
Power and Bandwidth Allocation Optimization in Off-Grid Renewable Mobile Base Station 

Using Lagrange Multiplier 

Mohammed Hasan Alwan* , Raad S. Alhumaima , Abdulla Amer

Department of Communications Engineering, College of Engineering, University of Diyala, Diyala 32001, Iraq 

Corresponding Author Email: mohammedhasan_eng@uodiyala.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120616 ABSTRACT 

Received: 29 November 2024 

Revised: 3 February 2025 

Accepted: 13 February 2025 

Available online: 30 June 2025 

The rapid expansion of interconnected devices and data traffic has driven a critical need 

for robust mobile networks, particularly in rural regions where grid power is unreliable. 

This paper presents an optimization framework for off-grid green mobile base stations, 

utilizing renewable energy, such as solar and wind. This work targets optimizing 

resources allocation such as power and bandwidth to ensure high data rates and reliable 

connectivity. The problem has been solved using Lagrange multiplier method, it 

integrates sequential quadratic programming (SQP), active set, and interior point 

algorithms to solve such nonlinear problem, with nonlinear constraints. The findings 

reveal that the interior point algorithm is effectively allocating up to 15% more power 

to high-priority users than SQP, all the while preserving system efficiency. Conversely, 

SQP is shown to adopt a more balanced approach to resource distribution, achieving up 

to 12% higher fairness in power allocation among users under proportional and priority-

based schemes. Notably, both algorithms surpass the active set method in terms of 

adaptability to dynamic user requirements and system stability maintenance. The 

optimized solution of such system in rural areas provides significant improvements in 

mobile network performance while reducing dependence on fossil fuels. This research 

contributes to the field by proposing an energy-efficient, sustainable solution for rural 

connectivity, reducing operational costs and environmental impact. It also considers 

user’s criteria, such as varying profile, varying allocation, fluctuating channel 

conditions and varying bandwidth. The paper also assumes different network sizes, one 

base station and multi tired scenarios are considered. Subsequently, the Hessian test for 

convexity-concavity has been implemented to show the characteristics and type of the 

produced problem, by which, the type of the solver is chosen. However, the practical 

implication of such network is underscored via the integration of renewable-powered 

base stations to demonstrably enhance mobile coverage and facilitated access to critical 

services and applications. 
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1. INTRODUCTION

The burgeoning demand for robust and high-capacity 

mobile networks has become a prevalent concern in the 

modern era of communications, precipitated by the 

exponential proliferation of interconnected devices and data 

traffic [1, 2]. To meet the data rates demand, more base 

stations (BSs) are geographically deployed, which guides to 

increased power consumption [3, 4]. Nonetheless, connecting 

the users in rural areas is further challenging, first because the 

in-grid power is not always available, second, providing the 

required quality service is not always easy. There are several 

reasons for this claim: 1- providing higher data rates is 

challenging due to sparse population density, geographical 

hurdles, topographical issues, and infrastructure constraints. 

These challenges encompass terrain complexities, distance, 

and signal propagation. 2- regulatory frameworks can be non-

supportive of new technology deployment, exacerbating 

technological barriers such as outdated infrastructure and 

elevated maintenance costs. 3- higher operational expenses 

result from extensive coverage necessities and logistical 

intricacies, and 4- rural users often possess obsolete or less 

sophisticated devices, incompatible with advanced 

technologies [5, 6]. 

To tackle these issues, a synthesis of technological 

innovation, policy backing, and focused investment is 

demanded. However, the potential solutions may involve 

utilizing alternative technologies, governmental subsidies, and 

community-driven efforts to enhance rural connectivity. These 

strategies aim to ameliorate the digital divide and foster 

equitable access to high-speed connections. One of the 

solutions that relaxes the power demand is the deployment of 

autonomous off-grid mobile BSs that derive power from 

renewable energy sources, presents a viable solution to cater 

to the network coverage and service quality enhancement 

requirements, particularly in remote and under-served regions 

[7]. Not to mention, the anticipation is that future mobile 

networks must be powered by green energy to reduce their 
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environmental impact [8]. 

Subsequently, the significance of off-grid BSs is amplified 

in locales, characterized by weak or non-existent electrical 

grid infrastructure in rural areas, islands, and regions affected 

by natural disasters. Their utilization offers a sustainable and 

scalable alternative to traditional grid-dependent BSs, thereby 

addressing the challenge of extending network coverage in a 

cost-effective and eco-friendly manner. Note that the 

International Telecommunication Union (ITU) underscores 

the essential nature of these solutions to bridge the digital 

divide and realize the goal of information and communication 

technologies (ICTs) [9]. A practical example of off-grid BSs 

has yielded substantial benefits, exemplified by the successful 

deployment of solar-based BSs in India’s rural expanses, 

which has significantly bolstered mobile connectivity while 

diminishing reliance on costly diesel generators. Similarly, in 

Africa, the integration of solar and wind-powered base stations 

has played a pivotal role in extending network coverage to 

distant communities, thereby enabling access to essential 

services such as mobile banking and telemedicine [10]. 

However, the integration of green sources with an 

operational framework of off-grid BSs comprises several 

critical components: solar panels, energy storage systems, and 

sophisticated power management units. Solar photovoltaic 

systems have emerged as the preferred choice due to their 

adaptability to various geographical contexts, declining costs, 

and scalability. Energy storage systems, primarily batteries, 

serve the crucial function of storing excess energy generated 

during peak periods [11]; for subsequent utilization during low 

or absent energy production. Power management systems are 

tasked with optimizing the exploitation of renewable energy to 

uphold network reliability and performance [12, 13]. 

Furthermore, the allocation of users’ resources within off-

grid base stations, encompassing power, bandwidth, and other 

network elements, poses a complex challenge. This 

complexity arises from the nature of green supplies, the 

variability of user demands, and the imperative to maintain 

stringent QoS standards. Note that effective strategies for 

resource allocation must consider crucial metrics, such as 

 

a) Energy efficiency, ensuring the judicious use of both 

generated and stored energy to minimize waste and 

guarantee uninterrupted operation. 

b) Bandwidth management, provisioning adequate 

bandwidth to users, contingent upon their requirements, 

while preventing congestion and upholding high data 

rates. Moreover.  

c) Load balancing includes distributing user connections 

equitably among multiple sectors to preclude 

overloading and guarantee consistent service quality. 

d) QoS assurance by prioritizing critical services to ensure 

the maintenance of predefined performance thresholds. 

 

Beyond enhancing connectivity, these implementations 

demonstrate a commitment to environmental sustainability by 

lowering greenhouse gas emissions and reducing dependence 

on fossil fuels. 

This environmental consciousness resonates with global 

directions towards combating the climate change. In summary, 

there are two main metrics to be considered to guarantee 

effective resource allocation within the energy efficiency 

problem while considering renewable energy source, data rate 

optimisation and power consumption mitigation. To tackle the 

intricacies of resource allocation, a multitude of optimization 

techniques have been found, spanning from classical 

optimization Methods to cutting-edge machine learning and 

artificial intelligence algorithms. These methodologies aim to 

enhance the efficiency and sustainability of resource 

utilization in these systems. For instance, the resource 

allocation is optimised at the edge users [14, 15]. The resource 

block allocations in enhanced to improve the QoS among users 

in Kukade et al. [16], and the LTE service is enhanced in Chai 

et al. [17]. In the context of energy utilization, modelling, 

planning and configuration, review papers such as Hussain et 

al. [18], and Siddaiah and Saini [19] are beneficial. In addition, 

the voltage profiles during off-peak to peak periods are 

enhanced by Ahmadi et al. [20]. A hybrid energy grid was used 

in the LTE system in Yaacoub’s study [21]. 

Based on that, the optimisation of resource allocation in off-

grid green mobile base stations is a critical area of research 

that combines renewable energy technologies with advanced 

optimization algorithms. 

Based on the previous discussion, there are several 

questions to be answered: 

a). How can renewable energy sources be effectively 

integrated into off-grid base stations? 

b). What are the optimal resource allocation strategies for 

power and bandwidth in off-grid stations? 

c). How do different optimisation algorithms, such as SQP, 

active set, and interior-point methods, compare in terms of 

performance and efficiency? 

d). What impact do geographical and topographical 

challenges have on the deployment of off-grid mobile BSs 

for rural areas? 

e). How can dynamic user behaviour and variability in 

renewable energy supply be managed over time? 6. What 

are the environmental benefits of deploying off-grid green 

mobile base stations? 

f). How can advanced power management systems 

optimize the exploitation of renewable energy sources?  

g). What are the key factors influencing the carbon 

footprint? 

To answer these questions, this research endeavor seeks to 

establish and substantiate a holistic optimization framework 

for the allocation of resources of off-grid green mobile BSs. 

