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In this modern era of digital communication and data transmission, the information 

security and confidentiality are inevitable. Among many other alternatives, the Rivest-

Shamir-Adleman (RSA) cryptosystem has set a new security benchmark and is a well-

known and public key encryption model. However, as computing power increases 

dramatically, standard RSA confronts new challenges and weaknesses, necessitating 

more security safeguards and performance enhancements. This paper presents the 

improvement of the existing state-of-the-art model through the design of Modified and 

Optimized Rivest-Shamir-Adleman (MORSA) Cryptosystem, enhancing the security 

of the sensitive data against severe cyber-attacks. MORSA addresses the shortcomings 

of the original RSA algorithm through various improvements. Firstly, the MORSA 

algorithm generates larger keys that are more resistant and secure against brute force 

and factoring attacks. Secondly, the research examines optimal prime number 

generating techniques for large prime selection. Additionally, the MORSA 

cryptosystem uses a dynamic modulus selection technique that adjusts the modulus 

depending on input data size to improve encryption speed while maintaining security. 

Finally, parallel computer resources are utilized to accelerate encryption and 

decryption. The study then analyses efficiency and compares to traditional RSA and 

other modern encryption algorithms. MORSA performs better in encryption speed, 

resource usage, and cryptographic attack resistance. 
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1. INTRODUCTION

Throughout in today's interconnected world, the secure 

transfer of information is of the highest importance to 

safeguard sensitive data from falling into wrong hands. The 

rapid advancements in computing technology have led to an 

important growth in digital communication, making it 

essential to employ robust encryption techniques that can 

withstand sophisticated cyber threats. The Rivest-Shamir-

Adleman (RSA) cryptosystem [1], based on the mathematical 

properties of prime numbers, has been a key component of 

public-key encryption for decades. However, as computing 

power continues to evolve, traditional RSA faces new 

challenges that require innovative methods to maintain its 

effectiveness and security. This paper presents an innovative 

cryptographic solution, the Modified and Optimized RSA 

Cryptosystem (MORSA), designed to address the limitations 

of conventional RSA and enhance the security of information 

transfer. MORSA seeks to enhance the encryption process and 

safeguard data against modern cyber adversaries. 

Our work focuses on under-studied RSA models, which are 

upgraded or include modified forms of the regular RSA 

algorithm. In this work, interventions are activities like 

modified or improved, and other phrases that describe RSA 

cryptosystem. The Outcomes determine whether the upgraded 

RSA methods provide considerable benefits. 

Attacks against RSA may be roughly divided into two 

groups [1]. The first group comprises mathematical purpose. 

The second category feat the faults and weaknesses in the 

execution of the function. The directly target the underlying 

mathematical function attack are many types, such as low-

decryption exponent attack [2], Factorization Attacks [2], 

Partial Key Exposure Attack [2], Wiener’s low private 

exponent attack [3], Common modulus attack [3]. Secondly, 

the faults and weaknesses in the implementation of the 

functions are Attack with Timing [3], Evaluation of Power [3], 

Side-Channel Attacks and Chosen-Ciphertext Attacks (CCA) 

[3]. The counter and preventative measures of this attacks in 

terms of Strong Primes, Key Size [4], Multi-prime RSA, 

Public Exponent, and private Exponent.  

The selection of prime numbers in RSA directly impacts the 

algorithm's resilience against various attacks. By choosing 

prime numbers that are large, generated securely, and have 

suitable properties, RSA implementations can mitigate 

vulnerabilities and resist attacks more effectively. 

Additionally, considerations such as efficient modular 

exponentiation can indirectly impact the effectiveness of side-

channel and timing attack mitigations. After that optimized the 
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modified RSA algorithm using Particle Swarm Optimization 

(PSO) optimization technique. Consider utilizing parallel 

processing techniques to enhance performance, especially for 

large data sets also introduced. Therefore, the aim that any 

type of information or data is encrypted with help of complex 

nature asymmetric key based cryptosystem but low decryption 

and encryption. 

Next, evaluate the effectiveness of proposed MORSA, 

performance analyses and comprehensive simulations are 

conducted, also comparing its strengths as well as weaknesses 

with RSA and other ongoing encryption methods. The results 

establish that MORSA do better than standard RSA in terms 

of encryption speed and more endurance to cryptographic 

attacks where as supporting an analogous level of security.  

The proposed MORSA represents a powerful result for 

secure advanced application in the face of ever-increasing 

cyber threats. By incorporating key improvements to the 

traditional RSA algorithm, MORSA empowers organizations 

and individuals to safeguard their sensitive data and maintain 

the confidentiality and integrity of data communications in an 

increasingly interconnected world.  

Thus, here represent the main works of paper:  

• An all-inclusive survey of the same types effort that 

have already been planned as well as discovered by 

researchers and industry professionals in this domain. 

• Selected four different significant prime integer 

numbers instead of two prime number (standard RSA) 

using random prime generation algorithms and next 

applied optimized prime number generation algorithms 

to efficiently select large prime numbers required 

during key generation. 

• Introduce dynamic modulus selection feature at 

proposed cryptosystem, where the modulus size is 

adjusted based on the size of the input data.  

• The implementations of parallel computing algorithm 

on proposed cryptosystem to utilizes in a high-

performance computing environment.  

The remaining of the paper prearranged is such a way that 

Section 2 provides an impression of the different modified 

RSA algorithm. Section 3 explains our three experimental 

methods to implement both optimized prime number 

generation algorithm and dynamic modulus selection as well 

as the parallelized method of this proposed technique. Section 

4 presents the outcomes of our research. Section 5 describes 

the security claims of MORSA cryptosystem followed by 

discussion, conclusion and future work express in Sections 6 

and 7 respectively.  

 

 

2. RELATED WORK 

 

The Sergiy Gnatyuk, Yuliia Polishchuk, Elza Jintcharadze, 

and Maksim Iavich were co-authors of the 2018 publication. 

