
MORSA: An innovative Modified and Optimized RSA Framework Using Parallel

Computing Environment

Prashnatita Pal1* , Bikash Chandra Sahana1 , Jayanta Poray2

1 Department of Electronics and Communication Engineering, National Institute of Technology, Patna 800005, India
2 Department of Computer Science and Engineering, Techno India University, West Bengal 700091, India

Corresponding Author Email: prashnatitap@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120624 ABSTRACT

Received: 5 March 2025

Revised: 19 May 2025

Accepted: 28 May 2025

Available online: 30 June 2025

In this modern era of digital communication and data transmission, the information

security and confidentiality are inevitable. Among many other alternatives, the Rivest-

Shamir-Adleman (RSA) cryptosystem has set a new security benchmark and is a well-

known and public key encryption model. However, as computing power increases

dramatically, standard RSA confronts new challenges and weaknesses, necessitating

more security safeguards and performance enhancements. This paper presents the

improvement of the existing state-of-the-art model through the design of Modified and

Optimized Rivest-Shamir-Adleman (MORSA) Cryptosystem, enhancing the security

of the sensitive data against severe cyber-attacks. MORSA addresses the shortcomings

of the original RSA algorithm through various improvements. Firstly, the MORSA

algorithm generates larger keys that are more resistant and secure against brute force

and factoring attacks. Secondly, the research examines optimal prime number

generating techniques for large prime selection. Additionally, the MORSA

cryptosystem uses a dynamic modulus selection technique that adjusts the modulus

depending on input data size to improve encryption speed while maintaining security.

Finally, parallel computer resources are utilized to accelerate encryption and

decryption. The study then analyses efficiency and compares to traditional RSA and

other modern encryption algorithms. MORSA performs better in encryption speed,

resource usage, and cryptographic attack resistance.

Keywords:

decryption, encryption, modified Rivest-Shamir-

Adleman algorithm, Particle Swarm

Optimization (PSO), security, public key,

parallel computing

1. INTRODUCTION

Throughout in today's interconnected world, the secure

transfer of information is of the highest importance to

safeguard sensitive data from falling into wrong hands. The

rapid advancements in computing technology have led to an

important growth in digital communication, making it

essential to employ robust encryption techniques that can

withstand sophisticated cyber threats. The Rivest-Shamir-

Adleman (RSA) cryptosystem [1], based on the mathematical

properties of prime numbers, has been a key component of

public-key encryption for decades. However, as computing

power continues to evolve, traditional RSA faces new

challenges that require innovative methods to maintain its

effectiveness and security. This paper presents an innovative

cryptographic solution, the Modified and Optimized RSA

Cryptosystem (MORSA), designed to address the limitations

of conventional RSA and enhance the security of information

transfer. MORSA seeks to enhance the encryption process and

safeguard data against modern cyber adversaries.

Our work focuses on under-studied RSA models, which are

upgraded or include modified forms of the regular RSA

algorithm. In this work, interventions are activities like

modified or improved, and other phrases that describe RSA

cryptosystem. The Outcomes determine whether the upgraded

RSA methods provide considerable benefits.

Attacks against RSA may be roughly divided into two

groups [1]. The first group comprises mathematical purpose.

The second category feat the faults and weaknesses in the

execution of the function. The directly target the underlying

mathematical function attack are many types, such as low-

decryption exponent attack [2], Factorization Attacks [2],

Partial Key Exposure Attack [2], Wiener’s low private

exponent attack [3], Common modulus attack [3]. Secondly,

the faults and weaknesses in the implementation of the

functions are Attack with Timing [3], Evaluation of Power [3],

Side-Channel Attacks and Chosen-Ciphertext Attacks (CCA)

[3]. The counter and preventative measures of this attacks in

terms of Strong Primes, Key Size [4], Multi-prime RSA,

Public Exponent, and private Exponent.

The selection of prime numbers in RSA directly impacts the

algorithm's resilience against various attacks. By choosing

prime numbers that are large, generated securely, and have

suitable properties, RSA implementations can mitigate

vulnerabilities and resist attacks more effectively.

Additionally, considerations such as efficient modular

exponentiation can indirectly impact the effectiveness of side-

channel and timing attack mitigations. After that optimized the

Mathematical Modelling of Engineering Problems
Vol. 12, No. 6, June, 2025, pp. 2085-2096

Journal homepage: http://iieta.org/journals/mmep

2085

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120624&domain=pdf

modified RSA algorithm using Particle Swarm Optimization

(PSO) optimization technique. Consider utilizing parallel

processing techniques to enhance performance, especially for

large data sets also introduced. Therefore, the aim that any

type of information or data is encrypted with help of complex

nature asymmetric key based cryptosystem but low decryption

and encryption.

Next, evaluate the effectiveness of proposed MORSA,

performance analyses and comprehensive simulations are

conducted, also comparing its strengths as well as weaknesses

with RSA and other ongoing encryption methods. The results

establish that MORSA do better than standard RSA in terms

of encryption speed and more endurance to cryptographic

attacks where as supporting an analogous level of security.

The proposed MORSA represents a powerful result for

secure advanced application in the face of ever-increasing

cyber threats. By incorporating key improvements to the

traditional RSA algorithm, MORSA empowers organizations

and individuals to safeguard their sensitive data and maintain

the confidentiality and integrity of data communications in an

increasingly interconnected world.

Thus, here represent the main works of paper:

• An all-inclusive survey of the same types effort that

have already been planned as well as discovered by

researchers and industry professionals in this domain.

• Selected four different significant prime integer

numbers instead of two prime number (standard RSA)

using random prime generation algorithms and next

applied optimized prime number generation algorithms

to efficiently select large prime numbers required

during key generation.

• Introduce dynamic modulus selection feature at

proposed cryptosystem, where the modulus size is

adjusted based on the size of the input data.

• The implementations of parallel computing algorithm

on proposed cryptosystem to utilizes in a high-

performance computing environment.

The remaining of the paper prearranged is such a way that

Section 2 provides an impression of the different modified

RSA algorithm. Section 3 explains our three experimental

methods to implement both optimized prime number

generation algorithm and dynamic modulus selection as well

as the parallelized method of this proposed technique. Section

4 presents the outcomes of our research. Section 5 describes

the security claims of MORSA cryptosystem followed by

discussion, conclusion and future work express in Sections 6

and 7 respectively.

2. RELATED WORK

The Sergiy Gnatyuk, Yuliia Polishchuk, Elza Jintcharadze,

and Maksim Iavich were co-authors of the 2018 publication.

To strengthen aviation security between stationary and in-

motion objects, the authors suggest a novel hybrid

combination model combining AES and ElGamal encryption

techniques. In the encryption approach, the author suggests

encrypting the message twice. Secure and quick file sharing is

what Noekeon's model is all about. According to the author,

the suggested model is an attempt to circumvent the inefficient

features of the Noekeon algorithm, which is the result of

merging RSA and Data Encryption Standard (DES) [3]. Many

still hold the RSA public-key cryptosystem in high regard for

its effectiveness. When it comes to electronic encryption and

digital signatures, it is the first algorithm of its kind. It uses

integer factorization for security and relies on Euler's theorem,

a cornerstone of contemporary cryptography, for its

development. Many RSA encryption algorithms have become

relatively simple to attack due to the fast growth of computer

technology [4]. It is important to research new viable public-

key cryptographic algorithms to complement or replace

existing public-key cryptographic algorithms since traditional

public-key cryptographic algorithms are continuously

encountering different problems. The author followed all

applicable procedures while searching for scholarly literature

about conventional or modified RSA techniques and their

many uses; she located around eighty-four such articles [5].