The proposed work presents a multi-objective nonlinear 

problem, containing energy efficiency, CO2 emission, 

maintenance and QoS metrics. 

The essential objective of the proposed work relies on 

enhancing energy efficiency by optimizing the use of green 

energy under operational network parameters, such as 

bandwidth and user power. Integrating renewable energy 

systems, that is a combination of solar panels and batteries 

facilitates energy storage, managed by a sophisticated power 

management system; and plays a pivotal role in optimizing 

power systems that are adaptively allocated considering user 

demand and environmental dynamics. The objective is to 

sustain network efficiency through judicious distribution of 

both renewable and stored energy, thereby achieving energy 

optimization, carbon reduction, and preserving QoS. 

Furthermore, it aims to diminish carbon emissions by 

integrating green energy sources and energy management 

practices that are both effective and efficient. To ensure QoS, 

the framework will optimize power and bandwidth to users in 

a manner that is commensurate with their specific 

requirements. 

Additionally, the framework is designed to dynamically 

adjust these allocations in response to fluctuations in user 
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demand, bandwidth, and channel conditions, thereby 

facilitating balanced load distribution and mitigating the risk 

of network congestion. The overarching goals of this 

framework are to minimize carbon footprint, guarantee QoS, 

manage the variability of renewable energy supply over time, 

and sustain high data rates along with reliable connectivity and 

guaranteed maintenance. The study is designed to ascertain the 

most proficient algorithms capable of addressing the 

inherently non-linear optimization challenges that arise in the 

context of such BSs. 

The Lagrange multiplier method has been implemented to 

find the optimal solution mathematically. In addition, three 

algorithms are used and compared to tackle this problem 

numerically. The following points highlight the contributions 

of this research: 

a). Formulating an optimization framework designed for 

off-grid green mobile base stations integrates solar energy 

to serve rural telecommunication networks with unreliable 

grid connections. The framework’s uniqueness arises from 

its emphasis on adaptive resource allocation and dynamic 

responsiveness to varying user demands, with the ultimate 

objective of optimizing power and bandwidth distribution 

while ensuring energy efficiency and service quality. 

b). Contrary to prior research that has either examined 

renewable energy generally or considered mobile base 

station deployment without explicitly tackling off-grid 

challenges, this work distinguishes itself by comparing the 

efficacy of three numerical algorithms: SQP, active set, 

and interior point in addressing the specific non-linear 

optimization problems inherent to such a scenario. 

Through empirical analysis, it highlights the performance 

of these algorithms in these context studies, the superiority 

of SQP and interior point algorithms in managing such 

complexities is established, thereby contributing to 

enhanced network performance and resource utilization in 

remote settings. 

c). Moreover, the research underscores practical 

significance by presenting case studies of real-world solar 

and wind-powered base station implementations in rural 

environments. These examples exemplify not only 

technical optimization but also environmental 

sustainability, particularly in the reduction of operational 

costs and carbon emissions. 

The current investigation aims to fill the identified lacunae 

within the existing literature through a comprehensive analysis 

of the following areas:  

1. This research provides a comparative evaluation of three 

sophisticated algorithms, specifically designed to address the 

multi-objective, non-linear optimization challenges inherent to 

off-grid base stations (BSs). This approach diverges from 

earlier studies by focusing on algorithms tailored to the 

nuanced requirements of such systems.  

2. Unlike the prevalent static resource allocation paradigms 

presented in existing research, this study incorporates dynamic 

user behavior patterns, real world fluctuations in renewable 

energy sources, and multi-tiered BS architectures to enhance 

the practicality and relevance of the proposed solutions.  

3. Incorporating environmental metrics, such as carbon 

emissions, into the optimization framework represents a 

significant advancement over prior research that has 

frequently neglected such environmental impacts.   

4. To substantiate the theoretical foundations of the study, 

real-world case studies are presented, detailing the 

implementation of solar- and wind-powered BSs. These 

empirical analyses serve to demonstrate the feasibility and 

sustainability of the proposed optimization framework, 

thereby bridging the gap between abstract models and tangible 

implementations. 

 

1.1 Related works 

 

The reviewed literature provides an extensive overview of 

the currently available works, highlighting both theoretical 

advancements and practical implementations. Continued 

innovations and collaborations are essential to unleash the full 

potential of off-grid green mobile base stations in achieving 

sustainable and inclusive mobile network coverage. Several 

studies have explored different aspects of this field, offering 

insights into effective strategies and methodologies. In a 

thorough academic investigation, the researchers scrutinized 

the incorporation of solar and wind power into mobile BSs, 

emphasizing the substantial prospects for diminishing carbon 

emissions and operational expenses. They presented a 

conceptual framework for a hybrid solar-wind configuration 

supplemented with battery storage, aiming to guarantee an 

uninterrupted power supply even amidst periods characterized 

by limited renewable energy production, but there is no 

consideration for the CO2 emission [22]. 

Subsequently, a stochastic queue model is proposed to 

evaluate the solar-powered BSs, focusing on metrics such as 

energy utilization, outage probability, and discharge depth. A 

novel CAPEX minimization algorithm was used to achieve 

about 12.1% more performance in comparison with traditional 

systems [23]. In addition, a wireless communication network 

driven by renewable energy sources was proposed, comprising 

a capacity-bound green energy supplier with anticipated 

mobile user demand. The BS operates on a mix of renewable 

and conventional power. A queuing model is introduced to 

analyse decentralized decision-making and detect 

inefficiencies. Furthermore, an incentive-compatible 

mechanism is presented to ensure accurate energy demand 

reporting [24]. 

The energy consumption in mobile networks is escalating, 

prompting operators to enhance energy efficiency through cell 

deactivation during low-traffic periods. This presents a 

challenging optimisation scenario, which can be framed as 

binary integer programming with constant interference. A 

switch-off scheme based on a genetic algorithm was used, 

demonstrating linear complexity and superiority over the NP-

hard bin-packing problem [25]. Moreover, Hammadi et al. 

[26] examined reinforcement learning for adaptive resource 

management in renewable energy-driven base stations. Their 

findings indicated that these algorithms effectively optimise 

real-time allocation, responding to varying network demands 

and energy supply. 

Subsequently, green energy models for network 

architecture have been analysed and optimised, outlining 

fundamental principles and challenges in optimizing these 

eco-friendly systems proposed by Han and Ansari [8]. Based 

on solar energy in South Africa, Aderemi et al. [27] studied 

that solar irradiance levels of 4.5-6.5 kWh/m2 can lower 

operational costs by 49% in contrast to diesel generators. 

However, in Asia, particularly in northern Pakistan. The study 

constructs models for solar panels and wind turbines, 

considering temporal fluctuations and traffic dynamics. An 

energy cooperation scheme is proposed to optimize cost 

savings across various BSs [28]. 

Whereas in Bangladesh, the viability of biomass hybrid and 
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solar photovoltaic systems was analysed. Implementing an 

energy-sharing mechanism and a low resistance path enhances 

efficiency for Mobile BSs [29]. Subsequently, green energy is 

used to diminish the carbon footprint and operational expenses 

of the telecommunications sector. An algorithm for time-based 

allocation of collected green energy is proposed, incorporating 

both delay and green energy considerations. The methodology 

exhibits enhanced performance relative to established 

benchmarks across BS deployment scenarios [30]. 

Another algorithm was proposed in this context, targeting 

the mitigation of electricity grid burdens and operational costs. 

The proposed approach assesses the energy efficiency of both 

hybrid and homogeneous storage systems. Numerical 

examples are provided to illustrate the comprehensive analysis 

conducted by Kuaban et al. [31], yet the environmental impact 

was ignored in these systems. Subsequently, an innovative 

approach to optimize the deployment of large-scale solar 

panels and base stations within urban landscapes was 

proposed, reducing BS deployment costs by up to 35% and 

52% in connecting cable costs by Deheyab et al. [32]. 

Moreover, an off-grid green cellular BS integrating solar 

power was proposed, in which the storage system’s 

discharging and charging dynamics were analysed by Kuaban 

et al. [33]. In addition, a flexible resource optimization 

approach aimed at minimizing operational costs for 5G BS 

was proposed with constraints and diverse decentralized 

resources. The research demonstrates that 5G BS involvement 

in demand side management decreases overall energy 

consumption and costs [34]. In the same context, energy 

cooperation work was modelled as a multi-objective linear 

programming problem while managing and balancing the 

future BS load and energy harvesting [35]. 

Despite significant progress, the extant literature 

underscores certain omissions with respect to the synthesis of 

environmental metrics, the consideration of multifaceted BS 

challenges, and the optimization of systems under real-world 

dynamic conditions. This research endeavor aims to mitigate 

these shortcomings by introducing a comprehensive 

optimization framework that is specifically designed to:  

1. Enhance energy efficiency within the system 

architecture.  