To strengthen aviation security between stationary and in-

motion objects, the authors suggest a novel hybrid 

combination model combining AES and ElGamal encryption 

techniques. In the encryption approach, the author suggests 

encrypting the message twice. Secure and quick file sharing is 

what Noekeon's model is all about. According to the author, 

the suggested model is an attempt to circumvent the inefficient 

features of the Noekeon algorithm, which is the result of 

merging RSA and Data Encryption Standard (DES) [3]. Many 

still hold the RSA public-key cryptosystem in high regard for 

its effectiveness. When it comes to electronic encryption and 

digital signatures, it is the first algorithm of its kind. It uses 

integer factorization for security and relies on Euler's theorem, 

a cornerstone of contemporary cryptography, for its 

development. Many RSA encryption algorithms have become 

relatively simple to attack due to the fast growth of computer 

technology [4]. It is important to research new viable public-

key cryptographic algorithms to complement or replace 

existing public-key cryptographic algorithms since traditional 

public-key cryptographic algorithms are continuously 

encountering different problems. The author followed all 

applicable procedures while searching for scholarly literature 

about conventional or modified RSA techniques and their 

many uses; she located around eighty-four such articles [5]. 

Security in the cloud [6], image encryption [7], wireless safety, 

and more disciplines were developed from these publications. 

Smart devices and Internet of Things (IoT) devices have 

shown good outcomes in the use of lightweight cryptographic 

systems that use RSA in recent years [8]. Following the lead 

of the literature [5], we also reviewed the works published in 

the previous two years [9]. 

Suhael et al. [10] used new encryption technology to 

provide effective security and produce the outer system as a 

waveform such that the original data would not be modified or 

attacked. Timing attacks are resisted by the algorithm. The 

RSA cryptographic algorithm was created by Haldar and Paul 

[11] employing three keys, however, the research still needs 

some protection to address the issue of information transfer 

from the server. Kwame et al. [12] suggested a framework that 

offers dual layer of security for the RSA; however, this 

security mechanism is not universally applicable since the 

methods for key production have made the proposed system 

more complicated. Çetin and Sınak [13] also created an 

improved RSA cryptosystem design. Four large prime integers 

are used in the procedure. The computational and spatial 

complexity of the innovative system is greater than that of 

traditional RSA due to these many primes. Multiplying two 

significant figures yields the general component of n. Four 

significant prime numbers are multiplied to get the amount of 

encryption and decryption. Brute Forte Attack is resistant to 

the newly developed algorithm. Additionally, the new method 

is much more effective than classical RSA. Stergio et al. [14] 

suggested a parallel method using a novel parallel type of data 

structure called a simultaneous search list of character in 

blocks. The RSA cryptosystem is intended to be executed at a 

faster pace, and its security is not addressed by the system. 

Using the use of several keys for connection, Abdulshaheed et 

al. [15] suggested an optimized type of CRT-RSA Method for 

safe and reliable transmission; the level of security was 

compared to traditional RSA. The results of the experiments 

showed that the suggested algorithm increases security and 

reduces the participation of outsiders in communication, but it 

has the disadvantage that it uses more resources than 

traditional RSA. To increase security of data in the ambiance 

of cloud context, the results conducted by Roussellet et al. [16] 

propose Quasai modified levy flying distribution for the RSA.  

The encryption system developed by RSA handles safe key 

creation and data protection, protecting data from 

unauthorized access. The suggested strategy [17] uses the 

Cuckoo Search Algorithms (CSA) to protect and solve data 

integrity issues while introducing an effective RSA 

cryptosystem. To prevent brute force attacks and improve key 

encryption, CSA is used. The suggested technique increases 

the length of the private key while still operating more quickly 

than traditional RSA. In their work, Suhael et al. [18] 
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performed double encryption utilizing both RSA and 

Advanced Encryption Standard (AES), encrypting the file 

twice. When compared to traditional RSA, the approaches 

boost security since the appropriate keys are produced during 

algorithm execution. Kaliyamoorthy and Ramalingam [19] 

proposed a secured message transmission in the cloud utilizing 

the RSA method and an improved play fair cipher; the study's 

goals are to protect the key and offer security for the data 

transferred. The suggested system encrypts the content 

employing the play fair cipher in the first step, then conducts 

an XOR calculation on the text in the second stage, then uses 

the RSA algorithm to complete the process in the third stage. 

Though more computationally intensive, the suggested 

approach raises RSA's security level over traditional RSA. By 

combining the RSA and AES techniques with confirmation 

from a third party, Shree et al. [20] added an estimate and 

guarantees the confidentiality of encrypted data. By 

preventing unauthorized access to the data, the system 

carefully managed security and privacy concerns and ensured 

authentication.  

The RSA cryptosystem has undergone several revisions and 

variations throughout the years with the purpose of addressing 

different issues or adding new capabilities. Here are some 

examples of several RSA-modified cryptosystems shown in 

Table 1.  

 

Table 1. Comparatives analysis of different modifications of RSA algorithms 

 

Reference 
RSA-Modified 

Cryptosystems 
Description 

[21] 
Chinese Remainder 

Theorem (CRT) RSA 

This update uses the CRT to accelerate the decryption of an RSA key using the Chinese Remainder 

Theorem (CRT) RSA. To reduce the quantity of modular involution required, it anticipates pre-

calculating certain values during the key creation phase and employing them throughout the 

decryption process. 

[22] Multi-Prime RSA 

This method generates keys by engaging various prime numbers, as countered to just two large 

prime numbers. The effectiveness of decryption, key generation, and encryption, processes may 

improve. 

[23] Blinded RSA 

Blinded RSA employs randomization throughout the encryption and decryption procedures to thwart 

side-channel attacks. Blinding, or randomization, conceals important information to prevent leakage 

via auxiliary channels like time or power usage 

[24] Multi-Exponent RSA 

Various exponents are employed for encryption and decryption in multi-exponent RSA, enabling 

optimal performance in certain situations. By choosing the exponents, it may enhance the 

effectiveness of either decryption or encryption procedures. 

 

There have been several modifications and variants of the 

RSA cryptosystem proposed over the years. While these 

modifications aim to address certain limitations or provide 

additional features, they can also introduce new vulnerabilities 

or drawbacks.  

 

2.1 Drawbacks associated with different types of modified 

RSA cryptosystems 

 

i. Low Public Key Efficiency [25]: RSA with Chinese 

Remainder Theorem (CRT), can enhance the 

effectiveness of decryption with help of the CRT to 

accelerate the modular exponentiation method. 

