computer 

program, in this case MATLAB is used. 

Calculations using MATLAB can be known feedback value 

K optimal system based on the system model. The calculation 

obtained the value of the optimal feedback gain matrix for the 

system value: 

 

𝐾 = [
−18.13 −2.89 0 1 10 0
18.13 2.89 10 0 0 1

] 

 

By the same procedure the Kalman filter matrix is also 

determined as: 

 

𝐿 =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 3.6 0 0
0 0 0 0 0 3.6]

 
 
 
 
 

 

Using the mathematical model derived and the controller 

and observer designed based on the derived model the 

simulation of the system is done. The system is tested first 

using the eigenvalues by comparing the derived eigenvalues 

model and the controlled system eigenvalues as shown in the 

Table 3. It is clear from the values in the table that the derived 

model is unstable, while the controlled model is asymptotic 

stable system. 
 

Table 3. The system eigenvalues comparison 

 
System Eigenvalues Controlled System Eigenvalues 

0 -81999929.65 

0 -81999989.99 

0 -63.96 

0.0 + 117.38i -3.19 + 1.66i 

0.0 - 117.38i -3.19 - 1.66i 

0 -10.00 

 

The system then simulated after the prove of the 

controllability check, several simulation results is presented 

based on the designed controller and observer. First simulation 

is shown in Figure 5. In this simulation results, the system 

given initial conditions as 𝑥 = [
𝑝𝑖

20
0

𝑝𝑖

10
0 −

𝑝𝑖

10
0] , 

makes the controller recover stability and eliminates the 

inclement of the motorcycle. The observer designed 

successfully estimates the states of the system and overcomes 

the error due to the unknown initial conditions in the states. 

After that the initial conditions is set as the same as in the first 

simulation 𝑥 = [
𝑝𝑖

20
0

𝑝𝑖

10
0 −

𝑝𝑖

10
0] , and the system 

also is subjected to step disturbance in all rotation variables 

𝜑 = 9, 𝛼1 = 18, 𝛼2 = −18 degrees respectively as shown in 

Figure 6. This disturbance is used complicate the simulation 

situation on the observer and the controller. It can be noted 

from the Figure 6 which shows the second case of the 

simulation that the controller based on the observed states 

eradicate the effect of the disturbance effect very fast. In the 

third set of simulation (Figure 7) the model is tested under 

impulse disturbance on the 𝜑, 𝛼1, and 𝛼2. The disturbances 

divided along time. The roll angle of inverted pendulum is 

subjected to Impulse disturbance at time 3 sec from the 

simulation, the inclination angle of the gyroscope 1 and 2 is 

subjected to impulse disturbance at 5th and the 7th sec of the 

simulation time. The disturbance is assumed as disturbance 

angle effect for instance (0.1 sec) on the each of the system 

variables the disappears. The behavior of the controller in this 

case is perfectly evade the effect of the impulse disturbance 

and keep the system stable although several impulse 

disturbances. From the all simulations figures it can be 
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concluded that the controller keeps the roll angle of the 

pendulum always equal to zero which is the main setpoint of 

the motorcycle.  

The results presented in this study clearly indicate that the 

model has only been simulated. In the case of experimental 

implementation, several practical challenges may arise. 

Specifically, the system parameters are likely to change, 

necessitating a redesign of the controllers and observer gain 

matrices. Additionally, issues such as measurement noise, 

mechanical constraints, and torque requirements must be taken 

into account during the design of both the controller and the 

observer. 

 

 
 

Figure 5. Controlled system test against the change in initial 

conditions 

 

 
 

Figure 6. Controlled system test against the step disturbance 

 

 
 

Figure 7. Controlled system test against impulse disturbance 

5. CONCLUSIONS 

 

A physical model for a gyroscopic inverted pendulum 

system equipped with two gyroscopes was developed. 

Theoretical analysis and simulation results showed that 

increasing the flywheel rotation speed leads to a faster 

response in achieving equilibrium. The dual-gyroscope system 

demonstrated a more effective and rapid stabilization response 

compared to single-gyroscope configurations. The simulation 

results further confirmed that the LQR controller successfully 

maintained the roll angle of the inverted pendulum near zero 

degrees under various disturbances. This zero-degree setpoint 

represents the upright posture, which is particularly relevant 

during low-speed operation or when the vehicle is stationary 

conditions in which motorcycles are most vulnerable to 

tipping . 

However, the scalability of the proposed system to full-size 

motorcycles introduces key engineering challenges. Real 

motorcycles have significantly higher mass and inertia, 

requiring larger gyroscopic devices capable of generating 

sufficient precession torque. This raises concerns about the 

gyroscope's physical size, energy consumption, and 

compatibility with the motorcycle's frame and existing vehicle 

dynamics. Furthermore, the continuous energy demand for 

high-speed rotation may impact power efficiency, particularly 

in electric two-wheelers . 

The current controller design and simulations represent an 

important step, but experimental validation on a scaled 

prototype is essential to assess practical feasibility. Future 

work should also investigate the robustness of the control 

system under sensor noise, dynamic modeling uncertainties, 

and sudden external disturbances. Moreover, it is 

recommended to explore hybrid or adaptive control 

architectures that combine CMG stabilization with rider inputs 

and steering control for full-speed operation . 

Finally, a comparative analysis with other stabilization 

approaches such as single CMG systems, reaction wheels, and 

active steering methods should be conducted to quantify the 

advantages and trade-offs of the dual-CMG design. These 

future developments will play a crucial role in realizing 

intelligent, self-balancing two-wheeled vehicles for real-world 

applications. 
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