2. Diminish the carbon footprint associated with the 

operation of these structures.  

3. Ensure the maintenance of Quality of Service (QoS) 

parameters under varying demand patterns and energy 

scenarios.  

4. Exhibit the efficacy of the proposed algorithms in 

practical, operational contexts. 

By systematically addressing these gaps, the current study 

significantly advances the state of the art and offers tangible 

recommendations for the implementation of sustainable and 

high-performance off-grid BSs. 

 

 

2. SYSTEM MODEL 

 

The mathematical model considers aspects such as energy 

efficiency, car- bon footprint, operational costs including 

maintenance, user QoS, dynamic user behavior, and renewable 

energy variability. It was assumed that the BS is operated 

using hybrid power, i.e. in case of absence of the green power, 

the traditional type of power is used, and vice versa. In terms 

of power, it was assumed that the Psolar(ς) denotes the solar 

panels generated power at time ς, Po(ς) denotes the overall 

consumed power by off-grid BS at time ς. Moreover, Estorage(ς) 

represents battery stored energy at time ς, and η represents the 

energy storage system efficiency. 

 

2.1 Energy generation and connected users 

 

The solar panels generated power at any time ς is given by 

the following formula presented by Markvart and Castañer 

[36]: 

 

Psolar(ς)=A Gmax(ς) (1−Gvar(ς)) ηpv (1) 

 

where, Gmax(ς) denotes the maximum solar irradiance for the 

ς, and Gvar(ς) denotes the irradiance variability at ς, A 

represents solar panels’ area, and ηpv symbolises solar panels’ 

efficiency. 

Subsequently, the dynamic number of users connected to 

the off-grid base station, accounting for new users entering 

Uenter(ς) and existing users leaving the system Uleave, 

 

Uo(ς+1)=Uo(ς)+Uenter(ς)−Uleave(ς) (2) 

 

where, Uo(ς) denotes the off-grid users count connected at ς. 

The next time slot users are denoted using the term Uo(ς+1). 

In addition, the power and bandwidth of all users connected 

to the off-grid base station at time t are respectively given by: 

 

𝑃𝑎𝑙𝑙𝑜𝑐𝑜
(𝜍) = ∑ 𝑃𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

 (3) 

 

and 

 

𝐵𝑎𝑙𝑙𝑜𝑐𝑜
(𝜍) = ∑ 𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

 (4) 

 

It was also assumed that the total available bandwidth and 

power are equally distributed among all users, as follows: 

 

𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍) =  
𝐵𝑡𝑜𝑡𝑎𝑙

𝑈𝜊(𝜍)
 (5) 

 

𝑃𝑢𝑠𝑒𝑟,𝑢(𝜍) =  
𝑃𝑡𝑜𝑡𝑎𝑙

𝑈𝜊(𝜍)
 (6) 

 

where, the total available bandwidth is denoted as Btotal, Ptotal 

symbolises the total available power, Utotal represents users’ 

total number. Subsequently, Buser,u(ς) symbolises the allocated 

bandwidth of uth user at ς, while Puser,u(ς) denotes uth user’s 

allocated power at ς. 

Furthermore, the proposed model can support unequal 

power and bandwidth allocation among users, despite its 

current assumption of equitable resource distribution. 

Facilitating inequitable allocation, contingent on varying user 

requirements or priorities is assumed. A weighted approach 

can be employed, wherein priority users are allocated more 

resources, contemplating factors like QoS needs, proximity to 

the base station, or service type (e.g., prioritizing emergency 

services). The pertinent equations for band- width and power 

allocation can be adjusted accordingly: 

 

𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍) = 𝑤𝑢

𝐵𝑡𝑜𝑡𝑎𝑙

𝑈𝜊(𝜍)
 (7) 
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𝑃𝑢𝑠𝑒𝑟,𝑢(𝜍) = 𝜐𝑢

𝑃𝑡𝑜𝑡𝑎𝑙

𝑈𝜊(𝜍)
 (8) 

 

where, wu and vu denote the weights assigned to user u for 

bandwidth and power, respectively, which can be determined 

by their specific conditions or priorities. 

 

2.2 Channel capacity with interference 

 

The data rate of each user considers the allocated 

bandwidth, signal power, noise power, and interference, as 

follows: 

 

𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍) = 𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍) 𝑙𝑜𝑔2 (1 +
𝑆𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑁𝑢𝑠𝑒𝑟,𝑢(𝜍) + 𝐼𝑢𝑠𝑒𝑟,𝑢(𝜍)
) (9) 

 

where, the total data rate of the off-grid base station is 

calculated as follows: 

 

𝑅𝜊(𝜍) = ∑ 𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

 (10) 

 

where, Ruser,u(ς) has been used to assign the uth user’s capacity 

at time ς, Rmin,u(ς) denotes the minimum uth user data rate at ς, 

and Ro(ς) denotes the overall data rate required by the off-grid 

base station at time ς. In addition, Suser,u(ς) denotes the received 

signal of uth user in ς, Nuser,u(ς) symbolizes AWGN noise for 

uth user at ς, and Iuser,u(ς) denotes interference power of uth user 

at ς. 

 

2.3 Energy consumption and energy balance 

 

The overall consumed power by off-grid BS, which is sum 

of power consumption of all connected users, adjusted for 

network components’ energy efficiency. 

 

𝑃𝜊(𝜍) = ∑
𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝜂𝑒𝑓𝑓

𝑈𝜊(𝜍)

𝑢=1

 (11) 

 

where, ηeff is network components’ energy efficiency. 

The battery’s stored energy, accounting for power generated 

by solar panels and consumed power of the off-grid BS, with 

adjustments for the efficiency of the storage system is given 

by: 

 

Estorage(ς+1)=Estorage(ς)+(Psolar(ς)−Po(ς)) ∆ςη (12) 

 

It was further assumed the total network capacity is the data 

rates sum for all users, while the network utilization is 

formulated as the ratio of data demand to total network 

capacity. 

 

𝐶𝜊(𝜍) = ∑ 𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

 (13) 

 

𝑈(𝜍) =
𝐷(𝜍)

𝐶𝜊(𝜍)
∙ 100% (14) 

 

2.4 Operational cost and maintenance 

 

The total operational cost, which includes a function of 

power consumption, data rate, and other factors, plus the 

maintenance cost is calculated as follows: 

 

Cop(ς)=f (Po(ς), Ro(ς))+Cmaint(ς) (15) 

 

where, Cop(ς) denotes the operational cost at ς, while Cmaint(ς) 

is maintenance cost at ς. 

To further elaborate on the f (Po(ς), Ro(ς)), the direct model 

has been assumed, i.e., the operational cost is linearly 

proportional to the system’s power and data rate, as follows: 

 

f(Po(ς), Ro(ς))=ϵ(Po(ς)+Ro(ς)) (16) 

 

where, ϵ is the increasing/decreasing constant of the cost. 

 

2.5 Carbon footprint calculation 

 

The carbon footprint is formulated based on the power 

consumption of the off-grid BS and emission factor of grid 

electricity is given by: 

 

CO2emitted=Po(ς)∆ς · EFgrid (17) 

 

This formulation denotes instantaneous off-grid power 

consumption, measurement timeframe, and grid electricity’s 

emission factor, denoted as EFgrid in kgCO2/Wh. Its aim is to 

quantify carbon emissions from energy use in real-time, 

offering a tangible and operational metric to guide 

sustainability initiatives at off-grid base stations. 

 

2.6 Multi-objective optimization problem 

 

Lagrange multiplier’s function is extracted to incorporate 

the objective function and constraints. The objective function 

aims to: 

 

a. Maximize energy efficiency ηeff. 

b. Minimize carbon emissions CO2emitted. 

c. Minimize operational costs Cop(ς). 

d. Ensure user QoS Ruser,u(ς) ≥ Rmin,u(ς). 

 

max (∝ 𝜂𝑒𝑓𝑓 − 𝛽𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑 − 𝛾𝐶𝑜𝑝(𝜍)

+ 𝛿 ∑
𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍) − 𝑅𝑚𝑖𝑛,𝑢(𝜍)

𝑅𝑚𝑖𝑛,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

 
(18) 

 

Constraints: 

 

𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝜍 + 1) = 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝜍) + (𝑃𝑠𝑜𝑙𝑎𝑟(𝜍) − 𝑃𝜊(𝜍)) ∙ ∆𝜍 ∙ 𝜂 

 

𝑃𝑎𝑙𝑙𝑜𝑐_𝜊(𝜍) = ∑ 𝑃𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

 

𝐵𝑎𝑙𝑙𝑜𝑐_𝜊(𝜍) = ∑ 𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

 

 

𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍) ≥ 𝑅𝑚𝑖𝑛,𝑢(𝜍) 

 

To construct the Lagrangian, we introduce Lagrange 

multipliers for each imposed constraint. Let λ denote the 

multiplier associated with the energy balance constraint, µu 

for the power allocation constraint, νu for the band- width 

2009



 

allocation constraint, and ξu for the QoS constraint. 