However, these schemes frequently require additional 

parameters and computations, which increase the size 

of the public key. This can lead to more storage 

requirements and increased transmission costs. 

ii. Reduced Security Margin [26]: Certain variations to 

RSA, for instance RSA with small public exponents 

(e.g., small Fermat primes), aim to increase efficiency 

by using smaller exponents. Although this can 

accelerate decryption and encryption, it can also reduce 

the security margin of the algorithm. Small exponents 

make the encryption more exposed to attacks such as 

the Wiener attack, where an attacker can factorise the 

modulus when the exponent is too small. 

iii. Vulnerability Attacks in Side-Channel [27]: Some 

implementations or modifications of RSA may be 

susceptible to side-channel attacks. Side-channel 

attacks exploit information leaked during the 

cryptographic operation, such as power consumption, 

timing information, or electromagnetic radiation. If 

proper countermeasures are not taken, sensitive data 

may be extracted via side-channel attacks., including 

the private key. 

iv. Increased Key Size and Computation Complexity [28]: 

Some modifications of RSA aim to enhance security by 

using larger key sizes or more complex mathematical 

operations. While this can provide additional security, 

it also leads to increased computational requirements. 

Larger key sizes can impact encryption and decryption 

performance, requiring more computational resources 

and potentially slowing down the cryptographic 

operations.  

 

2.2 Current research trends and research question 

 

Kitchenham et al. [29] stated that there are three parts to the 

question structure: population, interventions, and outcomes. 

All the under-researched RSA models, or more accurately, 

algorithms that are improved or altered variants of the real 

standard RSA algorithm, make up the Population, which is the 

center of our study. Actions such as changed or enhanced, 

among others, that demonstrate the kind of therapies with RSA 

are the interventions in our situation according to training. The 

ultimate verdict on whether the improved RSA algorithms 

have shown any notable benefit is found in the outcomes. 

RQ1. What the authors goal in improving the RSA model? 

RQ2. What are the conventional RSA algorithms many 

revisions to date? 

RQ3. How do suggested RSA schemes address present-day 

data or network security issues? 

RQ4. Which RSA scheme domain has received greater 

attention? 

 

2.3 Countermeasures and preventative measures 

 

a. Since key: Size Since it has been shown that 512 RSA 
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keys are too short and unsafe for usage, many of the 

standards that are now in place mandate the use of 

1024/2048/4096 bits for RSA keys. 

b. Strong Primes it is suggested that moduli with a bit size 

of 1024/2048/4096 employ more than three factors [12]. 

c. Multi-prime RSA: To speed up the RSA private 

operation, there are proposals of using more than two 

primes to generate the modulus. 

d. Public Exponent: At the very least, the private exponent 

need to be 300 bits in length for the usual key that is 

1024 bits in length. 

In summary, the selection of prime numbers in RSA directly 

impacts the algorithm and resilience against various attacks. 

By choosing prime numbers that are large, generated securely, 

and have suitable properties, RSA implementations can 

mitigate vulnerabilities and resist attacks more effectively. 

Additionally, considerations such as efficient modular 

exponentiation can indirectly impact the effectiveness of side-

channel and timing attack mitigations. 

The main goal of our work is the proposed MORSA 

algorithm, an important generation improved process that 

ensures that the generated keys are fairly large and resistant to 

modern cryptographic attacks. Additionally, the new 

generation of key generation technologies reduces the 

overhead connected to key sizes. This means that resource-

limiting devices can use severe encryption. Second, this paper 

examines the use of optimized algorithms to generate prime 

numbers to efficiently select a large number of primes. This 

optimization reduces the performance observed in traditional 

RSAs due to the high complexity of computing involved in 

prime number production. Furthermore, the MORSA 

cryptosystem introduces a dynamic modulus selection 

approach, where the modulus is varied based on the input data 

size, thus improving the encryption speed while preserving the 

same level of security. This feature allows for adaptive 

encryption suitable for a diverse range of applications with 

varying data sizes. Next, Analyze and optimize the 

implementation for efficiency and speed with respected to 

Standard RSA algorithms, consider parallel processing 

techniques to enhance performance, especially for large data 

sets. The workflow diagram of proposed MORSA algorithm 

shown in Figure 1. 

 

 
 

Figure 1. Workflow diagram of proposed MORSA algorithm 

 

 

3. PROPOSED MORSA ALGORITHM  

 

Step 1: Prime Selection 

• Select four large, random, distinct prime numbers: 

p, q, r, and s. 

• Purpose: Using more primes increases the modulus 

size (n=p*q*r*s), which increases cryptographic 

strength. 

Step 2: Compute Modulus n 

• n = p*q*r*s 

• This n serves as a modulus function for both private 

and public keys. 

Step 3: Calculate Euler’s Totient Function φ(n) 

• Formula: φ(n) =(p-1)(q-1)(r-1)(s-1) 

• This is required for key generation (used to ensure 

values are coprime, and for modular inverses). 

Step 4: Select Encryption Exponent function e 

o Criteria: 1<e<φ(n) 

o gcd (e, φ(n)) =1 (must be coprime) 

o e should be small (to optimize encryption 

speed, like 3, 17, or 65537) 

Step 5: Compute Modified Exponent f 

• Define f =(e*a)+b, where a and b are integers. 

• Purpose: Allows dynamic modulus selection, and 

can serve as a simple obfuscation of the public 

exponent. 

• f still needs to be used in modular exponentiation 

securely. 

Step 6: Compute Decryption Key d 

• You must compute d such that: 

o (d*f) mod φ(n) = 1 → d ≡ f⁻¹ mod φ(n) 

(modular inverse of f) 

o gcd(d,φ(n))=1 (must also be coprime to 

φ(n)) 

Step 7: Public Key indicator = (f, n) 

• Used to encrypt messages: C = Mf mod n 

Step 8: Private Key indicator = (d, n) 

• Used to decrypt messages: M = Cd mod n 

 

Encryption & Decryption Process 

• Encryption: C = Mf mod n 

• Decryption: M = Cd mod n 

This works correctly if and only if d is the modular inverse 

of f modulo φ(n). 

This satisfies: 

(Mf)d ≡ M(f*d) ≡ M mod n since f*d ≡ 1 mod φ(n) 

 

Strengths 

• Larger modulus (n) makes brute-force attacks harder. 