Security in the cloud [6], image encryption [7], wireless safety,

and more disciplines were developed from these publications.

Smart devices and Internet of Things (IoT) devices have

shown good outcomes in the use of lightweight cryptographic

systems that use RSA in recent years [8]. Following the lead

of the literature [5], we also reviewed the works published in

the previous two years [9].

Suhael et al. [10] used new encryption technology to

provide effective security and produce the outer system as a

waveform such that the original data would not be modified or

attacked. Timing attacks are resisted by the algorithm. The

RSA cryptographic algorithm was created by Haldar and Paul

[11] employing three keys, however, the research still needs

some protection to address the issue of information transfer

from the server. Kwame et al. [12] suggested a framework that

offers dual layer of security for the RSA; however, this

security mechanism is not universally applicable since the

methods for key production have made the proposed system

more complicated. Çetin and Sınak [13] also created an

improved RSA cryptosystem design. Four large prime integers

are used in the procedure. The computational and spatial

complexity of the innovative system is greater than that of

traditional RSA due to these many primes. Multiplying two

significant figures yields the general component of n. Four

significant prime numbers are multiplied to get the amount of

encryption and decryption. Brute Forte Attack is resistant to

the newly developed algorithm. Additionally, the new method

is much more effective than classical RSA. Stergio et al. [14]

suggested a parallel method using a novel parallel type of data

structure called a simultaneous search list of character in

blocks. The RSA cryptosystem is intended to be executed at a

faster pace, and its security is not addressed by the system.

Using the use of several keys for connection, Abdulshaheed et

al. [15] suggested an optimized type of CRT-RSA Method for

safe and reliable transmission; the level of security was

compared to traditional RSA. The results of the experiments

showed that the suggested algorithm increases security and

reduces the participation of outsiders in communication, but it

has the disadvantage that it uses more resources than

traditional RSA. To increase security of data in the ambiance

of cloud context, the results conducted by Roussellet et al. [16]

propose Quasai modified levy flying distribution for the RSA.

The encryption system developed by RSA handles safe key

creation and data protection, protecting data from

unauthorized access. The suggested strategy [17] uses the

Cuckoo Search Algorithms (CSA) to protect and solve data

integrity issues while introducing an effective RSA

cryptosystem. To prevent brute force attacks and improve key

encryption, CSA is used. The suggested technique increases

the length of the private key while still operating more quickly

than traditional RSA. In their work, Suhael et al. [18]

2086

performed double encryption utilizing both RSA and

Advanced Encryption Standard (AES), encrypting the file

twice. When compared to traditional RSA, the approaches

boost security since the appropriate keys are produced during

algorithm execution. Kaliyamoorthy and Ramalingam [19]

proposed a secured message transmission in the cloud utilizing

the RSA method and an improved play fair cipher; the study's

goals are to protect the key and offer security for the data

transferred. The suggested system encrypts the content

employing the play fair cipher in the first step, then conducts

an XOR calculation on the text in the second stage, then uses

the RSA algorithm to complete the process in the third stage.

Though more computationally intensive, the suggested

approach raises RSA's security level over traditional RSA. By

combining the RSA and AES techniques with confirmation

from a third party, Shree et al. [20] added an estimate and

guarantees the confidentiality of encrypted data. By

preventing unauthorized access to the data, the system

carefully managed security and privacy concerns and ensured

authentication.

The RSA cryptosystem has undergone several revisions and

variations throughout the years with the purpose of addressing

different issues or adding new capabilities. Here are some

examples of several RSA-modified cryptosystems shown in

Table 1.

Table 1. Comparatives analysis of different modifications of RSA algorithms

Reference
RSA-Modified

Cryptosystems
Description

[21]
Chinese Remainder

Theorem (CRT) RSA

This update uses the CRT to accelerate the decryption of an RSA key using the Chinese Remainder

Theorem (CRT) RSA. To reduce the quantity of modular involution required, it anticipates pre-

calculating certain values during the key creation phase and employing them throughout the

decryption process.

[22] Multi-Prime RSA

This method generates keys by engaging various prime numbers, as countered to just two large

prime numbers. The effectiveness of decryption, key generation, and encryption, processes may

improve.

[23] Blinded RSA

Blinded RSA employs randomization throughout the encryption and decryption procedures to thwart

side-channel attacks. Blinding, or randomization, conceals important information to prevent leakage

via auxiliary channels like time or power usage

[24] Multi-Exponent RSA

Various exponents are employed for encryption and decryption in multi-exponent RSA, enabling

optimal performance in certain situations. By choosing the exponents, it may enhance the

effectiveness of either decryption or encryption procedures.

There have been several modifications and variants of the

RSA cryptosystem proposed over the years. While these

modifications aim to address certain limitations or provide

additional features, they can also introduce new vulnerabilities

or drawbacks.

2.1 Drawbacks associated with different types of modified

RSA cryptosystems

i. Low Public Key Efficiency [25]: RSA with Chinese

Remainder Theorem (CRT), can enhance the

effectiveness of decryption with help of the CRT to

accelerate the modular exponentiation method.

However, these schemes frequently require additional

parameters and computations, which increase the size

of the public key. This can lead to more storage

requirements and increased transmission costs.

ii. Reduced Security Margin [26]: Certain variations to

RSA, for instance RSA with small public exponents

(e.g., small Fermat primes), aim to increase efficiency

by using smaller exponents. Although this can

accelerate decryption and encryption, it can also reduce

the security margin of the algorithm. Small exponents

make the encryption more exposed to attacks such as

the Wiener attack, where an attacker can factorise the

modulus when the exponent is too small.

iii. Vulnerability Attacks in Side-Channel [27]: Some

implementations or modifications of RSA may be

susceptible to side-channel attacks. Side-channel

attacks exploit information leaked during the

cryptographic operation, such as power consumption,

timing information, or electromagnetic radiation. If

proper countermeasures are not taken, sensitive data

may be extracted via side-channel attacks., including

the private key.

iv. Increased Key Size and Computation Complexity [28]:

Some modifications of RSA aim to enhance security by

using larger key sizes or more complex mathematical

operations. While this can provide additional security,

it also leads to increased computational requirements.

Larger key sizes can impact encryption and decryption

performance, requiring more computational resources

and potentially slowing down the cryptographic

operations.

2.2 Current research trends and research question

Kitchenham et al. [29] stated that there are three parts to the

question structure: population, interventions, and outcomes.

All the under-researched RSA models, or more accurately,

algorithms that are improved or altered variants of the real

standard RSA algorithm, make up the Population, which is the

center of our study. Actions such as changed or enhanced,

among others, that demonstrate the kind of therapies with RSA

are the interventions in our situation according to training. The

ultimate verdict on whether the improved RSA algorithms

have shown any notable benefit is found in the outcomes.