ℒ = 𝛼
𝑅𝜊(𝜍)

𝑃𝜊(𝜍)
− 𝛽𝑃𝜊(𝜍) ∙ ∆𝜍 ∙ 𝐸𝐹𝑔𝑟𝑖𝑑 − 𝛾𝐶𝜊𝑝(𝜍)

+ 𝛿 ∑
𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍) − 𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑅𝑚𝑖𝑛,𝑢(𝜍)
 

𝑈𝜊(𝜍)

𝑢=1

+ 𝜆(𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝜍 + 1) − 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝜍)

− (𝑃𝑠𝑜𝑙𝑎𝑟(𝜍) − 𝑃𝜊(𝜍)Δ𝑡𝜂

+ ∑ 𝜇𝑢 (𝑃𝑎𝑙𝑙𝑜𝑐𝜊
(𝜍) − ∑ 𝑃𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

)

𝑈𝜊(𝜍)

𝑢=1

+ ∑ 𝜈𝑢 (𝐵𝑎𝑙𝑙𝑜𝑐𝜊
(𝜍) − ∑ 𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

)

𝑈𝜊(𝜍)

𝑢=1

+ ∑ 𝜉𝑢 (𝑅𝑚𝑖𝑛,𝑢(𝜍)

𝑈𝜊(𝜍)

𝑢=1

− 𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)) log 2 (1

+
𝑆𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑁𝑢𝑠𝑒𝑟,𝑢(𝜍) + 𝐼𝑢𝑠𝑒𝑟,𝑢(𝜍)
) 

 

The optimal solution is found by satisfying the Karush-

Kuhn-Tucker (KKT) conditions: 

 
𝜕ℒ

𝜕𝑃𝑢𝑠𝑒𝑟,𝑢(𝜍)
= 0,

𝜕ℒ

𝜕𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)
= 0, 

𝜕ℒ

𝜕𝜆
= 0,

𝜕ℒ

𝜕𝜇𝑢

= 0,
𝜕ℒ

𝜕𝜈𝑢

= 0,
𝜕ℒ

𝜕𝜉𝑢

= 0 

 

That is: 

 
𝜆(𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝜍 + 1) − 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝜍) − 𝑃𝑠𝑜𝑙𝑎𝑟(𝜍) − 𝑃𝜊(𝜍) ∙ ∆𝜍. 𝜂 = 0 

 

𝜇𝑖  (𝑃𝑎𝑙𝑙𝑜𝑐𝜊
(𝜍) − ∑ 𝑃𝑢𝑠𝑒𝑟,𝑢(𝜍)𝑈𝜊(𝜍)

𝑢=1 ) = 0  

 

𝜈𝑢 (𝐵𝑎𝑙𝑙𝑜𝑐𝜊
(𝜍) − ∑ 𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)𝑈𝜊(𝜍)

𝑢=1 ) = 0  

 

𝜉𝑢 (𝑅𝑚𝑖𝑛,𝑢(𝜍) − 𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)) log 2 (1 +
𝑆𝑢𝑠𝑒𝑟,𝑢(𝜍)

𝑁𝑢𝑠𝑒𝑟,𝑢(𝜍)+𝐼𝑢𝑠𝑒𝑟,𝑢(𝜍)
) = 0  

 

The system arising from the KKT conditions necessitates 

numerical resolution due to the problem’s intricate nature and 

nonlinearity. This process employs iterative methods and 

sophisticated optimization solvers adept at addressing multi-

objective, constrained scenarios, suggesting the SQP, active 

set and interior point algorithms. In addition, given the 

potential nonlinearity, a numerical analysis is conducted to 

determine convexity and concavity via the definiteness of the 

Hessian through the computation of the eigenvalues associated 

with the Hessian matrix. Specifically, if the entirety of these 

eigenvalues is positive in value, it is indicative of a positive 

definite Hessian; conversely, if they are all negative, this 

suggests a negative definite Hessian. 

 

 

3. TWO-TIER METHOD  

 

By considering two off-grid green mobile BSs, it is possible 

to encapsulate the interactions that occur among various 

network constituents. This holistic approach enables the 

optimization of resource allocation within a more complicated 

system, thereby addressing the delicate balance between 

energy efficiency, carbon footprint reduction, operational 

expenditures, and user QoS. The nature of the optimization 

challenge remains multi-objective, which is essential for 

simultaneously considering the multifaceted aspects of the 

network’s performance. 

The subsequent elaboration of this formulation incorporates 

the presence of two distinct off-grid mobile BSs, which are 

identified as BS1 and BS2. To account for the dual nature of 

this configuration, the mathematical constructs, including the 

relevant equations and variables, are adapted to reflect the 

interplay between both BSs. Accordingly, the following 

parameters are assumed: Po,1(ς) is the BS1 power consumed at 

ς; Po,2(ς) is BS2 power consumed at ς; Estorage,1(ς) denotes the 

BS1 battery’s stored energy at ς; 

Estorage,2(ς) is the BS2 battery’s stored energy at time ς; and 

λ1 symbolises the Lagrange multiplier for BS1. In addition, 

λ2is the Lagrange multiplier for BS2; Uo,1(ς) presents the users 

count of BS1 at ς; while Uo,2(ς) presents the users count of BS2 

at ς. Following, Puser,1,u(ς)= uth user allocated power in BS1; 

Puser,2,j(ς)= user jth allocated power in BS2; Buser,1,u(ς)= and 

width allocated to user u at BS1; Buser,2,j(ς)= user’s bandwidth 

j at BS2. And so on for the other formulation after one BS 

scenario. For instance: 

 

𝑃𝑠𝑜𝑙𝑎𝑟, 1(𝜍) = 𝐴1 · 𝐺𝑚𝑎𝑥(𝜍) · (1 − 𝐺𝑣𝑎𝑟(𝜍)) · 𝜂𝑝𝑣 

 

𝑃𝑠𝑜𝑙𝑎𝑟, 2(𝜍) = 𝐴2 · 𝐺𝑚𝑎𝑥(𝜍) · (1 − 𝐺𝑣𝑎𝑟(𝜍)) · 𝜂𝑝𝑣 

 

𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 1(𝜍 + 1) 

= 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 1(𝜍) + (𝑃𝑠𝑜𝑙𝑎𝑟, 1(𝜍) − 𝑃𝑜, 1(𝜍) · ∆𝜍 · 𝜂 

 
𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 2(𝜍 + 1) 

= 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 2(𝜍) + (𝑃𝑠𝑜𝑙𝑎𝑟, 2(𝜍) − 𝑃𝑜, 2(𝜍)) · ∆𝜍 · 𝜂 

 

3.1 Optimization of two base stations 

 

The optimization problem now involves maximizing the 

overall system efficiency and minimizing carbon emissions for 

both BSs, while ensuring the constraints are met, as follows: 

 

max (𝛼(𝜂𝑒𝑓𝑓,1 + 𝜂𝑒𝑓𝑓,2) − 𝛽(𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,1 + 𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,2)

− 𝛾 (𝐶𝑜𝑝,1(𝜍) + 𝐶𝑜𝑝,2(𝜍))

+ 𝛿 ( ∑
𝑅𝑢𝑠𝑒𝑟,1,𝑖(𝜍) − 𝑅𝑚𝑖𝑛,𝑢(𝜍)

𝑅𝑚𝑖𝑛,𝑢(𝜍)

𝑈𝜊,1(𝜍)

𝑖=1

+ ∑
𝑅𝑢𝑠𝑒𝑟,2,𝑗(𝜍) − 𝑅𝑚𝑖𝑛,𝑗(𝜍)

𝑅𝑚𝑖𝑛,𝑗(𝜍)

𝑈𝜊,2(𝜍)

𝑗=1

) 

 

Subject to: 

 

𝑅𝑢𝑠𝑒𝑟,1,𝑢(𝜍) = 𝐵𝑢𝑠𝑒𝑟,1,𝑢(𝜍) log 2 (1 +
𝑆𝑢𝑠𝑒𝑟,1,𝑢(𝜍)

𝑁𝑢𝑠𝑒𝑟,1,𝑢(𝜍) + 𝐼𝑢𝑠𝑒𝑟,1,𝑢(𝜍)
) 

 

𝑅𝑢𝑠𝑒𝑟,2,𝑗(𝜍) = 𝐵𝑢𝑠𝑒𝑟,2,𝑗(𝜍) log 2 (1 +
𝑆𝑢𝑠𝑒𝑟,2,𝑗(𝜍)