• Using f = e * a + b introduces randomness/complexity 

in the public key. 

• Dynamic modulus scaling could potentially offer 

adaptability for different message sizes. 

Here's a successful demonstration of the encryption scheme 

using randomly generated 16-bit prime numbers: 
 

Key Values 

• Primes: 

o p = 46307 

o q = 44983 

o r = 45751 

o s = 42787 

• Modulus: 

o n = 4077626943713015897 

• Totient: 

o φ(n) = 4077263824162074000 
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Key Generation 

• Chosen e: 257

• Random a = 2, b = 3

• Computed f = e * a + b = 517

• Private exponent d = 670343181922197853

(modular inverse of f mod φ(n))

Encryption/Decryption Example 

• Message M:12345

• Ciphertext C:442548085500316469

• Decrypted M:12345 (matches original)

4. METHODOLOGY TO IMPLEMENT MORSA

Here describe how to Implement the large random and 

optimized prime number generation algorithm during key 

generation using PSO optimizing technique, dynamic 

Modulus Selection, MORSA decryption and encryption 

process using Parallel of computing resources technique. 

Figure 2 represents four distant features proposed MORSA 

system. 

Figure 2. Four distant features of proposed MORSA system 

4.1 Implement the large Randon and optimized prime 

number generation algorithm  

4.1.1 Large random prime generation procedure 

The goal is to efficiently calculate large random numbers 

with a specific bit size. The standard method for manually 

implementing a random prime generator that can generate 

linear values with satisfactory levels of accuracy is specified 

as follows: 

i. Random number of the desired bit size.

ii. Make sure that the selected numbers cannot be split due

to the first 100 prime numbers (these are presented). Based

on the acceptable error rate, we use a certain number of

iterations by Rabin Miller Primality test [30] to get the

number that is probably prime.

iii. Implement the optimized prime number generation

algorithm to efficiently select large prime numbers

required during key generation using PSO optimising

technique.

iv. Ensure that the prime number generation process is

robust and capable of generating sufficiently large prime

numbers for proposed method.

4.1.2 Optimization of Large prime number generation 

algorithm 

Prime number generation is traditionally a discrete problem 

because prime numbers are inherently discrete values—whole 

numbers that are greater than 1 and divisible only by 1 and 

themselves. However, in the context of optimization 

algorithms, it can be treated as a continuous optimization 

problem if consider it within an optimization framework. This 

involves adapting continuous optimization techniques to 

search for prime numbers, despite their discrete nature. 

Applying PSO to prime number generation is an 

unconventional use of the algorithm, but it can be explored as 

a new way to search for prime numbers in a defined range or 

optimize some prime-related function. Let’s break down how 

prime number generation can be viewed as a continuous 

optimization problem and what adaptations would be required. 

a. Understanding the Discreteness of Primes

Prime numbers are discrete because they belong to the set 

of integers {2,3,5,7, 11…}. So, traditionally, finding prime 

numbers involves checking numbers in this discrete set 

(integers). This is what makes prime number generation a 

discrete problem. PSO are often used for continuous 

optimization tasks where variables can take any value from a 

range (usually real numbers). Despite this, these algorithms 

can sometimes be adapted to work with discrete values by 

introducing methods like rounding, discretization, or 

relaxation. 

b. Continuous Optimization for Discrete Problems

• Represent potential solutions (candidate numbers) as

continuous variables.

• Adapt the algorithm to either discretize the

continuous solutions or directly check for the

primality of the solutions at each iteration.

c. Step-by-Step Adaptation for Continuous 

Optimization for Prime Number Generation 

i. Discrete PSO Variant: Use a variant of PSO designed

for discrete spaces, where particles represent integers

rather than real-valued vectors.

ii. Fitness Function (Primality Test): The fitness

function evaluates whether the number represented

by a particle is prime. If the number is prime, the

fitness is high; if not, the fitness is low.

def is_prime no.(n): 

  if n <= 1: 

    return False 

  for i in range (2,int (n * 0.5) + 1): 
    if n % i = 0: 

      return False 

  return True 

iii. Fitness with Probabilistic Primality: For large

numbers, you might use a probabilistic primality test

(e.g., Miller-Rabin) and use the confidence as fitness:

def fitness(x): 

  # Return a probability estimate (pseudo-code) 

  return miller_rabin_confidence(x) 

• Calculation Swarm Size (Number of Particles) for

prime number search: If they consider Small Primes

(i.e., <10,000) that means 20 particles so Number of

Iterations will be 30. Similarly, Medium Primes

(~10⁶): 30-40 particles, 50-70 iterations and Large

Primes (≥10¹⁰): 40-60 particles, 70-100+ iterations.

With help of above condition, we get the percentage of 

success rate shown in Figure 3.  

Velocity and Position Update: In PSO, the particles move 
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toward better solutions. However, after updating the particle's 

position (which may be continuous), you will need to round or 

map the particle's position to a valid integer (the next candidate 

number) to ensure it is still a valid candidate for primality 

testing. 

iv. Discretization: Once the particle moves in the 

continuous space, it would be rounded or converted 

to an integer. The PSO algorithm itself will explore 

continuous space, but the solution will always be 

tested as a discrete integer. 

v. Optimization Process: PSO will continue searching 

for prime numbers by moving particles through the 

continuous space and checking if their corresponding 

values are prime numbers. Particles with prime 

numbers will have better fitness values and be 

attracted toward areas with more prime numbers. 

 

 
 

Figure 3. Estimated prime search success rate with respect to 

swam size 

 

4.2 Dynamic modulus selection 

 

Understanding Modulus Size in MORSA: The modulus 

size (n) in MORSA is typically 1024, 2048, 3072, or 4096 bits. 

The maximum size of the data that can be encrypted directly 

is limited to (modulus size in bytes - padding overhead). Table 

2 indicates the general guideline for modulus selection. Figure 

3 shows the estimated prime search success rate with respect 

to swam size. 

 

Table 2. General guideline for modulus size selection 

 
Modulus Size Max Input Size (approx.) Security Level 

1024 bits ~117 bytes (with PKCS#1) Weak 

2048 bits ~245 bytes Good 

3072 bits ~373 bytes Strong 

4096 bits ~501 bytes Very strong 
Note: Exact input size depends on the padding scheme used (e.g., OAEP). 

