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The life testing and analysis are important in many disciplines, such as medicine, 

engineering, and finance. Indeed, probability distributions are one of the critical 

components of accurate modelling as they govern the effectiveness and robustness of 

statistical evaluations. This study introduces the Novel Logistic Extreme Value 

Distribution (NLEVD), a flexible three-parameter probability distribution that 

generalizes the Logistic Extreme Value Distribution. The mathematical properties of 

NLEVD, including its probability density function, cumulative distribution function, 

moment-generating function, entropy, and order statistics, are derived. Parameter 

estimation was conducted via Maximum Likelihood Estimation (MLE) and Support 

Vector Machine (SVM) techniques, which demonstrated improved accuracy. The 

proposed model is validated using two real-world datasets, on which it outperforms 

established lifetime distributions, such as the New Extension Exponential, Gamma-

Lindley, Zeghdoudi, X Lindley, and X gamma distributions. The results highlight 

NLEVD’s superior ability to model diverse failure rate behaviors, making it a powerful 

tool for survival analysis, reliability engineering, and applied statistics. This study 

provides a robust alternative for modelling lifetime data, offering greater flexibility and 

precision in statistical modelling. 
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1. INTRODUCTION

In probability distribution theory the normal and the 

exponential distributions are two of the most basic distribution 

models used commonly to explain different concepts. The 

exponential distribution is utilized more frequently in 

reliability studies because of the ease with which mathematical 

calculations can be made and because it postulates a constant 

failure rate. However, its application becomes limited in 

complex situations that require considering the failure rate 

with time. To overcome this limitation, other flexible 

extensions such as the Weibull and the gamma distributions 

have been developed for capturing more than constant failure 

rates. Weibull and gamma can be introduced as the models 

that, in fact, case extend the exponential model rates are 

increasing or decreasing. In addition, the semi-logistic 

distribution which has structure similar to Weibull distribution 

is another choice of life distribution modelling such data so 

that the variety of techniques for successfully describing life 

behavior under different conditions is enriched [1]. Thus, the 

consideration of different shapes of failure rate such as 

decreasing, increasing, bathtub and inverse bathtub failure rate 

functions in the same model increases the model’s ability to 

capture various lifetime behaviors. For example, such 

composite survival models offer remarkable flexibility and 

increased model fitness in the analysis of a wide range of 

lifetime statistics. Further, they enable more precise reasoning 

of results because they help establish the distribution class of 

the data. This can be attained by creating confidence intervals 

for the model parameters and therefore adding value on the 

stochastic nature of the data. In light of these advantageous 

properties, we come up with the generalized variance 

framework to extend the existing survival models to a wider 

range of applications [2]. 

The exponential distribution forms an indispensable part of 

the life-testing data and probability theory. It refers to the 

interval between two events of a Poisson point process which 

is independent and continuous with equal mean intensity. In 

mathematical terms, it belongs to a class of distribution touch-

stone or more specifically it is the continuous probability 

distributions akin to the geometric probability distribution. 

There is a specialization called the ‘memoryless property’, by 
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means of it, signifying that the probability of an event in the 

future has no relation to past events. Besides Poisson 

processes, the exponential distribution is possibly used in 

reliability theory, queuing models, and survival analysis, 

which facts bring it to some extent to foundational position in 

theoretical and applied statistics [3].  

The Extreme Value Distribution (EVD) is a probability 

distribution commonly utilized trough reliability engineering, 

hydrology, business and economics, and environmental 

simulations to model the patterns of outlying deviations from 

the median value of a particular dataset. Thus, the EVD has no 

constant failure rate as the exponential one therefore it is more 

appropriate to use this distribution for modelling a system 

where failure probability depends on time. This non-constant 

failure rate provides a more realistic picture of the aging 

process and wherein the probability of failure either increases 

or decreases with the age of the system. In addition, the EVD 

does not satisfy the memoryless property which is a 

characteristic or the exponential distribution. The memoryless 

property further means that the probability of failure in the 

next interval depends only on the next time interval and not 

any interval elapsed. On the other hand, the EVD takes into 

consideration the history of the system or in other word, when 

computing the probability of failure, h, it takes into 

consideration the time the system has been in the field. 

Statistically, EVD is usually associated with the Gumbel, 

Fréchet and Weibull distributions each of which is relevant to 

distinct sorts of extremes. The Cumulative Distribution 

Function (CDF) and the Hazard Rate Function (HRF) for the 

EVD are different based on the particular variant applied, and 

in all instances represent the non-memoryless and the 

changing failure rate characteristics [4].  

Reliability analysts find important value in the Novel 

Logistic Extreme Value Distribution (NLEVD) framework 

because it analyses multiple hazard rate patterns including the 

engineering and biomedical bathtub shapes. Experimental 

failure rate structures observed in bathtub-shaped hazard rates 

prove inadequate for conventional distributions like 

exponentials and gammas because their modelling range is 

limited. The NLEVD enters the field because researchers 

require an adaptable yet minimal model which fits multiple 

patterns found in actual failure behavior. The NLEVD 

achieves superior modelling by utilizing shape-controlling 

parameters to rephrase its generalized functional form which 

enables its ability to duplicate traditional models throughout 

the hazard lifecycle. Real datasets support NLEVD as an 

exceptional model compared to multiple established models 

through lower AIC, BIC, and KS statistics. The NLEVD 

stands as a novel distributional model in current literature 

because it adjusts to various hazard shapes that include both 

monotonic and non-monotonic patterns especially for bathtub 

and inverted-bathtub curve distributions. The fundamental 

statistical and practical advantage of this feature appears as its 

main strength. 