𝑁𝑢𝑠𝑒𝑟,2,𝑗(𝜍) + 𝐼𝑢𝑠𝑒𝑟,2,𝑗(𝜍)
) 

 

𝑅𝜊,1(𝜍) = ∑ 𝑅𝑢𝑠𝑒𝑟,1,𝑢(𝜍)

𝑈𝜊,1(𝜍)

𝑖=1
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𝑅𝜊,2(𝜍) = ∑ 𝑅𝑢𝑠𝑒𝑟,2,𝑗(𝜍)

𝑈𝜊,2(𝜍)

𝑗=1

 

 

𝑃𝜊,1(𝜍) = ∑
𝑅𝑢𝑠𝑒𝑟,1,𝑢(𝜍)

𝜂𝑒𝑓𝑓

𝑈𝜊,1(𝜍)

𝑢=1

 

 

𝑃𝜊,2(𝜍) = ∑
𝑅𝑢𝑠𝑒𝑟,2,𝑗(𝜍)

𝜂𝑒𝑓𝑓

𝑈𝜊,2(𝜍)

𝑗=1

 

 

𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,1 = 𝑃𝜊,1(𝜍) ∙ ∆𝜍 ∙ 𝐸𝐹𝑔𝑟𝑖𝑑 

 

𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,2 = 𝑃𝜊,2(𝜍) ∙ ∆𝜍 ∙ 𝐸𝐹𝑔𝑟𝑖𝑑 

 

𝜂𝑒𝑓𝑓,1 =
𝑅𝜊,1(𝜍)

𝑃𝜊,1(𝜍)
 

 

𝜂𝑒𝑓𝑓,2 =
𝑅𝜊,2(𝜍)

𝑃𝜊,2(𝜍)
 

𝑅𝑢𝑠𝑒𝑟,1,𝑢(𝜍) ≥ 𝑅𝑚𝑖𝑛,𝑢(𝜍) 

 

𝑅𝑢𝑠𝑒𝑟,2,𝑗(𝜍) ≥ 𝑅𝑚𝑖𝑛,𝑗(𝜍) 

 

The optimal allocations of power and bandwidth can be 

ascertained to re- solve the KKT conditions. The resulting 

expressions for Puser,1,u(ς), Puser,2,j(ς), Buser,1,u(ς), and Buser,2,j(ς) 

offer a methodology to distribute resources in a manner that 

equilibrates energy efficiency, carbon emissions, operational 

costs, and user QoS. 

Nonetheless, the intricacy of the equations and the necessity 

for iterative numerical resolutions often necessitate the 

utilization of optimization software or tailored algorithms 

capable of addressing the nonlinear character of the problem 

in practical implementations. This mathematical framework 

serves as a robust foundation for such computational 

approaches. 

For simplicity, let us assume that each base station supports 

two users. This assumption can be generalized to 

accommodate a greater number of users analogously. The 

Lagrangian function becomes as follows: 

 

ℒ = 𝛼(𝜂𝑒𝑓𝑓,1 + 𝜂𝑒𝑓𝑓,2) − 𝛽(𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,1 + 𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,2)

− 𝛾 (𝐶𝑜𝑝,1(𝜍) + 𝐶𝑜𝑝,2(𝜍))

+ 𝛿( ∑
𝑅𝑢𝑠𝑒𝑟,1,𝑢(𝜍) − 𝑅𝑚𝑖𝑛,𝑢(𝜍)

𝑅𝑚𝑖𝑛,𝑢(𝜍)

𝑈𝜊,1(𝜍)

𝑢=1

+ ∑
𝑅𝑢𝑠𝑒𝑟,1,𝑗(𝜍) − 𝑅𝑚𝑖𝑛,𝑗(𝜍)

𝑅𝑚𝑖𝑛,𝑗(𝜍)

𝑈𝜊,2(𝜍)

𝑗=1

) 

 

𝑅𝑢𝑠𝑒𝑟,1,𝑢(𝜍) ≥ 𝑅𝑚𝑖𝑛,𝑢(𝜍) 

 

𝑅𝑢𝑠𝑒𝑟,2,𝑗(𝜍) ≥ 𝑅𝑚𝑖𝑛,𝑗(𝜍) 

 

for each base station, the KKT conditions are set as follows: 

 
𝜕ℒ

𝜕𝑃𝑢𝑠𝑒𝑟,1,𝑢(𝜍)
= 0  ∀𝑢,

𝜕ℒ

𝜕𝑃𝑢𝑠𝑒𝑟,2,𝑗(𝜍)
= 0  ∀𝑗, 

𝜕ℒ

𝜕𝐵𝑢𝑠𝑒𝑟,1,𝑢(𝜍)
= 0  ∀𝑢,

𝜕ℒ

𝜕𝐵𝑢𝑠𝑒𝑟,2,𝑢(𝜍)
= 0 

 

∀𝑗,
𝜕ℒ

𝜕𝜆1

= 0,
𝜕ℒ

𝜕𝜆2

= 0, 𝜆1 ≥ 0, 𝜆2 ≥ 0 

 

 

4. MULTI-TIER SCENARIO 

 

The mathematical formulation to a multi-BS scenario 

considers N BSs. The equations to account for multiple BSs 

are generalized, each with its own constraints and parameters, 

as follows: N denotes BSs count, Po,k(ς) denotes the consumed 

power at BS k at ς, Estorage,k(ς) denotes the energy stored in the 

battery of Base Station k at ς. Lagrange multiplier for energy 

balance constraint of BS k is symbolised as λk, while Uo,k(ς) is 

used to present the users’ count connected to BS k at ς. In 

addition, the allocated power to uth user in BS k is denoted as 

Puser,k,u(ς), while bandwidth allocated to the user of BS k is 

denoted as Buser,k,u(ς). The optimization problem involves 

maximizing the overall system efficiency and minimizing 

carbon emissions for all base stations, as follows: 

 

𝑚𝑎𝑥 (∑ 𝛼𝜂𝑒𝑓𝑓,𝑘 − 𝛽𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,𝑘 −  𝛾𝐶𝑜𝑝,𝑘(𝜍)

𝑁

𝑘=1

+ 𝛿 ∑
𝑅𝑢𝑠𝑒𝑟,𝑘,𝑢(𝜍) − 𝑅𝑚𝑖𝑛,𝑘,𝑢(𝜍)

𝑅𝑚𝑖𝑛,𝑘,𝑢(𝜍)
 

𝑈𝜊,𝑘(𝜍)

𝑢=1

) 

 

subject to: 

 

log 2 (1 +
𝑆𝑢𝑠𝑒𝑟,𝑘,𝑢(𝜍)

𝑁𝑢𝑠𝑒𝑟,𝑘,𝑢(𝜍) + 𝐼𝑢𝑠𝑒𝑟,𝑘,𝑢(𝜍)
) ∀𝑘, 𝑢 

 

𝐶𝑂2𝑒𝑚𝑖𝑡𝑡𝑒𝑑,𝑘 = 𝑃𝑜,𝑘(𝜍) ∙ ∆𝜍. 𝐸𝐹𝑔𝑟𝑖𝑑   ∀𝑘 

 

𝜂𝑒𝑓𝑓,𝑘 =
𝑅𝑜,𝑘(𝜍)

𝑃𝑜,𝑘(𝜍)
  ∀𝑘 

 

𝑅𝑢𝑠𝑒𝑟,𝑘,𝑢(𝜍) ≥ 𝑅𝑚𝑖𝑛,𝑘,𝑢(𝜍)  ∀𝑘, 𝑢 

 

The iterative solver approach can be extended to handle N 

BSs like the two BSs case, adjusting the updated equations and 

storage arrays accordingly. 

 

 

5. PERFORMANCE EVALUATION: SINGLE VS 

MULTI BASE 

 

5.1 One base station 

 

Figure 1 elucidates the efficiencies and limitations of SQP, 

Interior Point, and Active Set algorithms in a single BS power 

allocation scenario using three types of allocations: equal 

power, proportional and priority-based methods. The equal 

distribution method uniformly assigns power across all users, 

thereby ensuring equity yet potentially sacrificing optimal 

performance for high-demand users due to its indifference 

towards user-specific requirements. Conversely, the 

proportional distribution tailors power allocation to individual 

user needs, which enhances system efficiency for high-
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demand users, albeit at the expense of equity for lower-

demand users. 

The interior point method distinguishes itself in this context 

by allocating above W of power, indicating potential 

superiority in optimizing for high-power-requiring users. 

However, the priority distribution scheme allocates most of the 

power to critical users, rendering it most suitable for scenarios 

where, certain users’ performance is paramount. While the 

interior point algorithm exhibits superiority in adaptive 

resource management under varying user demands, both SQP 

and active set strike a more balanced equilibrium between 

equity and efficiency, particularly under the priority strategy.  