 

b. Adaptive Modulus Sizing Logic (Pseudocode) 

def select_modulus_size(input_data_bytes): 

  # Estimate required size with padding 

  overhead = 42 # for OAEP padding (approx.) 

  total_bytes = len(input_data_bytes) + overhead 

  if total_bytes <= 117: 

    return 1024 # bytes ~117 

  elif total_bytes <= 245: 

    return 2048 # bytes ~245 

  elif total_bytes <= 373: 

    return 3072 

  elif total_bytes <= 501: 

    return 4096 

  else: 

    raise ValueError ("Input data too large use parallel 

processing for direct MORSA encryption.") 

d. The relation between MORSA key size (modulus size in 

bits) and the maximum plaintext size you can encrypt using 

OAEP padding is based on the following formula: 

Max plaintext size (in bytes) = (modulus_size_in_bytes) - 2 

* hash_len - 2 

Where: 

• modulus_size_in_bytes = key_size_in_bits / 8 

• hash_len = length of the hash output used in OAEP 

(e.g., SHA-256 = 32 bytes, SHA-1 = 20 bytes) 

 

Table 3. MORSA key size vs max OAEP plaintext size 

 
MORSA Key Size 

(bits) 

Modulus Size 

(bytes) 

Max OAEP Plaintext 

(bytes) 

1024 128 128 -2×32 -2 = 62 

2048 256 256 - 2×32 - 2 = 190 

3072 384 384 - 2×32 - 2 = 318 

4096 512 512 - 2×32 - 2 = 446 

 

First, determine the size of the input data. This can be 

measured in terms of the number of bits, bytes, or other 

relevant units. Next, establish criteria or rules for selecting the 

modulus size based on the input data size. This can be done 

using predefined thresholds or a mathematical formula. Then, 

based on the input size and the defined criteria, select an 

appropriate modulus size. Finally, use the selected modulus 

size in your cryptographic or mathematical operations. Table 

3 represents relation between the MORSA key size vs. max 

OAEP plaintext size.  

 

4.3 MORSA decryption and encryption process using 

parallel computing resources technique 

 

It is already introduced speeding up modular exponentiation 

using optimized technique and dynamic modulus system to 

increase efficiency of MORSA cryptosystem. But still now 

MORSA cryptosystem faces some challenges when dealing 

with large input data, including Performance Issues with Large 

Data with Slow Encryption and Decryption: and High 

Computational Cost, Padding Overhead, Memory Constraints, 

Modulus Size Constraints, Scalability. Parallelization for 

MORSA Operations is the one impotent solution. 

Encrypting/decrypting multiple blocks of data in parallel. 

 

4.3.1 Parallelization for MORSA cryptosystem operations 

Parallelization can help improve the performance of the 

MORSA Cryptosystem, especially when working with large 

datasets. Because MORSA's core is based on RSA (and 

includes modular equation), parallelization in various regions 

can be used to reduce time complexity and optimize systems 

for large-scale operations. 

a. Important areas of parallelization: Encryption and 

decryption of several sections: When processing 

large files or messages, the data must be split into 

smaller sections corresponding to module N. These 

sections can be encrypted or decrypted in parallel 

because each section operates independently. Here, 
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the data is split into small sections, each section is 

encrypted in parallel using a thread pool. These 

sections can be encrypted or decrypted in parallel 

because each section operates independently. Here, 

the data is split into small sections, each section being 

encrypted in parallel using a thread pool.  
 

i. Using Python's concurrent.futures library, we 

can parallelize the encryption of each section: 

import concurrent.futures 

def encrypt_section(section, public_key): 

  “Encrypt a single section." 

  return encrypt(section, public_key) 

def parallel_encrypt(data, public_key, section_size, 

num_workers=6): 

  "Encrypt data in parallel by splitting it into section." 

  # Split data into sections 

  Section = [data[i:i+section_size] for i in range (0, 

len(data), section _size)] 

# Use Thread Pool Executor to parallelize the encryption of 

section  

  with concurrent. futures. Thread Pool 

xecutor(max_workers=num_workers) as executor: 

    encrypted_sections = list (executor.map(lambda section: 

encrypt_section(section, public_key), sections)) 

    return encrypted sections 

ii. Similarly, for decryption, sections of encrypted 

data can be processed independently: 

def decrypt_section (section, private_key): 

  "Decrypt a single section." 

  return decrypt(section, private_key) 

def parallel_decrypt(encrypted_data, private_key, section 

_size, num_workers=6): 

  "Decrypt encrypted data in parallel by splitting it into 

sections." 

  # Split encrypted data into sections 

  sections = [encrypted_data[i:i+chunk_size] for i in 

range(0, len(encrypted_data), section_size)] 

    # Use ThreadPoolExecutor to parallelize the decryption 

of sections 

  with concurrent.futures. Thread Pool 

Executor(max_workers=num_workers) as executor: 

    decrypted_sections = list(executor.map(lambda section: 

decrypt_section(section, private_key), sections)) 

    return decrypted_sections 

b. Modular Exponentiation (MORSA Operations): 

The modular exponentiation operation Mf mod  n (for 

encryption) and Cd mod  n (for decryption) is 

computationally expensive. Although MORSA is 

inherently sequential for a single message, it can be 

parallelized when dealing with multiple messages or 

blocks. This is especially useful when processing 

multiple chunks of encrypted data in parallel. In the 

example above, modular exponentiation for each 

chunk is parallelized using a thread pool, which 

speeds up the overall process. 

def modular_exponentiation(modulus, base, exponent,): 

"Modular exponentiation." 

Returnpow(modulus,base,exponent,) 

def parallel_modular_exponentiation(sections, exponent, 

modulus, num_workers=6): 

"Perform modular exponentiation on each section in 

parallel." with concurrent futures. 

Thread Pool Executor(max_workers=num_workers) as 

executor: 

results = list(executor.map(lambda section : 

modular_exponentiation (section, exponent, modulus), 

sections)) 

return results 

c. Key Generation: Generating large prime numbers 

for the keys and the modulus n can be parallelized. 

While probabilistic primality tests (like the Miller-

Rabin test) can be expensive, they can be run on 

different cores for each candidate prime. 