RQ1. What the authors goal in improving the RSA model?

RQ2. What are the conventional RSA algorithms many

revisions to date?

RQ3. How do suggested RSA schemes address present-day

data or network security issues?

RQ4. Which RSA scheme domain has received greater

attention?

2.3 Countermeasures and preventative measures

a. Since key: Size Since it has been shown that 512 RSA

2087

keys are too short and unsafe for usage, many of the

standards that are now in place mandate the use of

1024/2048/4096 bits for RSA keys.

b. Strong Primes it is suggested that moduli with a bit size

of 1024/2048/4096 employ more than three factors [12].

c. Multi-prime RSA: To speed up the RSA private

operation, there are proposals of using more than two

primes to generate the modulus.

d. Public Exponent: At the very least, the private exponent

need to be 300 bits in length for the usual key that is

1024 bits in length.

In summary, the selection of prime numbers in RSA directly

impacts the algorithm and resilience against various attacks.

By choosing prime numbers that are large, generated securely,

and have suitable properties, RSA implementations can

mitigate vulnerabilities and resist attacks more effectively.

Additionally, considerations such as efficient modular

exponentiation can indirectly impact the effectiveness of side-

channel and timing attack mitigations.

The main goal of our work is the proposed MORSA

algorithm, an important generation improved process that

ensures that the generated keys are fairly large and resistant to

modern cryptographic attacks. Additionally, the new

generation of key generation technologies reduces the

overhead connected to key sizes. This means that resource-

limiting devices can use severe encryption. Second, this paper

examines the use of optimized algorithms to generate prime

numbers to efficiently select a large number of primes. This

optimization reduces the performance observed in traditional

RSAs due to the high complexity of computing involved in

prime number production. Furthermore, the MORSA

cryptosystem introduces a dynamic modulus selection

approach, where the modulus is varied based on the input data

size, thus improving the encryption speed while preserving the

same level of security. This feature allows for adaptive

encryption suitable for a diverse range of applications with

varying data sizes. Next, Analyze and optimize the

implementation for efficiency and speed with respected to

Standard RSA algorithms, consider parallel processing

techniques to enhance performance, especially for large data

sets. The workflow diagram of proposed MORSA algorithm

shown in Figure 1.

Figure 1. Workflow diagram of proposed MORSA algorithm

3. PROPOSED MORSA ALGORITHM

Step 1: Prime Selection

• Select four large, random, distinct prime numbers:

p, q, r, and s.

• Purpose: Using more primes increases the modulus

size (n=p*q*r*s), which increases cryptographic

strength.

Step 2: Compute Modulus n

• n = p*q*r*s

• This n serves as a modulus function for both private

and public keys.

Step 3: Calculate Euler’s Totient Function φ(n)

• Formula: φ(n) =(p-1)(q-1)(r-1)(s-1)

• This is required for key generation (used to ensure

values are coprime, and for modular inverses).

Step 4: Select Encryption Exponent function e

o Criteria: 1<e<φ(n)

o gcd (e, φ(n)) =1 (must be coprime)

o e should be small (to optimize encryption

speed, like 3, 17, or 65537)

Step 5: Compute Modified Exponent f

• Define f =(e*a)+b, where a and b are integers.

• Purpose: Allows dynamic modulus selection, and

can serve as a simple obfuscation of the public

exponent.

• f still needs to be used in modular exponentiation

securely.

Step 6: Compute Decryption Key d

• You must compute d such that:

o (d*f) mod φ(n) = 1 → d ≡ f⁻¹ mod φ(n)

(modular inverse of f)

o gcd(d,φ(n))=1 (must also be coprime to

φ(n))

Step 7: Public Key indicator = (f, n)

• Used to encrypt messages: C = Mf mod n

Step 8: Private Key indicator = (d, n)

• Used to decrypt messages: M = Cd mod n

Encryption & Decryption Process

• Encryption: C = Mf mod n

• Decryption: M = Cd mod n

This works correctly if and only if d is the modular inverse

of f modulo φ(n).

This satisfies:

(Mf)d ≡ M(f*d) ≡ M mod n since f*d ≡ 1 mod φ(n)

Strengths

• Larger modulus (n) makes brute-force attacks harder.

• Using f = e * a + b introduces randomness/complexity

in the public key.

• Dynamic modulus scaling could potentially offer

adaptability for different message sizes.

Here's a successful demonstration of the encryption scheme

using randomly generated 16-bit prime numbers:

Key Values

• Primes:

o p = 46307

o q = 44983

o r = 45751

o s = 42787

• Modulus:

o n = 4077626943713015897

• Totient:

o φ(n) = 4077263824162074000

2088

Key Generation

• Chosen e: 257

• Random a = 2, b = 3

• Computed f = e * a + b = 517

• Private exponent d = 670343181922197853

(modular inverse of f mod φ(n))

Encryption/Decryption Example

• Message M:12345

• Ciphertext C:442548085500316469

• Decrypted M:12345 (matches original)

4. METHODOLOGY TO IMPLEMENT MORSA

Here describe how to Implement the large random and

optimized prime number generation algorithm during key

generation using PSO optimizing technique, dynamic

Modulus Selection, MORSA decryption and encryption

process using Parallel of computing resources technique.

Figure 2 represents four distant features proposed MORSA

system.

Figure 2. Four distant features of proposed MORSA system

4.1 Implement the large Randon and optimized prime

number generation algorithm

4.1.1 Large random prime generation procedure

The goal is to efficiently calculate large random numbers

with a specific bit size. The standard method for manually

implementing a random prime generator that can generate

linear values with satisfactory levels of accuracy is specified

as follows:

i. Random number of the desired bit size.

ii. Make sure that the selected numbers cannot be split due

to the first 100 prime numbers (these are presented). Based

on the acceptable error rate, we use a certain number of

iterations by Rabin Miller Primality test [30] to get the

number that is probably prime.

iii. Implement the optimized prime number generation

algorithm to efficiently select large prime numbers

required during key generation using PSO optimising

technique.

iv. Ensure that the prime number generation process is

robust and capable of generating sufficiently large prime

numbers for proposed method.

4.1.2 Optimization of Large prime number generation

algorithm

Prime number generation is traditionally a discrete problem

because prime numbers are inherently discrete values—whole

numbers that are greater than 1 and divisible only by 1 and

themselves. However, in the context of optimization

algorithms, it can be treated as a continuous optimization

problem if consider it within an optimization framework. This

involves adapting continuous optimization techniques to

search for prime numbers, despite their discrete nature.

Applying PSO to prime number generation is an

unconventional use of the algorithm, but it can be explored as

a new way to search for prime numbers in a defined range or

optimize some prime-related function. Let’s break down how

prime number generation can be viewed as a continuous

optimization problem and what adaptations would be required.

a. Understanding the Discreteness of Primes

Prime numbers are discrete because they belong to the set

of integers {2,3,5,7, 11…}. So, traditionally, finding prime

numbers involves checking numbers in this discrete set

(integers). This is what makes prime number generation a

discrete problem. PSO are often used for continuous

optimization tasks where variables can take any value from a

range (usually real numbers). Despite this, these algorithms

can sometimes be adapted to work with discrete values by

introducing methods like rounding, discretization, or

relaxation.

b. Continuous Optimization for Discrete Problems

• Represent potential solutions (candidate numbers) as

continuous variables.