The selection of an algorithm and corresponding strategy 

hinges on system-specific imperatives: if fairness is 

paramount, the equal strategy is preferred; for efficiency, the 

proportional strategy is more apt; and for prioritization, the 

priority strategy is ideal. Note that more details about the 

allocation types and strategies, along with different user 

behaviors, can be found in Section 6. 

Note that for the maintenance, cost, and energy storage, the 

three algorithms show similar behaviour, with 100.4 CO2 kg 

of CO2 emission, 240 (Cost Unit) maintenance costs, and 

2.876 Wh of the energy storage per user when using equal 

power allocation. These results are obtained using the values 

of Table 1. Note that the two BSs scenarios have been ignored 

as knowing the individual and multi-BSs system behaviour is 

sufficient to conclude the middle case scenario. 

 

Table 1. Parameters and values of one BS 

 
Parameter Value Unit 

A 100 m2 

Gmax 1000 W/m2 

Gvar 0.2 % 

ηpv 0.15 % 

ηstorage 0.9 % 

EFgrid 0.3 kg CO2/Wh 

Ptotal 10 W 

Btotal 100 Hz 

Uo 100 - 

Rmin 10 Mbps 

α 0.5 - 

β 0.3 -  

γ 0.1 - 

δ 0.1 - 

∆ς 1 Hours 

tmax 24 Hours 

 

 

 
 

Figure 1. Power allocation comparison for three algorithms concerning user index, while using three types of allocations 

 

5.2 Multi base station 

 

This scenario becomes more nonlinear than one BS because 

of the existence of multi-tier allocations. This analysis focuses 

on the performance of SQP, interior point, and active set 

methods. SQP is known for its robustness in handling 

nonlinear optimization problems, as it iteratively solves a 

sequence of quadratic subproblems to find the optimal 

solution. It typically converges quickly to a local optimum due 

to its iterative nature and is effective in handling complex 

constraints and nonlinearities. However, it may struggle with 

highly non-convex problems and be computationally 

intensive. The interior point approach is designed to efficiently 

tackle large-scale problems by cross passing the feasible 

region’s interior. They scale well with the size of the problem 

and can handle a wide range of constraints effectively. 

However, they may converge slowly near the optimal solution 

and require good initial feasible points to perform optimally. 

Active set methods iteratively explore the active constraints 

for finding its optimal solution. They are efficient for problems 

with a relatively small number of active constraints and can 

quickly identify and exploit the structure of the problem more 
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efficiently. Hence, the behaviour of these algorithms reflects 

on the obtained results, as shown in Figures 2 and 3 after 

changing the total power allocated to each base station from 

10 to 15 W, users’ to 14 and bandwidth to 200 Hz, while using 

the values of Table 2. 

 
Table 2. Parameters and values of multi-BSs 

 
Parameter Value Unit 

N 3  

A [100, 100, 100] m2 

Gmax 1000 W/m2 

Gvar 0.2 % 

ηpv [0.15, 0.1, 0.12] % 

ηstorage 0.9 % 

EFgrid 0.5 kg CO2/Wh 

Ptotal 15 W 

Btotal 200 Hz 

Uo [50, 50, 50] - 

Rmin 100 Mbps 

α 0.5 - 

β 0.3 -  

γ 0.1 - 

δ 0.1 - 

∆ς 1 Hours 

tmax 10 Hours 

 
Figure 2 illustrates a comparative analysis of power 

allocation among three optimization algorithms across three 

distinct strategies: equal, proportional, and priority. The equal 

strategy maintains a uniform power allocation of 1W per user. 

In contrast, the Proportional strategy reveals a higher degree 

of variability, particularly within the SQP and interior point 

methods according to individual user demands, leading to a 

more dynamic system response. The interior point algorithm 

is notably adept at allocating power efficiently with 

pronounced peaks, indicating superior performance in 

scenarios characterized by significant demand fluctuations. 

The SQP algorithm, on the other hand, demonstrates a more 

balanced approach by optimizing power distribution while 

avoiding extreme allocations, thus catering to systems that 

necessitate a moderate degree of fairness and adaptability. 

Lastly, the active set algorithm, which is less reactive than its 

counterparts, appears to adopt a conservative strategy with 

fewer substantial power shifts, suggesting a preference for 

systems where stability and predictability are paramount. The 

Priority strategy further underscores the algorithmic 

differences, particularly favoring the interior point approach 

for its aggressive prioritization of certain users. While the 

interior point algorithm is well-suited for scenarios demanding 

intense optimization, SQP provides a smoother equilibrium, 

and the active Set algorithm is more appropriate for systems 

requiring modest user-specific adjustments. 

Subsequently, Figure 3 illustrates the contrast in bandwidth 

allocation among user indices under three optimization and 

three distinct strategies. The equal strategy delivers a uniform 

bandwidth of approximately 20 Hz across all users, 

emphasizing equity but lacking adaptability to varying user 

requirements. Conversely, the proportional strategy manifests 

greater variability, with certain users receiving substantially 

larger allocations up to 40 Hz, particularly under active set and 

interior point, which is beneficial in systems characterized by 

diverse user demands. 

Further information can be seen in Figure 4, where a flow 

chart that shows the key parameters, constraints and objectives 

with details. 

 
 

Figure 2. Power allocated concerning the user index 
 

 
 

Figure 3. Bandwidth allocated concerning the user index 
 

The interior method showcases pronounced bandwidth 

fluctuations, prioritizing high-demand users at the expense of 

lower-demand users, thus being suitable for scenarios where 

performance maximization for key individuals is paramount. 

But, SQP offers a more tempered approach, achieving a 

balance between equitable distribution and optimization with 

less extreme allocation variances. When considering the 

priority method, both interior-point and SQP algorithms 

demonstrate a strong bias towards high-priority users, with 

interior points exhibiting more assertive allocation for these 

individuals. Active set, however, maintains a relatively 

balanced spread with less responsiveness to high-priority 

demands. 
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Figure 4. Flow chart showing the key parameters, constraints and objectives 

 

The key parameters, constraints and objectives can be 

summarized as follows:  

1- solar power generation (𝑃𝑠𝑜𝑙𝑎𝑟(𝜍))  is contingent upon 

solar panels' performance at a specific instant (𝜍), influenced 

by variables including panel area, solar irradiance, and 

photovoltaic system efficiency. The greater the solar 

irradiance, the more substantial the energy yield. However, 

solar power output fluctuates due to weather variability.  

2- total power consumption (𝑃𝑜(𝜍) ) encompasses user 

demands and station operational necessities, with the goal of 

upholding QoS without surpassing power limitations.  

3- battery energy storage (𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝜍)) serves as a backup 

energy source, with efficiency dictating the amount of energy 

preserved and accessible during periods of diminished solar 

irradiance.  

4- bandwidth allocation (𝐵𝑢𝑠𝑒𝑟,𝑢(𝜍)) pertains to the specific 

bandwidth designated to a user, contingent on demand and 

allocation strategy, which may be uniform, proportional, or 

prioritized.  

5- user data rate (𝑅𝑢𝑠𝑒𝑟,𝑢(𝜍)) is contingent on the allocated 
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bandwidth, signal strength, and channel conditions, directly 

impacting user QoS. 

Subsequently, the constraints within this framework 

include: 

1- energy balance, which precludes power consumption 

exceeding the amalgamated solar generation and battery 

capacity to avoid shortages.  

2- power and bandwidth allocation must be managed 

judiciously, adhering to total constraints while ensuring 

equitable or prioritized distribution.  

3- a minimum QoS (𝑅𝑚𝑖𝑛,𝑢(𝜍)) is guaranteed for each user, 

maintaining a baseline data rate for consistent service.  

4- the system aims to minimize the carbon footprint by 

reducing energy-related emissions. 

On the other hand, the objectives are fourfold: firstly, 

maximizing energy efficiency seeks to optimize renewable 

energy utilization and reduce reliance on backup power. 

Secondly, minimizing carbon emissions prioritizes green 

energy sources to curb greenhouse gases. Thirdly, ensuring 

user QoS focuses on reliable connectivity and adequate data 

rates for all users. Lastly, minimizing operational costs 

involves reducing energy consumption and system 

maintenance expenses. This approach integrates 

environmental considerations and resource optimization into 

the design and operation of the base station. 