Additionally, the process of finding multiple primes 

(e.g., p,q,r,s) for a multi-prime system like MORSA 

can be parallelized. 

import concurrent.futures 

from sympy import is prime 

def generate_prime_candidate(bits=1024): 

  "Generate a random candidate for prime number." 

  return random.getrandbits(bits) 

def check_and_generate_prime(bits=1024): 

  "Generate a prime number." 

  candidate = generate_prime_candidate(bits) 

  while not isprime(candidate): 

    candidate = generate_prime_candidate(bits) 

  return candidate 

def parallel_generate_primes(num_primes=4, bits=1024, 

num_workers=6): 

  "Generate multiple primes in parallel." 

  with 

concurrent.futures.ThreadPoolExecutor(max_workers=num_

workers) as executor: 

    primes = list(executor.map(lambda_:section 

_and_generate_prime(bits), range(num_primes))) 

  return primes 

d. Key Splitting and Combining: When using multiple 

primes (as in the MORSA system), operations like 

splitting the private key into smaller parts (modular 

inverses for each prime) and combining results can 

benefit from parallelism. In this case, modular 

inverses for each prime can be computed in parallel, 

reducing the time spent on this operation. 

def mod_inverse_parallel(a, moduli, num_workers=6): 

  "Compute modular inverse in parallel for each prime 

factor." 

  def mod_inv_for_prime(p): 

    return mod_inverse(a, p) 

  with concurrent. futures. Thread Pool 

Executor(max_workers=num_workers) as executor: 

    inverses = list(executor.map(mod_inv_for_prime, 

moduli)) 

    return inverses 

e. Parallelizing Padding and Unpadding: Padding 

and unpadding of the message to ensure it fits into the 

modulus size can be done in parallel for multiple 

chunks. This is particularly useful when dealing with 

larger files or messages. 

def parallel_pkcs1_pad(sections, n_size, num_workers=6): 

  "Apply PKCS#1 padding in parallel to each chunk." 

  with concurrent. futures. Thread Pool 

Executor(max_workers=num_workers) as executor: 

    padded_sections = list(executor.map(lambda section: 

pkcs1_pad(section,n_size),sections)) 

  return padded_sections 

def parallel_pkcs1_unpad(sections, n_size, 

num_workers=6): 
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  "Unpad PKCS#1 padding in parallel."  

  with concurrent. futures. Thread Pool 

Executor(max_workers=num_workers) as executor: 

    unpadded_sections = list(executor.map(lambda section: 

pkcs1_unpad(secton, n_size), sections)) 

  return unpadded_sections 

In our proposed model, multiple threads are parallelly 

executed equ-length sections. By parallelizing key parts of the 

MORSA cryptosystem, including the encryption/decryption of 

sections, modular exponentiation, key generation, and 

padding, we can improve the system's efficiency and 

scalability, especially when working with large data sets. 

 

 

5. RESULT ANALYSIS OF MORSA CRYPTOSYSTEM  

 

Implementation of proposed work have required following 

system: CPU- Intel Core I7-2670QM at 2.20GHz frequency, 

Memory 16.0 GB, GPU: NVIDIA GeForce GT630M consists 

of 96 cores, and Windows Home Premium. 

 

5.1 Performance analysis of proposed MORSA algorithm 

 

Compare the amount of time required by various algorithms 

shown in Table 3, we have demonstrated the outcomes of the 

various methods like Key Generation Time, Decryption Time, 

and Encryption Time, described here. We applied 20-bit 

modules and 20-bit messages using python libraries. Table 4 

shows the comparison of algorithms using 20-bits modules 

size and 20-bits message size version different version RSA 

and proposed MORSA algorithm. 

The effectiveness of any specific encryption and decryption 

approach is dependent upon the speed at which a 

cryptographic algorithm is implemented, and the period of 

execution identifies the algorithm's speed or execution speed. 

As shown in Figures 4 and 5, the required time for the 

proposed MORSA and SRSA algorithm is applied for the 

news size of bytes. When you view the message, a graphical 

comparison of the proposed algorithm MORSA and the 

encryption time of the traditional SRSA size shows the same 

bytes. 

Next, test the proposed MORSA with different input bit 

sizes. Table 4 shows the performance of the original RSA 

(SRSA) algorithm by Rivest, Shamir, and Adleman [1]. Table 

4 also displays the MORSA scheme’s performance regarding 

of key generation, encryption time, and decryption. By 

comparing the tables, it is possible to determine that MORSA 

requires more time for key creation than RSA. The fact that 

the time to break the system is long due to the additional 

complexity makes Modified and optimized RSA's (MORSA) 

longer key generation period advantageous. 

Next, test the proposed MORSA with different input bit 

sizes. Table 5 shows the performance of the original RSA 

(SRSA) algorithm by Rivest, Shamir, and Adleman [1]. Table 

5 also displays the MORSA scheme’s performance regarding 

of key generation, encryption time, and decryption. By 

comparing the tables, it is possible to determine that MORSA 

requires more time for key creation than RSA. The fact that 

the time to break the system is long due to the additional 

complexity makes Modified and optimized RSA's (MORSA) 

longer key generation period advantageous. 

Table 5 shows the encryption and decryption result 

compares of the proposed algorithms MORSA and SRSA with 

respect to large message size. It is evident from the findings in 

Table 5 that the computational complexity of both encryption 

and decryption on MORSA has a more advanced cryptosystem 

than SRSA, indicating that it will be more complicated, and 

the attackers need considerably more time to breach easily 

than that of the SRSA. Table 6 presents the encryption and 

decryption times (in seconds) for MORSA and RSA 

algorithms across different input sizes (in KB).  

 

5.2 Analysis of computational complexity and big-O-

notation algorithm of MORSA 

 

a. Computational Complexity: Let’s examine each 

stage of the modified key creation, message encryption, and 

text decryption procedure in terms of its temporal complexity. 

The big O notation describes the computational complexity of 

an algorithm in terms of its input size — in this case, the bit-

length of the primes used (denoted k). Here's an analysis of the 

MORSA algorithm and define Parameters k = bit-length of 

each prime number (e.g., 1024 bits in real-world use). The 

operations include prime generation, modular exponentiation, 

and modular inversion.  