• Adapt the algorithm to either discretize the

continuous solutions or directly check for the

primality of the solutions at each iteration.

c. Step-by-Step Adaptation for Continuous

Optimization for Prime Number Generation

i. Discrete PSO Variant: Use a variant of PSO designed

for discrete spaces, where particles represent integers

rather than real-valued vectors.

ii. Fitness Function (Primality Test): The fitness

function evaluates whether the number represented

by a particle is prime. If the number is prime, the

fitness is high; if not, the fitness is low.

def is_prime no.(n):

 if n <= 1:

 return False

 for i in range (2,int (n * 0.5) + 1):
 if n % i = 0:

 return False

 return True

iii. Fitness with Probabilistic Primality: For large

numbers, you might use a probabilistic primality test

(e.g., Miller-Rabin) and use the confidence as fitness:

def fitness(x):

 # Return a probability estimate (pseudo-code)

 return miller_rabin_confidence(x)

• Calculation Swarm Size (Number of Particles) for

prime number search: If they consider Small Primes

(i.e., <10,000) that means 20 particles so Number of

Iterations will be 30. Similarly, Medium Primes

(~10⁶): 30-40 particles, 50-70 iterations and Large

Primes (≥10¹⁰): 40-60 particles, 70-100+ iterations.

With help of above condition, we get the percentage of

success rate shown in Figure 3.

Velocity and Position Update: In PSO, the particles move

2089

toward better solutions. However, after updating the particle's

position (which may be continuous), you will need to round or

map the particle's position to a valid integer (the next candidate

number) to ensure it is still a valid candidate for primality

testing.

iv. Discretization: Once the particle moves in the

continuous space, it would be rounded or converted

to an integer. The PSO algorithm itself will explore

continuous space, but the solution will always be

tested as a discrete integer.

v. Optimization Process: PSO will continue searching

for prime numbers by moving particles through the

continuous space and checking if their corresponding

values are prime numbers. Particles with prime

numbers will have better fitness values and be

attracted toward areas with more prime numbers.

Figure 3. Estimated prime search success rate with respect to

swam size

4.2 Dynamic modulus selection

Understanding Modulus Size in MORSA: The modulus

size (n) in MORSA is typically 1024, 2048, 3072, or 4096 bits.

The maximum size of the data that can be encrypted directly

is limited to (modulus size in bytes - padding overhead). Table

2 indicates the general guideline for modulus selection. Figure

3 shows the estimated prime search success rate with respect

to swam size.

Table 2. General guideline for modulus size selection

Modulus Size Max Input Size (approx.) Security Level

1024 bits ~117 bytes (with PKCS#1) Weak

2048 bits ~245 bytes Good

3072 bits ~373 bytes Strong

4096 bits ~501 bytes Very strong
Note: Exact input size depends on the padding scheme used (e.g., OAEP).

b. Adaptive Modulus Sizing Logic (Pseudocode)

def select_modulus_size(input_data_bytes):

 # Estimate required size with padding

 overhead = 42 # for OAEP padding (approx.)

 total_bytes = len(input_data_bytes) + overhead

 if total_bytes <= 117:

 return 1024 # bytes ~117

 elif total_bytes <= 245:

 return 2048 # bytes ~245

 elif total_bytes <= 373:

 return 3072

 elif total_bytes <= 501:

 return 4096

 else:

 raise ValueError ("Input data too large use parallel

processing for direct MORSA encryption.")

d. The relation between MORSA key size (modulus size in

bits) and the maximum plaintext size you can encrypt using

OAEP padding is based on the following formula:

Max plaintext size (in bytes) = (modulus_size_in_bytes) - 2

* hash_len - 2

Where:

• modulus_size_in_bytes = key_size_in_bits / 8

• hash_len = length of the hash output used in OAEP

(e.g., SHA-256 = 32 bytes, SHA-1 = 20 bytes)

Table 3. MORSA key size vs max OAEP plaintext size

MORSA Key Size

(bits)

Modulus Size

(bytes)

Max OAEP Plaintext

(bytes)

1024 128 128 -2×32 -2 = 62

2048 256 256 - 2×32 - 2 = 190

3072 384 384 - 2×32 - 2 = 318

4096 512 512 - 2×32 - 2 = 446

First, determine the size of the input data. This can be

measured in terms of the number of bits, bytes, or other

relevant units. Next, establish criteria or rules for selecting the

modulus size based on the input data size. This can be done

using predefined thresholds or a mathematical formula. Then,

based on the input size and the defined criteria, select an

appropriate modulus size. Finally, use the selected modulus

size in your cryptographic or mathematical operations. Table

3 represents relation between the MORSA key size vs. max

OAEP plaintext size.

4.3 MORSA decryption and encryption process using

parallel computing resources technique

It is already introduced speeding up modular exponentiation

using optimized technique and dynamic modulus system to

increase efficiency of MORSA cryptosystem. But still now

MORSA cryptosystem faces some challenges when dealing

with large input data, including Performance Issues with Large

Data with Slow Encryption and Decryption: and High

Computational Cost, Padding Overhead, Memory Constraints,

Modulus Size Constraints, Scalability. Parallelization for

MORSA Operations is the one impotent solution.

Encrypting/decrypting multiple blocks of data in parallel.

4.3.1 Parallelization for MORSA cryptosystem operations

Parallelization can help improve the performance of the

MORSA Cryptosystem, especially when working with large

datasets. Because MORSA's core is based on RSA (and

includes modular equation), parallelization in various regions

can be used to reduce time complexity and optimize systems

for large-scale operations.

a. Important areas of parallelization: Encryption and

decryption of several sections: When processing

large files or messages, the data must be split into

smaller sections corresponding to module N. These

sections can be encrypted or decrypted in parallel

because each section operates independently. Here,

2090

the data is split into small sections, each section is

encrypted in parallel using a thread pool. These

sections can be encrypted or decrypted in parallel

because each section operates independently. Here,

the data is split into small sections, each section being

encrypted in parallel using a thread pool.

i. Using Python's concurrent.futures library, we

can parallelize the encryption of each section:

import concurrent.futures

def encrypt_section(section, public_key):

 “Encrypt a single section."

 return encrypt(section, public_key)

def parallel_encrypt(data, public_key, section_size,

num_workers=6):

 "Encrypt data in parallel by splitting it into section."

 # Split data into sections

 Section = [data[i:i+section_size] for i in range (0,

len(data), section _size)]

Use Thread Pool Executor to parallelize the encryption of

section

 with concurrent. futures. Thread Pool

xecutor(max_workers=num_workers) as executor:

 encrypted_sections = list (executor.map(lambda section:

encrypt_section(section, public_key), sections))

 return encrypted sections

ii. Similarly, for decryption, sections of encrypted

data can be processed independently:

def decrypt_section (section, private_key):

 "Decrypt a single section."

 return decrypt(section, private_key)

def parallel_decrypt(encrypted_data, private_key, section

_size, num_workers=6):

 "Decrypt encrypted data in parallel by splitting it into

sections."