 

 

6. RESULTS AND ANALYSIS 

 

6.1 Varying allocation 

 

The three allocation strategies: proportional allocation, 

priority-based power and bandwidth distribution made the 

problem more realistic. The proportional approach allocates 

resources to users by their respective SINR values, with higher 

SINR users receiving a larger fraction of the aggregate power 

and bandwidth. The SINR for user u is mathematically 

formulated as: 

 

𝑆𝐼𝑅𝑢 =
𝑆𝑢𝑠𝑒𝑟,𝑢

𝑁𝑢𝑠𝑒𝑟,𝑢 + 𝐼𝑢𝑠𝑒𝑟,𝑢

 

 

where, Suser,u is the received power for uth user, Nuser,u is 

AWGN noise power for user u, and Iuser,u is the interference 

power of user u. Moreover, the power allocated to user u is 

proportional to their SINR, as a fraction of the total available 

power: 

𝑃𝑢𝑠𝑒𝑟,𝑢 =
𝑆𝐼𝑅𝑢

∑ 𝑆𝐼𝑁𝑅𝑖
𝑈𝑡𝑜𝑡𝑎𝑙
𝑖=1

∙ 𝑃𝑡𝑜𝑡𝑎𝑙  

 

similarly, the bandwidth allocated to each user is proportional 

to their SINR: 

 

𝐵𝑢𝑠𝑒𝑟,𝑢 =
𝑆𝐼𝑅𝑢

∑ 𝑆𝐼𝑁𝑅𝑖
𝑈𝑡𝑜𝑡𝑎𝑙
𝑖=1

. 𝐵𝑡𝑜𝑡𝑎𝑙  

 

Subsequently, in the priority-based allocation, the users are 

assigned priorities based on certain criteria (such as QoS 

requirements, subscription level, or other metrics). Resources 

are then distributed in proportion to the user’s priority. It was 

assumed that Priorityu represents the priority assigned to user 

u, where higher values indicate higher priority. The power 

allocated to each user is proportional to their priority: 

𝑃𝑢𝑠𝑒𝑟,𝑢 =
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑢

∑ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖
𝑈𝑡𝑜𝑡𝑎𝑙
𝑖=1

∙ 𝑃𝑡𝑜𝑡𝑎𝑙  

 

similarly, the bandwidth allocated to each user is proportional 

to their priority: 

 

𝐵𝑢𝑠𝑒𝑟,𝑢 =
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑢

∑ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖
𝑈𝑡𝑜𝑡𝑎𝑙
𝑖=1

∙ 𝐵𝑡𝑜𝑡𝑎𝑙  

 

Once the power and bandwidth are allocated, the data rate 

for each user Ruser,u is calculated as follows: 

 

𝑅𝑢𝑠𝑒𝑟,𝑢 = 𝐵𝑢𝑠𝑒𝑟,𝑢 ∙ log 2 (1 +
𝑆𝑢𝑠𝑒𝑟,𝑢

𝑁𝑢𝑠𝑒𝑟,𝑢 + 𝐼𝑢𝑠𝑒𝑟,𝑢

) 

 

The concept of priority-based allocation involves attributing 

varying importance to users or applications according to 

predefined criteria, such as QoS necessities, subscription tiers, 

and service types. This approach ensures that critical or high-

priority users are guaranteed sufficient resources even under 

resource-limited scenarios. Implementing such a system 

typically requires assigning each user a specific priority value, 

denoted as Priorityu, which is then used to proportionally 

distribute power P(user,u) and bandwidth B(user,u) . 

The advantage of this method lies in its ability to safeguard 

the performance of crucial services or users, such as 

emergency responders or premium subscribers, during times 

of high network congestion.  Priorities may be determined by 

various factors, including but not limited to: QoS 

requirements, with users demanding low latency and high 

reliability receiving greater consideration; subscription levels, 

where premium users are allocated higher priorities compared 

to basic subscribers; service types, which prioritize 

bandwidth-intensive applications like video streaming or 

online gaming; proximity to the base station, potentially 

favoring users with better channel conditions for efficiency or 

those further away for fairness; and dynamic adjustments, 

which adapt priorities based on real-time factors such as 

network traffic, user mobility, and energy constraints.  While 

the priority-based allocation strategy presents notable benefits, 

such as preserving QoS and adaptability to network policies 

and user demands, it also poses significant challenges. One 

must implement sophisticated algorithms capable of handling 

the intricacies of dynamic priority adjustments. Additionally, 

there is a risk of resource starvation for low-priority users, 

particularly in scenarios where network resources are scarce. 

This dual nature of prioritization underscores the need for 

careful consideration and nuanced implementation to balance 

efficiency with equity in resource distribution. 

 

6.2 Fluctuating channel condition 

 

Fluctuating channel conditions in wireless communications 

refer to the channels that are time-varying in nature, primarily 

caused by environmental factors such as multipath fading, 

interference from neighboring users or devices, and changes 

in signal propagation due to mobility. These fluctuations 

impact key parameters such as signal strength, interference, 

and noise, which in turn affect the SINR and, consequently, 

the data rates achievable by the users. 

Fading refers to the variation in signal strength due to 

multipath propagation as the signal’s multiple copies reach the 

destination but with different arrival times, diffraction, or 
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scattering. Fading can be modelled as either slow fading or fast 

fading. For each user u at time t, the fluctuating signal strength 

Suser,u(t) due to fading is modelled using a random variable: 

 

Suser,u(t) = Suser,u,0 · h(t) 

 

where, Suser,u,0 is the baseline (mean) signal strength for user u, 

h(t) is a random fading coefficient that varies with time and 

models the fading. It is often modelled using a Rayleigh or 

Rician distribution depending on the environment. For 

Rayleigh fading, h(t) follows a Rayleigh distribution: 

 

h(t)∼Rayleigh(0, σ2) 

 

where, σ2 is the scale parameter. 

For Rician fading, h(t) follows a Rician distribution with a 

line-of-sight component: 

 

h(t) ∼ Rician(ν, σ2) 

 

where, ν is the strength of the line-of-sight signal. 

Subsequently, interference refers to the unwanted power 

received from neighboring BSs or other devices that operate 

using similar frequency bands. Interference fluctuates over 

time due to dynamic network conditions, traffic load 

variations, and mobility. For each user u, the interference 

power Iuser,u(t) can be modelled as a time-varying random 

variable: 

 

Iuser,u(t)=Iuser,u,0+δI(t) 

 

where, Iuser,u,0 is the baseline interference power for user u, δI(t) 

is a random fluctuation in interference power. 

The fluctuating channel conditions directly impact the 

SINR, which in turn affects the power allocation, in which, 

users with poor SINR may require more power to maintain 

their data rates. It also affects bandwidth allocation, where 

bandwidth may need to be adjusted dynamically to 

compensate for fluctuating channel conditions. Subsequently, 

users with higher SINR (i.e., better channel conditions) will 

achieve higher data rates, while those experiencing 

interference or fading will have reduced data rates. 

Figure 5 illustrates the correlation of SINR with data rate 

under three optimization algorithms and three resource 

allocation schemes. 

 

 
 

Figure 5. SINR concerning the data rate for different algorithms and allocations 

 

The equal allocation strategy delivers consistent data rates 

of approximately 45-50 Mbps for all algorithms, indicating 

fairness yet constrained responsiveness to varying SINR 

conditions. Conversely, proportional allocation reveals 

pronounced data rate fluctuations, particularly for higher 

SINR values, with SQP and active set achieving up to 100 

Mbps, which is indicative of its proficiency in enhancing 

performance for users with superior channel conditions, albeit 

at the expense of stability for those with lower SINR. The 

priority allocation exacerbates this discrepancy, prioritizing 

high-priority users and resulting in substantial data rate spikes, 

particularly notable in SQP and interior point algorithms. The 

latter demonstrates smoother data rate transitions under equal 

allocation but exhibits more aggressive peaks under 

proportional and priority strategies, making it suitable for 

high-performance systems. Active set and SQP, however, 

offer a more balanced approach, achieving high data rates 

while maintaining flexibility across different allocation 

schemes, thus catering to scenarios where both fairness and 

efficiency are paramount. 

 

6.3 Different user profile 

 

Practically, the users can have different demands that 

originate from different operations of the applications and 

services, which produces users with higher priority than 
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others. In this method, it was assumed that each user has 

randomly generated data and power demands which will 

impact the resource allocation. This variation allows us to 

assess how different users affect resource allocation and the 

overall objective function. 

 

 
 

Figure 6. Power allocation concerning the user index using 

proportional allocation 

 

Figure 6 presents power allocation patterns for different 

users under three optimization methods with 200 Hz system 

bandwidth. The Figure shows how power is distributed among 

10 users using proportional allocation. SQP shows a smooth 

distribution of power across all users, aiming for a balanced 

allocation that respects constraints while achieving efficiency. 

The active set has a more varied power distribution, with 

noticeable spikes in power for certain users, prioritizing some 

users over others. The interior point demonstrates some 

irregularities in the distribution of power but remains 

relatively balanced like SQP but with more abrupt shifts 

between users. The comparative analysis shows that SQP is 

generally smoother and more consistent across users, while 

Active set is more sensitive to user demands or priorities. In 

turn, interior point balances power allocation but responds 

more dynamically to variations, being adjusted more 

frequently to the feasible solution space. 