 

 
 

Figure 4. Plotting the proposed MORSA and SRSA 

algorithms' encryption times versus message sizes in bytes 

 

 
 

Figure 5. Plotting the proposed MORSA and SRSA 

algorithms' decryption times versus message sizes in bytes 

 

Table 4. Analysis of security and efficiency of different 

 
S. No Algorithm Time of Key Generation (µsec) Time of Encryption (µsec) Time of Decryption (µsec) 

1 SRSA [31] 989 989 1998 

2 Prime numbers RSA [32] 988 1988 13992 

4 Diffie-key-RSA [33] 999 1000 999 

5 IRSA [34] 905 985 2010 

6 MREA [35] 1598 3174 3896 

7 MORSA 1875 4057 14976 
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Table 5. Key generation, encryption and decryption time (ms) of SRSA and MORSA with different keys respectively 

 

Length of p, q, s, r (in bits) 
Analysing Tine for MORSA 

Key Generation Time(ms) Encryption Time (ms) Decryption Time(ms) 

100 231 0.27 1.36 

128 241.23 0.54 2.34 

256 248.7 1.23 12.62 

512 365.6 2.7 78.65 

1024 1165.7 6.89 376.2 

2048 6089.6 19.9 2169.6 

4096 15,514 55.67 17,789.7 

Length of p, q (in bits) 
Analysing Tine for SRSA 

Key Generation Time(ms) Encryption Time (ms) Decryption Time(ms) 

100 76.63 0.16 0.25 

128 90.46 0.17 0.28 

256 94.96 0.35 0.96 

512 177.47 0.56 5.2 

1024 570.9 1.69 26.18 

2048 4201.47 3.32 130.83 

4096 54368.00 11.17 1116.24 

 

Table 6. Encryption and decryption tine (sec) of MORSA and RSA with distinct sizes (KB) 

 
Size of Message 

(KB) 

Encryption Time (sec) 

MORSA 

Encryption Time SRSA 

(sec) 

Decryption Time (sec) 

MORSA 

Decryption Time (sec) 

SRSA 

10 2 0 0.1 0 

1000 4 2 2 2 

5000 12 8 7 7 

10000 20 16 16 16 

20000 35 28 27 25 

50000 80 71 66 62 

100000 165 146 160 152 

 

Table 7. Represented step-by-step calculation of complexity measurement of MORSA 

 
Step Operation Complexity Reason 

1 Generate 4 distinct primes (p, q, r, s) 
O (k log k) (each) × 4 → O (k log 

k) total 

Primality testing (e.g., Miller-Rabin) and random 

generation 

2 Multiply 4 primes for n = p*q*r*s O(k²) Big integers, each of k bits 

3 Compute φ(n) = (p−1)(q−1)(r−1)(s−1) O(k²) 3 multiplications of k-bit numbers 

4 
Choose small e such that gcd(e, φ(n)) = 

1 
O(k) Using Euclidean algorithm 

5 
Compute f = e*a + b, check gcd (f, 

φ(n)) = 1 
O(k) Simple arithmetic and Euclidean check 

6 Compute d = f⁻¹ mod φ(n) O(k²) Using Extended Euclidean Algorithm 

7 Encrypt: C = Mf mod n O(k³) Modular exponentiation with exponent ~log₂(f) ≤ k 

8 Decrypt: M = Cd mod n O(k³) Modular exponentiation with large d (up to k bits) 

 

Table 8. Complexity comparison: SRSA vs MORSA 

 
Operation SRSA MORSA Notes 

Key Generation O(k2) O(k2) Extra step to compute f, but still polynomial 

Prime generation O(k2) O(k2) Both use 2-4 large primes 

Modular inverse O(k2) O(k2) Finding d=f−1mod ϕ(n) dominates 

Select e O(1) O(1) Common e values like 65537 

Compute f - O(log k) Lightweight; adds negligible cost 

Encryption O(k2) O(k3) Fast in SRSA (small e), slow in modified (large f) 

Decryption O(k3) O(k3) Always slow due to large d 

 

Table 9. Analysis of MORSA and classical RSA algorithm as well as different variant of RSA cryptosystem with different 

parameter 

 
Encryption Technique Complexity Encryption Complexity Decryption Avalanche Effect 

MORSA O(n3) O(n3) 57.52% 

SRSA O(n2) O(n3) 50.20% 

MREA [35] O(n) O(n3) 46.10% 

RBMRSA O(n3) O(n3) 35.13% 
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a. Big-O-notation algorithm measurement of MORSA  

Total Complexity Summary as per Table 7. 

i. Key Generation (Steps 1-6): O (k log k + k²) ≈ O(k²) 

ii. Encryption: O(k³) — due to modular exponentiation 

with small exponent f. 

iii. Decryption: O(k³) modular exponentiation with large 

exponent 

For computing the modular inverse have the highest time 

complexity. It’s crucial to remember that although encryption 

and decryption may be carried out several times for various 

communications, key creation is normally carried out only 

once. As a result, the key generation process would dominate 

the total time complexity of RSA. The modified RSA 

technique has an O (n2*(log n)3) time complexity for key 

creation, where n is the bit length of the key, and an O(k3) time 

complexity for encryption and decryption, where k is the bit 

length of the modulus. Table 8 represents complexity 

Comparison of SRSA vs MORSA, and it is observed that the 

proposed method is better. 

b. Avalanche effect:  

Avalanche effect refers to the degree of variance in 

ciphertext that may be caused by small changes or variations 

in plaintext. To be effective, an encryption algorithm or cipher 

must provide totally new results with only a little adjustment 

to the input. An algorithm's security is directly correlated to 

the number of changes it can withstand in the ciphertext; in 

other words, a bigger avalanche effect indicates a more secure 

algorithm. To ensure that an attacker would have a hard time 

performing statistical evaluation on the ciphertext, we flip only 

one bit in the avalanche effect (%) to test how sensitive the 

proposed algorithm is. It looks at how much change the 

ciphertext would be if the plaintexts were changed just a little 

bit. The result of changing a single bit in MORSA's 1 K.B. 

plaintext resulted in a 57.52% shift in the ciphertext, while 

RSA's shift was assessed to be 50.2% shown in Table 9.  

5.3 MORSA decryption and encryption process using 

parallel of computing resources technique 

 

To implement this technique, write a simple Python 

program. using Python XMLRPC. Additionally, it can change 

the Python Encryption Library (Crypto) to support the 

MORSA algorithm. Every computer utilized had this Python 

program running as a daemon. It is evaluated with a variety of 

file sizes.  