 # Split encrypted data into sections

 sections = [encrypted_data[i:i+chunk_size] for i in

range(0, len(encrypted_data), section_size)]

 # Use ThreadPoolExecutor to parallelize the decryption

of sections

 with concurrent.futures. Thread Pool

Executor(max_workers=num_workers) as executor:

 decrypted_sections = list(executor.map(lambda section:

decrypt_section(section, private_key), sections))

 return decrypted_sections

b. Modular Exponentiation (MORSA Operations):

The modular exponentiation operation Mf mod  n (for

encryption) and Cd mod  n (for decryption) is

computationally expensive. Although MORSA is

inherently sequential for a single message, it can be

parallelized when dealing with multiple messages or

blocks. This is especially useful when processing

multiple chunks of encrypted data in parallel. In the

example above, modular exponentiation for each

chunk is parallelized using a thread pool, which

speeds up the overall process.

def modular_exponentiation(modulus, base, exponent,):

"Modular exponentiation."

Returnpow(modulus,base,exponent,)

def parallel_modular_exponentiation(sections, exponent,

modulus, num_workers=6):

"Perform modular exponentiation on each section in

parallel." with concurrent futures.

Thread Pool Executor(max_workers=num_workers) as

executor:

results = list(executor.map(lambda section :

modular_exponentiation (section, exponent, modulus),

sections))

return results

c. Key Generation: Generating large prime numbers

for the keys and the modulus n can be parallelized.

While probabilistic primality tests (like the Miller-

Rabin test) can be expensive, they can be run on

different cores for each candidate prime.

Additionally, the process of finding multiple primes

(e.g., p,q,r,s) for a multi-prime system like MORSA

can be parallelized.

import concurrent.futures

from sympy import is prime

def generate_prime_candidate(bits=1024):

 "Generate a random candidate for prime number."

 return random.getrandbits(bits)

def check_and_generate_prime(bits=1024):

 "Generate a prime number."

 candidate = generate_prime_candidate(bits)

 while not isprime(candidate):

 candidate = generate_prime_candidate(bits)

 return candidate

def parallel_generate_primes(num_primes=4, bits=1024,

num_workers=6):

 "Generate multiple primes in parallel."

 with

concurrent.futures.ThreadPoolExecutor(max_workers=num_

workers) as executor:

 primes = list(executor.map(lambda_:section

_and_generate_prime(bits), range(num_primes)))

 return primes

d. Key Splitting and Combining: When using multiple

primes (as in the MORSA system), operations like

splitting the private key into smaller parts (modular

inverses for each prime) and combining results can

benefit from parallelism. In this case, modular

inverses for each prime can be computed in parallel,

reducing the time spent on this operation.

def mod_inverse_parallel(a, moduli, num_workers=6):

 "Compute modular inverse in parallel for each prime

factor."

 def mod_inv_for_prime(p):

 return mod_inverse(a, p)

 with concurrent. futures. Thread Pool

Executor(max_workers=num_workers) as executor:

 inverses = list(executor.map(mod_inv_for_prime,

moduli))

 return inverses

e. Parallelizing Padding and Unpadding: Padding

and unpadding of the message to ensure it fits into the

modulus size can be done in parallel for multiple

chunks. This is particularly useful when dealing with

larger files or messages.

def parallel_pkcs1_pad(sections, n_size, num_workers=6):

 "Apply PKCS#1 padding in parallel to each chunk."

 with concurrent. futures. Thread Pool

Executor(max_workers=num_workers) as executor:

 padded_sections = list(executor.map(lambda section:

pkcs1_pad(section,n_size),sections))

 return padded_sections

def parallel_pkcs1_unpad(sections, n_size,

num_workers=6):

2091

 "Unpad PKCS#1 padding in parallel."

 with concurrent. futures. Thread Pool

Executor(max_workers=num_workers) as executor:

 unpadded_sections = list(executor.map(lambda section:

pkcs1_unpad(secton, n_size), sections))

 return unpadded_sections

In our proposed model, multiple threads are parallelly

executed equ-length sections. By parallelizing key parts of the

MORSA cryptosystem, including the encryption/decryption of

sections, modular exponentiation, key generation, and

padding, we can improve the system's efficiency and

scalability, especially when working with large data sets.

5. RESULT ANALYSIS OF MORSA CRYPTOSYSTEM

Implementation of proposed work have required following

system: CPU- Intel Core I7-2670QM at 2.20GHz frequency,

Memory 16.0 GB, GPU: NVIDIA GeForce GT630M consists

of 96 cores, and Windows Home Premium.

5.1 Performance analysis of proposed MORSA algorithm

Compare the amount of time required by various algorithms

shown in Table 3, we have demonstrated the outcomes of the

various methods like Key Generation Time, Decryption Time,

and Encryption Time, described here. We applied 20-bit

modules and 20-bit messages using python libraries. Table 4

shows the comparison of algorithms using 20-bits modules

size and 20-bits message size version different version RSA

and proposed MORSA algorithm.

The effectiveness of any specific encryption and decryption

approach is dependent upon the speed at which a

cryptographic algorithm is implemented, and the period of

execution identifies the algorithm's speed or execution speed.

As shown in Figures 4 and 5, the required time for the

proposed MORSA and SRSA algorithm is applied for the

news size of bytes. When you view the message, a graphical

comparison of the proposed algorithm MORSA and the

encryption time of the traditional SRSA size shows the same

bytes.

Next, test the proposed MORSA with different input bit

sizes. Table 4 shows the performance of the original RSA

(SRSA) algorithm by Rivest, Shamir, and Adleman [1]. Table

4 also displays the MORSA scheme’s performance regarding

of key generation, encryption time, and decryption. By

comparing the tables, it is possible to determine that MORSA

requires more time for key creation than RSA. The fact that

the time to break the system is long due to the additional

complexity makes Modified and optimized RSA's (MORSA)

longer key generation period advantageous.

Next, test the proposed MORSA with different input bit

sizes. Table 5 shows the performance of the original RSA

(SRSA) algorithm by Rivest, Shamir, and Adleman [1]. Table

5 also displays the MORSA scheme’s performance regarding

of key generation, encryption time, and decryption. By

comparing the tables, it is possible to determine that MORSA

requires more time for key creation than RSA. The fact that

the time to break the system is long due to the additional

complexity makes Modified and optimized RSA's (MORSA)

longer key generation period advantageous.

Table 5 shows the encryption and decryption result

compares of the proposed algorithms MORSA and SRSA with

respect to large message size. It is evident from the findings in

Table 5 that the computational complexity of both encryption

and decryption on MORSA has a more advanced cryptosystem

than SRSA, indicating that it will be more complicated, and

the attackers need considerably more time to breach easily

than that of the SRSA. Table 6 presents the encryption and

decryption times (in seconds) for MORSA and RSA

algorithms across different input sizes (in KB).

5.2 Analysis of computational complexity and big-O-

notation algorithm of MORSA

a. Computational Complexity: Let’s examine each

stage of the modified key creation, message encryption, and

text decryption procedure in terms of its temporal complexity.