 

6.4 Varying bandwidth 

 

To assess the robustness and adaptability of the 

optimization algorithms, some key parameters such as total 

available power, total bandwidth, and energy storage capacity 

are modified. By varying these parameters, it is possible to 

evaluate how each algorithm responds to different resource 

constraints and how efficiently they adapt to changes in the 

available resources. 

Figure 7 illustrates the impact of bandwidth allocation 

strategies on the objective function, employing three 

optimization algorithms. The data rate accounts for allocated 

bandwidth, signal strength, and interference, thus reflecting 

user capacity in response to bandwidth allocation decisions. 

The priority-based strategy generally outperforms equal and 

proportional strategies across all algorithms, particularly 

under increasing bandwidth, as it efficiently meets QoS 

demands by strategic bandwidth distribution to high-priority 

users. The interior point method exhibits consistent superiority 

in terms of performance across various bandwidth ranges, 

effectively addressing the complexities associated with non-

linear system constraints such as interference, noise, and solar 

energy variability. In contrast, the SQP algorithm 

demonstrates steady performance under equal and 

proportional strategies, adeptly balancing energy and 

bandwidth constraints to enhance overall system efficiency. 

The active set algorithm, however, shows less robustness, 

particularly with priority allocation, which stems from its 

heightened sensitivity to constraints. 

 

 
 

Figure 7. Total bandwidth allocation vs. objective function using three types of allocations and algorithms 
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6.5 CO2 emissions, maintenance costs, and energy storage 

 

CO2 emissions are closely tied to BSs’ power consumption, 

which is based on the number of users and energy sources 

used. The optimization algorithms aim to minimize power 

consumption, thereby reducing CO2 emissions. On the other 

side, maintenance costs in off-grid BSs are influenced by the 

wear and tear on both the energy storage systems (batteries) 

and the base station equipment, as well as the operational 

efficiency of the system. In addition, energy storage systems 

are critical for handling the variability in renewable energy 

production. 

Figure 8 depicts a relationship of CO2 emissions with the 

objective function for the SQP algorithm under three distinct 

allocation strategies equal, proportional, and priority. The CO2 

emissions exert a negative im- pact on the objective function, 

as it is designed to penalize systems with higher carbon 

footprints, with the emission factor (EFgrid) representing the 

magnitude of this penalty. It is observed that as the EFgrid 

increases, the objective function decreases linearly, 

irrespective of the algorithm type or al- location approach. 

This suggests that carbon emissions are a dominant and 

detrimental factor affecting the system’s performance. The 

model under- scores the importance of minimizing 

environmental costs to optimize overall efficiency, thereby 

highlighting the substantial potential benefits of incorporating 

low-carbon energy sources in all scenarios. 

In the realm of resource allocation, strategies such as 

proportional, priority-based, and equal distribution schemes 

have been extensively analyzed within technical frameworks. 

Proportional allocation, which allocates resources like power 

and bandwidth in accordance with user demands and SINRs, 

presents a notable fairness versus performance tradeoff. While 

it effectively serves high-demand users with superior channel 

conditions, it may potentially disadvantage those with lower 

demand, especially in scenarios of unequal distribution. 

Conversely, priority-based allocation methodologies, which 

are tailored to the QoS requirements, prioritize resources to 

high-priority users, thereby ensuring the maintenance of 

essential communication services during peak load periods or 

emergencies. This approach, however, may also introduce 

limitations in adaptability due to its uniform nature, 

particularly in heterogeneous user environments. 

 

 
 

Figure 8. CO2 emission factor variation vs objective function 

Considering adaptation to varying conditions, dynamic user 

behavior necessitates resource allocation algorithms that can 

handle user entry, exit, and demand fluctuations. Priority-

based strategies can be particularly useful here, as they allow 

for the prioritization of new users during network congestion 

while safeguarding the QoS of existing users. The integration 

of renewable energy sources introduces further complexity, as 

the allocation system must dynamically balance between the 

use of generated and stored energy to optimize efficiency. 

During periods of reduced solar power generation, for 

instance, stored energy can be distributed judiciously using 

proportional allocation to maximize system performance. 

Subsequently, proportional allocation schemes generally 

exhibit greater variability in bandwidth allocation, with high-

demand users receiving substantially more resources, 

particularly under conditions of high variability as seen in 

Figure 3. Similarly, power distribution trends reveal that 

priority-based allocation, especially when optimized using the 

interior point algorithm, can lead to pronounced shifts in 

power allocation, prioritizing high-priority users. These 

insights underscore the importance of selecting an appropriate 

resource allocation strategy to meet the diverse requirements 

of modern communication systems. 

 

 

7. CONCLUSION 

 

There are several tangible advantages of off-grid BSs, such 

as enhanced connectivity, diminished dependence on fossil 

fuels, and reduced operational expenses. This synergistic 

integration of renewable energy technologies and 

sophisticated optimization techniques represents a promising 

avenue towards sustainable mobile network expansion and 

provides an overall approach to network optimization in rural 

areas. This paper introduced a thorough framework designed 

to optimize resource allocation within off-grid green mobile 

BSs that harness renewable energy sources. The study 

underscores the importance of judicious power and bandwidth 

allocation in enhancing energy efficiency, decreasing carbon 

footprint, and guaranteeing reliable service quality. Through 

mathematical elaboration using the Lagrange multiplier 

method that is aimed at the nonlinear types of problems, and 

an empirical evaluation of three numerical optimization 

algorithms, namely SQP, active set, and interior point, it was 

established that the SQP and interior point algorithms exhibit 

superior performance in the context of resource allocation 

challenges in most scenarios. Furthermore, the examination of 

the Hessian matrix offers pivotal insights into the problem’s 

convex and concave characteristics, which are instrumental in 

the formulation of robust optimization strategies. The future 

research directions may include the refinement of the proposed 

optimization framework, exploration of novel renewable 

energy technologies, and catering to the evolving requirements 

of mobile network users across a spectrum of geographical 

settings. 

Note that, the selected optimization algorithms, namely 

SQP, active set, and interior point methods, are each justified 

by their distinct technical merits within the context of resource 

allocation challenges prevalent in network management 

scenarios. SQP is particularly adept at addressing nonlinear 

optimization problems, demonstrating remarkable proficiency 

in adaptive resource management and constraint handling, 

while exhibiting desirable convergence properties. However, 

it may encounter computational intensiveness and difficulties 

2018



 

in large-scale contexts or poorly scaled situations. Active set 

method, on the other hand, excel in problems characterized by 

a multitude of constraints, as they strategically concentrate on 

the active subset of constraints to achieve a balance between 

equity and efficiency, thereby making them suitable 

candidates for equitable resource distribution. Nonetheless, 

their performance can degrade in the presence of dense 

constraints, and the selection of the active set plays a pivotal 

role in determining their efficacy. Lastly, interior point 

methods stand out for their efficacy in handling large-scale 

linear and nonlinear programming issues, facilitating the 

attainment of high data rates within network frameworks. 

They are also notable for their robust convergence properties. 

However, their implementation complexity and sensitivity to 

problem structures can lead to variable performance outcomes. 

These algorithms' judicious selection is predicated upon the 

specific system requirements, which may prioritize fairness, 

efficiency, or user prioritization within the intricate tapestry of 

network optimization. The synthesis of their complementary 

strengths enables the effective management of diverse user 

demands and the navigation of complex constraints inherent in 

such environments. 

The proposed framework holds significant implications for 

enhancing rural connectivity, offering vital communication 

services during emergencies or power failures, decreasing 

operational costs through energy efficiency and renewable 

dependency, and minimizing the carbon footprint of mobile 

networks in accordance with global environmental targets. 

Further investigation is warranted in the integration of 

renewable energy sources, such as developing hybrid systems 

that leverage solar, wind, and biomass energy to ensure 

continuous operation. Urban deployment presents a unique 

opportunity to refine the model, considering increased user 

density and intricate interference patterns inherent in urban 

settings. Additionally, the integration of machine learning 

algorithms could significantly enhance the framework by 

enabling dynamic energy allocation predictions based on user 

behavior and the availability of renewable resources. Future 

studies should also examine the scalability and flexibility of 

the framework across multi-tier networks and diverse 

geographical and climatic contexts. Researchers must address 

the challenge of geographical variability by testing the system 

under various environmental conditions to evaluate its 

performance in the face of disparate solar irradiance and wind 

patterns. Moreover, the initial deployment costs of integrating 

renewable energy infrastructure within existing networks 

require careful consideration. Lastly, the investigation of 

advanced energy storage solutions is essential for improving 

system reliability and lowering maintenance expenses. 
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