The working set include {10,100,200,300,400,500} byte 

comparison of encryption for parallel and sequential for large 

prime number. 

Table 10 shows the relationship between the amount of data 

and the execution time (in seconds) for the MORSA algorithm. 

The first column shows the character length of the byte input 

to the algorithm. The second column shows the parallel 

encryption time, and the third column shows the sequential 

encryption time to process the data input. Table 11 presents 

that the decoding time is used to run MORSA. Runtime is 

calculated in seconds. The speed-up coefficient for parallel 

calculations running on P processors is derived as the ratio: 

These equations are referenced when calculating the speed and 

efficiency of each parallel execution of the RSA algorithm [8]. 

Table 11 presents total time for sequential and parallel 

character lengths of the sequential and parallel acceleration 

sequential bits of time in parallel acceleration. In this way, we 

can compare how effective a parallelized approach is for 

sequential approaches. In the above table the length of the 

character at the byte entry of the algorithm shows the total time 

of parallelism in the second column. The third column shows 

the sequential speed calculations for processes of different 

sizes of data input and the total time in the fourth column. We 

created a parallel MORSA encryption algorithm tool using 

OpenMP libraries and performed the experiments on high 

performance computing. 

 

Table 10. Comparative data in the execution time (in seconds) for the MORSA algorithm with parallel and sequential computing 

 
Length of 

Character in Byte 

Encryption Time for 

Parallel Computing 

Encryption Time for 

Sequential Computing 

Decryption Time for 

Parallel Computing 

Decryption Time for 

Sequential Computing 

10 0.002808 0.000188 0.037315 0.094571 

100 0.01378 0.001901 0.274317 0.943160 

200 0.001977 0.003675 0.536104 1.873151 

300 0.003337 0.005673 0.811431 2.821047 

400 0.003881 0.007447 1.092126 3.751115 

500 0.004161 0.009513 1.451110 4.721110 

 

Table 11. The decoding time is used to run MORSA and speed-up coefficient for parallel calculations 

 
Length of Character in Byte Total Time Taken in Sequential Total Time Taken in Parallel Speed-Up 

10 0.094719 0.040313 2.348333163 

100 0.941401 0.027555 3.429652221 

200 1.877217 0.548292 3.442997159 

300 2.841514 0.811331 3.491313251 

400 3.768575 1.051911 3.446132132 

500 4.710109 1.451516 3.636755213 

 

 

6. SECURITY CLAIMS OF MORSA CRYPTOSYSTEM 

 

MORSA uses four big primes instead of two, making the 

modulus n = p * q * r * s difficult to calculate.  

Below explains how and why does this withstand to security 

claims likes brute-force attacks.  

1. Large key space makes brute force impractical: MORSA 

is the product of 4 big primes (512-1024 bits each). If 

each prime is 512 bits, n is 2048 bits and if each prime 

is 1024 bits, n is 4096 bits. Brute-force factorization is 

exponentially more costly than with 2 primes due to the 

exponential number of prime combinations. With 

modulus size, brute force factoring time complexity 

becomes super-polynomials. Combinations grow 
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exponentially with additional primes. 

2. Increased Primes in Factorization: Although additional 

primes may make factorization simpler, this is not true. 

Classical algorithms, such as trial division and Pollard's 

rho, remain unsuccessful. Increasing the number of bits 

in n slows even the quickest factoring process, number 

field sieve (NFS). MORSA's n = p * q * r * s is much 

greater, therefore NFS chokes. 

3. Factoring Hardness Security: RSA can be broken by 

factoring n = p * q in traditional RSA but MORSA factor 

n = p * q * r * s. This demands more resources and time 

to break multiple factors. Here key length (bits) is more 

important than prime number in repelling brute force. 

The use of numerous big primes provides increased 

security.  

4. No Use for Brute Force Key Guessing: Some call brute 

force "guessing the private key d": d is usually hundreds 

of digits long and independent calculated. Factoring n is 

necessary to calculate φ(n) and confirm assumed d. 

Unknown totient makes estimating d impossible. 

5. Padded Randomized Encryption: With OAEP or another 

padding method in MORSA is given the same plaintext 

with distinct ciphertexts each time, preventing dictionary 

and chosen-plaintext attacks, which are brute-force 

tactics. 

The answer of the proposed research questions, which are 

introduced at Section 2 are addressed. In RQ 1: MORSA aims 

to improve RSA’s key generation via PSO, dynamic modulus, 

parallel computation via Tables 3, 4 and 8; RQ 2: Table 1 

represents different modification of conventional RSA 

cryptosystem; RQ 3: Section 6 shows how the present-day data 

or network security issues can be minimized with proposed 

MORSA. RQ 4: RSA’s key generation via PSO, dynamic 

modulus is giving the attention. This was attended in our 

proposed model.  

 

 

7. CONCLUSION 

 

The factoring of the huge integer is essential to the security 

of the RSA algorithm. Instead of using two prime numbers, 

this study uses four separate prime numbers, which has the 

effect of increasing the amount of time it takes to locate a large 

prime number. Since the keys for MORSA is dependent on a 

big factor value "n" the amount of time required for key 

generation is increased. When the time it takes to generate a 

key is increased, the amount of time it takes to break the 

system also grows, which gives the system more strength. In 

comparison to the RSA method, the technique for double 

encryption and decryption that is used by MORSA is 

straightforward, and as a result, it does not cause any 

additional burden on the system. More time is required for 

both encryption and decryption than is required by the RSA 

technique. To evaluate the effectiveness of the algorithm, the 

amount of time required for a brute force assault is taken into 

consideration. One of the limitations of this suggested schema 

is that it will not function correctly unless "n" different prime 

integers are taken into consideration simultaneously. It is 

possible that in the future, it will be beneficial to work on 

improving the security of the RSA algorithm by including 

more elements into the encryption and decryption process. 

MORSA and McEliz combination in the public key 

cryptography using hard mathematics [8] (McEliece instead of 

factoring) provides dual protection. The new MORSA 

formation gives classical security (hard to break with current 

classical methods) as well as quantum resistance based on the 

hardness of decoding random linear codes. 
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