The big O notation describes the computational complexity of

an algorithm in terms of its input size — in this case, the bit-

length of the primes used (denoted k). Here's an analysis of the

MORSA algorithm and define Parameters k = bit-length of

each prime number (e.g., 1024 bits in real-world use). The

operations include prime generation, modular exponentiation,

and modular inversion.

Figure 4. Plotting the proposed MORSA and SRSA

algorithms' encryption times versus message sizes in bytes

Figure 5. Plotting the proposed MORSA and SRSA

algorithms' decryption times versus message sizes in bytes

Table 4. Analysis of security and efficiency of different

S. No Algorithm Time of Key Generation (µsec) Time of Encryption (µsec) Time of Decryption (µsec)

1 SRSA [31] 989 989 1998

2 Prime numbers RSA [32] 988 1988 13992

4 Diffie-key-RSA [33] 999 1000 999

5 IRSA [34] 905 985 2010

6 MREA [35] 1598 3174 3896

7 MORSA 1875 4057 14976

2092

Table 5. Key generation, encryption and decryption time (ms) of SRSA and MORSA with different keys respectively

Length of p, q, s, r (in bits)
Analysing Tine for MORSA

Key Generation Time(ms) Encryption Time (ms) Decryption Time(ms)

100 231 0.27 1.36

128 241.23 0.54 2.34

256 248.7 1.23 12.62

512 365.6 2.7 78.65

1024 1165.7 6.89 376.2

2048 6089.6 19.9 2169.6

4096 15,514 55.67 17,789.7

Length of p, q (in bits)
Analysing Tine for SRSA

Key Generation Time(ms) Encryption Time (ms) Decryption Time(ms)

100 76.63 0.16 0.25

128 90.46 0.17 0.28

256 94.96 0.35 0.96

512 177.47 0.56 5.2

1024 570.9 1.69 26.18

2048 4201.47 3.32 130.83

4096 54368.00 11.17 1116.24

Table 6. Encryption and decryption tine (sec) of MORSA and RSA with distinct sizes (KB)

Size of Message

(KB)

Encryption Time (sec)

MORSA

Encryption Time SRSA

(sec)

Decryption Time (sec)

MORSA

Decryption Time (sec)

SRSA

10 2 0 0.1 0

1000 4 2 2 2

5000 12 8 7 7

10000 20 16 16 16

20000 35 28 27 25

50000 80 71 66 62

100000 165 146 160 152

Table 7. Represented step-by-step calculation of complexity measurement of MORSA

Step Operation Complexity Reason

1 Generate 4 distinct primes (p, q, r, s)
O (k log k) (each) × 4 → O (k log

k) total

Primality testing (e.g., Miller-Rabin) and random

generation

2 Multiply 4 primes for n = p*q*r*s O(k²) Big integers, each of k bits

3 Compute φ(n) = (p−1)(q−1)(r−1)(s−1) O(k²) 3 multiplications of k-bit numbers

4
Choose small e such that gcd(e, φ(n)) =

1
O(k) Using Euclidean algorithm

5
Compute f = e*a + b, check gcd (f,

φ(n)) = 1
O(k) Simple arithmetic and Euclidean check

6 Compute d = f⁻¹ mod φ(n) O(k²) Using Extended Euclidean Algorithm

7 Encrypt: C = Mf mod n O(k³) Modular exponentiation with exponent ~log₂(f) ≤ k

8 Decrypt: M = Cd mod n O(k³) Modular exponentiation with large d (up to k bits)

Table 8. Complexity comparison: SRSA vs MORSA

Operation SRSA MORSA Notes

Key Generation O(k2) O(k2) Extra step to compute f, but still polynomial

Prime generation O(k2) O(k2) Both use 2-4 large primes

Modular inverse O(k2) O(k2) Finding d=f−1mod ϕ(n) dominates

Select e O(1) O(1) Common e values like 65537

Compute f - O(log k) Lightweight; adds negligible cost

Encryption O(k2) O(k3) Fast in SRSA (small e), slow in modified (large f)

Decryption O(k3) O(k3) Always slow due to large d

Table 9. Analysis of MORSA and classical RSA algorithm as well as different variant of RSA cryptosystem with different

parameter

Encryption Technique Complexity Encryption Complexity Decryption Avalanche Effect

MORSA O(n3) O(n3) 57.52%

SRSA O(n2) O(n3) 50.20%

MREA [35] O(n) O(n3) 46.10%

RBMRSA O(n3) O(n3) 35.13%

2093

a. Big-O-notation algorithm measurement of MORSA

Total Complexity Summary as per Table 7.

i. Key Generation (Steps 1-6): O (k log k + k²) ≈ O(k²)

ii. Encryption: O(k³) — due to modular exponentiation

with small exponent f.

iii. Decryption: O(k³) modular exponentiation with large

exponent

For computing the modular inverse have the highest time

complexity. It’s crucial to remember that although encryption

and decryption may be carried out several times for various

communications, key creation is normally carried out only

once. As a result, the key generation process would dominate

the total time complexity of RSA. The modified RSA

technique has an O (n2*(log n)3) time complexity for key

creation, where n is the bit length of the key, and an O(k3) time

complexity for encryption and decryption, where k is the bit

length of the modulus. Table 8 represents complexity

Comparison of SRSA vs MORSA, and it is observed that the

proposed method is better.

b. Avalanche effect:

Avalanche effect refers to the degree of variance in

ciphertext that may be caused by small changes or variations

in plaintext. To be effective, an encryption algorithm or cipher

must provide totally new results with only a little adjustment

to the input. An algorithm's security is directly correlated to

the number of changes it can withstand in the ciphertext; in

other words, a bigger avalanche effect indicates a more secure

algorithm. To ensure that an attacker would have a hard time

performing statistical evaluation on the ciphertext, we flip only

one bit in the avalanche effect (%) to test how sensitive the

proposed algorithm is. It looks at how much change the

ciphertext would be if the plaintexts were changed just a little

bit. The result of changing a single bit in MORSA's 1 K.B.

plaintext resulted in a 57.52% shift in the ciphertext, while

RSA's shift was assessed to be 50.2% shown in Table 9.

5.3 MORSA decryption and encryption process using

parallel of computing resources technique

To implement this technique, write a simple Python

program. using Python XMLRPC. Additionally, it can change

the Python Encryption Library (Crypto) to support the

MORSA algorithm. Every computer utilized had this Python

program running as a daemon. It is evaluated with a variety of

file sizes.

The working set include {10,100,200,300,400,500} byte

comparison of encryption for parallel and sequential for large

prime number.

Table 10 shows the relationship between the amount of data

and the execution time (in seconds) for the MORSA algorithm.

The first column shows the character length of the byte input

to the algorithm. The second column shows the parallel

encryption time, and the third column shows the sequential

encryption time to process the data input. Table 11 presents

that the decoding time is used to run MORSA. Runtime is

calculated in seconds. The speed-up coefficient for parallel

calculations running on P processors is derived as the ratio:

These equations are referenced when calculating the speed and

efficiency of each parallel execution of the RSA algorithm [8].

Table 11 presents total time for sequential and parallel

character lengths of the sequential and parallel acceleration

sequential bits of time in parallel acceleration. In this way, we

can compare how effective a parallelized approach is for

sequential approaches. In the above table the length of the

character at the byte entry of the algorithm shows the total time

of parallelism in the second column. The third column shows

the sequential speed calculations for processes of different

sizes of data input and the total time in the fourth column. We

created a parallel MORSA encryption algorithm tool using

OpenMP libraries and performed the experiments on high

performance computing.

Table 10. Comparative data in the execution time (in seconds) for the MORSA algorithm with parallel and sequential computing

Length of

Character in Byte

Encryption Time for

Parallel Computing

Encryption Time for

Sequential Computing

Decryption Time for

Parallel Computing

Decryption Time for

Sequential Computing

10 0.002808 0.000188 0.037315 0.094571

100 0.01378 0.001901 0.274317 0.943160

200 0.001977 0.003675 0.536104 1.873151

300 0.003337 0.005673 0.811431 2.821047

400 0.003881 0.007447 1.092126 3.751115

500 0.004161 0.009513 1.451110 4.721110

Table 11. The decoding time is used to run MORSA and speed-up coefficient for parallel calculations

Length of Character in Byte Total Time Taken in Sequential Total Time Taken in Parallel Speed-Up

10 0.094719 0.040313 2.348333163

100 0.941401 0.027555 3.429652221

200 1.877217 0.548292 3.442997159

300 2.841514 0.811331 3.491313251

400 3.768575 1.051911 3.446132132

500 4.710109 1.451516 3.636755213

6. SECURITY CLAIMS OF MORSA CRYPTOSYSTEM

MORSA uses four big primes instead of two, making the

modulus n = p * q * r * s difficult to calculate.

Below explains how and why does this withstand to security

claims likes brute-force attacks.

1. Large key space makes brute force impractical: MORSA

is the product of 4 big primes (512-1024 bits each). If

each prime is 512 bits, n is 2048 bits and if each prime

is 1024 bits, n is 4096 bits. Brute-force factorization is

exponentially more costly than with 2 primes due to the

exponential number of prime combinations. With

modulus size, brute force factoring time complexity

becomes super-polynomials. Combinations grow

2094

exponentially with additional primes.

2. Increased Primes in Factorization: Although additional

primes may make factorization simpler, this is not true.

Classical algorithms, such as trial division and Pollard's

rho, remain unsuccessful. Increasing the number of bits

in n slows even the quickest factoring process, number

field sieve (NFS). MORSA's n = p * q * r * s is much

greater, therefore NFS chokes.

3. Factoring Hardness Security: RSA can be broken by

factoring n = p * q in traditional RSA but MORSA factor

n = p * q * r * s. This demands more resources and time

to break multiple factors. Here key length (bits) is more

important than prime number in repelling brute force.

The use of numerous big primes provides increased

security.

4. No Use for Brute Force Key Guessing: Some call brute

force "guessing the private key d": d is usually hundreds

of digits long and independent calculated. Factoring n is

necessary to calculate φ(n) and confirm assumed d.

Unknown totient makes estimating d impossible.

5. Padded Randomized Encryption: With OAEP or another

padding method in MORSA is given the same plaintext

with distinct ciphertexts each time, preventing dictionary

and chosen-plaintext attacks, which are brute-force

tactics.

The answer of the proposed research questions, which are

introduced at Section 2 are addressed. In RQ 1: MORSA aims

to improve RSA’s key generation via PSO, dynamic modulus,

parallel computation via Tables 3, 4 and 8; RQ 2: Table 1

represents different modification of conventional RSA

cryptosystem; RQ 3: Section 6 shows how the present-day data

or network security issues can be minimized with proposed

MORSA. RQ 4: RSA’s key generation via PSO, dynamic

modulus is giving the attention. This was attended in our

proposed model.

7. CONCLUSION

The factoring of the huge integer is essential to the security

of the RSA algorithm. Instead of using two prime numbers,

this study uses four separate prime numbers, which has the

effect of increasing the amount of time it takes to locate a large

prime number. Since the keys for MORSA is dependent on a

big factor value "n" the amount of time required for key

generation is increased. When the time it takes to generate a

key is increased, the amount of time it takes to break the

system also grows, which gives the system more strength. In

comparison to the RSA method, the technique for double

encryption and decryption that is used by MORSA is

straightforward, and as a result, it does not cause any

additional burden on the system. More time is required for

both encryption and decryption than is required by the RSA

technique. To evaluate the effectiveness of the algorithm, the

amount of time required for a brute force assault is taken into

consideration. One of the limitations of this suggested schema

is that it will not function correctly unless "n" different prime

integers are taken into consideration simultaneously. It is

possible that in the future, it will be beneficial to work on

improving the security of the RSA algorithm by including

more elements into the encryption and decryption process.

MORSA and McEliz combination in the public key

cryptography using hard mathematics [8] (McEliece instead of

factoring) provides dual protection. The new MORSA

formation gives classical security (hard to break with current

classical methods) as well as quantum resistance based on the

hardness of decoding random linear codes.

ACKNOWLEDGEMENTS

We would like to show our gratitude to Dr. Rituparna

Bhattacharya, HoD, CSE Department, Techno India

University West Bengal, India, for sharing her pearls of

wisdom with us during this research work.

REFERENCES

[1] Rivest, R.L., Shamir, A., Adleman, L. (1978). A method

for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21(2):

120-126. https://doi.org/10.1145/359340.359342

[2] Haldar, B., Paul, P. (2025). Advancing Mobile banking

security using modified RSA approach for data

transformation enhancement. Shaping Cutting-Edge

Technologies and Applications for Digital Banking and

Financial Services, 390.

[3] Wang, Z., Dong, H., Chi, Y., Zhang, J., Yang, T., Liu, Q.

(2021). Research and implementation of hybrid

encryption system based on SM2 and SM4 algorithm. In

Proceedings of the 9th International Conference on

Computer Engineering and Networks, 1143: 695-702.

https://doi.org/10.1007/978-981-15-3753-0_68

[4] Falowo, O.M., Misra, S., Falayi, C.F., Abayomi-Alli, O.,

Sengul, G. (2022). An improved random bit-stuffing

technique with a modified RSA algorithm for resisting

attacks in information security (RBMRSA). Egyptian

Informatics Journal, 23(2): 291-301.

https://doi.org/10.1016/j.eij.2022.02.001

[5] Zheng, M. (2023). Generalized implicit-key attacks on

RSA. Journal of Information Security and Applications,

77: 103562. https://doi.org/10.1016/j.jisa.2023.103562

[6] Wang, X., Xiang, Z., Zhang, S., Chen, S., Zeng, X.

(2025). Quantum chosen-ciphertext attacks based on

Simon’s algorithm against unified structures. In

Cryptographers’ Track at the RSA Conference, Cham:

Springer Nature, Switzerland, pp. 99-122.

https://doi.org/10.1007/978-3-031-88661-4_5

[7] Nitaj, A., Susilo, W., Tonien, J. (2023). A new attack on

some RSA variants. Theoretical Computer Science, 960:

113898. https://doi.org/10.1016/j.tcs.2023.113898

[8] Imam, R., Areeb, Q.M., Alturki, A., Anwer, F. (2021).

Systematic and critical review of RSA based public key

cryptographic schemes: Past and present status. IEEE

Access, 9: 155949-155976.

https://doi.org/10.1109/ACCESS.2021.3129224

[9] Moghaddam, F.F., Alrashdan, M.T., Karimi, O. (2023).

A hybrid encryption algorithm based on RSA small-e and

efficient-RSA for cloud computing environments.

Journal of Advanced Computer Networks, 1(3): 238-241.

[10] Suhael, S.M., Ahmed, Z.A., Hussain, A.J. (2025,

February). A review on hybrid methods using Playfair

and RSA techniques. AIP Conference Proceedings,

3169(1): 030002. https://doi.org/10.1063/5.0256836

[11] Munira, M.S.K. (2025). Digital transformation in

banking: A systematic review of trends, technologies,

and challenges. SSRN Electronic Journal.

2095

https://doi.org/10.2139/ssrn.5161354

[12] Kwame, A.A., Owa, K., Tawfik, A.H. (2025). For RSA

encryption scheme. In Security and Management and

Wireless Networks: Proceedings of SAM 2024 and

ICWN 2024.

[13] Çetin, F., Sınak, A. (2025). Probabilistic primality tests

and RSA algorithm. Akdeniz University Journal of

Science and Engineering, 1(1): 8-18.

[14] Stergio, C., Kim, K.E., Gupta, B.G. (2018). Secure an

integration of IoT and cloud computing. Future

Generation Computer Systems, 78(6): 964-975.

https://doi.org/10.1016/j.future.2016.11.031

[15] Abdulshaheed, H.R., Binti, S.A., Sadiq, I.I. (2018).

Proposed smart solution based on cloud computing and

wireless sensing. International Journal of Pure and

Applied Mathematics, 119(18): 427-449.

[16] Roussellet, M., Tteglia, Y., Vigilant, D. (2025). Protected

RSA implementations. Embedded Cryptography, 2: 201.

[17] Mohaisen, H.N., Mohammed, M.Q., Nahi, M.H. (2025).

Hiding secret data in color video applying modify RSA

for cryptography with randomly select frame and pixel to

steganography. Journal of Natural and Applied Sciences

URAL, 70.

[18] Suhael, S.M., Ahmed, Z.A., Hussain, A.J. (2025). A

review on hybrid methods using Playfair and RSA

techniques. AIP Conference Proceedings, 3169(1):

030002. https://doi.org/10.1063/5.0256836

[19] Kaliyamoorthy, P., Ramalingam, A.C. (2022). QMLFD

based RSA cryptosystem for enhancing data security in

the public cloud system. Wireless Personal

Communications, 122: 752-782.

https://doi.org/10.1007/s11277-021-08924-z

[20] Shree, R., Chelvan, C., Rajesh, M. (2019). An efficient

RSA cryptosystem by applying cuckoo search

optimization techniques. Concurrency and Computation:

Practice and Experience, 31(12): e4845.

https://doi.org/10.1002/cpe.4845

[21] Jaspin, K., Selva, S., Sahana, S., Thamnas, G. (2021).

Efficient and secured file transfer in cloud through

double encryption using AES and RSA algorithm.

International Journal of Emerging Smart Computing and

Informatics, Pune, India, pp. 791-796.

https://doi.org/10.1109/ESCI50559.2021.9397005

[22] Hemanth, P., Raj, N., Yadva, N. (2017). A secured

message transfer using RSA algorithm an improved

Playfair cipher in cloud computing. International

Conference on Convergence in Technology (I2CT),

Mumbai, India, pp. 931-936.

https://doi.org/10.1109/I2CT.2017.8226265

[23] Almanaun, S., Mahmood, M., Amin, M. (2021).

Ensuring the security of encrypted information with

hybrid of AES and RSA algorithm with the third-party

confirmation. In 5th International Conference on

Intelligent Computing and Control Systems, Madurai,

India, pp. 337-343.

https://doi.org/10.1109/ICICCS51141.2021.9432174

[24] Wu, C.H., Hong, J.H., Wu, C.W. (2021). RSA

cryptosystem design based on the Chinese remainder

theorem. In Proceedings of the ASP-DAC 2021 Asia and

South Pacific Design Automation Conference,

Yokohama, Japan, pp. 391-395.

https://doi.org/10.1145/370155.37041

[25] Kamardan, M. G., Aminudin, N., Che-Him, N., Sufahani,

S., Khalid, K., Roslan, R. (2018). Modified multi prime

RSA cryptosystem. Journal of Physics: Conference

Series, 995 (1): 012030. https://doi.org/10.1088/1742-

6596/995/1/012030

[26] Ueno, R., Homma, N. (2023). How secure is exponent-

blinded RSA-CRT with sliding window exponentiation?

IACR Transactions on Cryptographic Hardware and

Embedded Systems, 2023(2): 241-269.

https://doi.org/10.46586/tches.v2023.i2.241-269

[27] Kumari, J.J.J., Thangam, S. (2025). ERSA enhanced

RSA: Advanced security to overcome cyber-

vulnerability. In N.K. Chaubey, N. Chaubey (Eds.),

Advancing Cyber Security Through Quantum

Cryptography, IGI Global, pp. 413-440.

https://doi.org/10.4018/979-8-3693-5961-7.ch015

[28] Venkatalakshmi, K., Gayathri, P., Likhitha, T., Shinde,

S., Kumar, M.O.V. (2022). Design of Montgomery

multiplier - RSA algorithm. Journal of Physics:

Conference Series, 2325(1): 012022.

https://doi.org/10.1088/1742-6596/2325/1/012022

[29] Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M.,

Bailey, J., Linkman, S. (2009). Systematic literature

reviews in software engineering – A systematic literature

review. Information and Software Technology, 51(1): 7-

15. https://doi.org/10.1016/j.infsof.2008.09.009

[30] Liskov, M. (2005). Miller–rabin probabilistic primality

test. In Encyclopedia of Cryptography and Security.

Springer, Boston, MA. https://doi.org/10.1007/0-387-

23483-7_253

[31] Ambedkar, B.R., Bedi, S.S. (2011). A new factorization

method to factorize RSA public key encryption.

International Journal of Computer Science Issues, 8(6).

[32] Ivy, B.P.U., Mandiwa, P., Kumar, M. (2012). A modified

RSA cryptosystem based on ‘n’ prime number.

International Journal of Engineering and Computer

Science, 1(2): 63-66.

[33] Gupta, S., Sharma, J. (2012). A hybrid encryption

algorithm based on RSA and Diffie- Hellma. IEEE

International Conference on Computational Intelligence

and Computing Research, Coimbatore, India, pp. 1-4.

https://doi.org/10.1109/ICCIC.2012.6510190

[34] Bhattacharjee, A., Khaskel, C., Basu, D., Vincent, P.M.

(2016). Hybrid security approach by combining diffie

hellman and RSA algorithm. International Journal of

Pharmacy and Technology Dec, 8(4): 26560-26567.

[35] Dhakar, R.S., Gupta, A.K., Sharma, P. (2012). Modified

RSA encryption algorithm (MREA). In 2012 2nd

International Conference on Advanced Computing and

Communication Technologies, Rohtak, India, pp. 426-

429. https://doi.org/10.1109/ACCT.2012.74

2096

https://doi.org/10.1088/1742-6596/2325/1/012022