Logistic distribution is a continuous univariate distribution 

that has a shape similar to the normal distribution and thus 

suitable for modelling of extreme values. It is a special case of 

the Tukey lambda distribution which gives an index of 

dispersion. Probability Density Function (PDF) and CDF of 

the logistic distribution have found their use in the fields like 

logistic regression, growth modelling, logit transformation, 

and artificial neural network among others. It ranges from 

demography, physical sciences, finance, sports analysis to 

computational modelling. What stands out is that higher 

Kurtosis of the logistic makes it more suited for data that 

experiences larger variability than the normal distribution for 

it centers its probability density on zero [5].  

Let 𝑌 be a nonnegative random variable following a logistic 

distribution characterized by the shape parameter 𝜃 > 0. The 

CDF of 𝑌 is formally expressed as: 

 

𝐺(𝑦; 𝜃) =
1

1 + 𝑒−𝜃𝑦
;  𝜃 > 0, 𝑥 ∈ 𝑅 (1) 

 

and the PDF that goes with it is 

 

𝑔(𝑦; 𝜃) =  
𝜃𝑒−𝜃𝑦

(1+𝑒−𝜃𝑦)2 ;  𝜃 > 0, 𝑥 ∈ 𝑅  (2) 

 

Some researchers proposed the logistic-X family, a new 

class of continuous pdfs obtained with a logistic base random 

variable. In this family there are smooth variations of the PDF 

from the shapes resembling inverted J-shaped curve, 

symmetric, right skewed and left skewed. In addition, the HRF 

can have different behaviors, including bathtub and upside-

down shapes, as well as monotonically decreasing and 

increasing hazard rates, which makes the family very useful 

for fitting more complex structures in any area of applied 

statistics [6]. 

Hussain et al. [7] introduced the lognormal modified 

Weibull distribution which is more flexible than the modified 

Weibull distribution for modelling survival data. This 

distribution is most effective in complex lifetime data analysis 

where the standard modified Weibull distribution may not 

capture hazard rate behaviors sufficiently well because it 

offers a more flexible means of data distribution. 

Therefore, Hussain et al. [8] introduced the Lindley 

exponential power distribution, which is a more general 

distribution developed to offer more modelling choice for 

lifetime data. Compared with this distribution, it supplies more 

flexible hazard rate function which can well describe different 

shapes and behaviors for advanced reliability analysis and 

survival modelling. In 2015, Lemonte et al. [9] used three 

kinds of parameters for modelling various data types cresting 

the exponential distribution. This extended distribution is 

highly successful when used in survival analysis, reliability 

modelling, analyzing fatigue life data, and in hydrological 

modelling. It can model an increasing, decreasing, constant, 

bathtub, inverted bathtub (unimodal), and decreasing-

increasing-decreasing hazard rate function, which indicates 

the capability of this model in capturing a wide range of failure 

behaviors in practical use [9]. Three parameters exponential 

expansion distribution was proposed by 2019, as a promising 

extended model, which sub-model includes exponential 

distribution, logistic exponential distribution, Marshall-Olkin 

exponential distribution. This distribution provides great deal 

of leeway in the modelling of different types of data. It has 

unimodal or decreasing PDF; it can have increased, 

decreasing, bathtub and upside-down hazard rate functions. 

This flexibility makes the distribution particularly useful for 

measuring various failure characteristics in reliability and 

survival investigations [10]. In 2020 they introduced the semi-

logistic exponential expansion distribution which is derived 

from the original exponential expansion distribution. This new 

distribution improves flexibility in modelling of various 

failure behaviors by using semi-logistic function and it is more 

versatile in analyzing survival data and reliability problems 

[11].  
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Researchers suggested the exponential logistic survival 

distribution where in a single model, it can capture the usual 

failure rate trends including decreasing, increasing, bathtub 

and inverted bathtub. Second, this distribution provides the 

capability to show a high level of flexibility in terms of using 

longevity and reliability data. The major strength of the 

exponential logistic distribution is the availability of closed 

forms for PDF, survival function, hazard rate function and 

cumulative hazard function making this model quite 

distinctive from other models in the inverted and standard 

bathtub failure classes. These properties make it most suitable 

for use in theoretical work as well as in practical data analysis 

using statistical modes [12]. 

 

𝑆(𝑦; 𝛼) =  
1

1+(𝑒𝑦−1)𝛼 ;  𝛼 > 0; 𝑦 ≥ 0  (3) 

 

To do this we introduce a new statistical model called the 

NLEVD, which has been created within the methodological 

framework suggested by Lan and Leemis [12]. For the purpose 

of increasing the flexibility of the distribution one more shape 

parameter was introduced into the exponential extension 

distribution making its potential in modelling lifespan more 

extended and closer to the actual data. Several theoretical 

characteristics of the NLEVD and a number of application 

examples are explored in this work. The content is structured 

as follows: In Section 2, a formal definition of the NLEVD is 

stated and major mathematical and statistical properties of the 

estimator are discussed. Section 3 describes the MLE method 

as the way of parameter estimation. Section 4 introduces 

another method of parameter estimation based on the Support 

Vector Machine (SVM) technique, and then compares it with 

the MLE analysis. Section 5 examines the feasibility and 

efficiency of the proposed NLEVD on two real-world datasets. 

The results of the proposed model are established by 

comparing the fitness/predictability of the model against that 

of other lifetime distributions. Section 6 presents the 

conclusions, the main contributions of the work, and possible 

directions for additional work. The present work introduces an 

improved version of NLEVD and improves lifetime data 

modelling flexibility as well as the development of statistics in 

reliability analysis and survival analysis. 

 

 

2. NLEVD 

 

In this study, we propose a novel probability distribution 

termed the NLEVD, inspired by the methodological 

framework introduced by Lan and Leemis [12]. Our approach 

builds upon the Extreme Value Extension (EVE) distribution, 

which serves as the baseline distribution for this work. The 

CDF and PDF of the EE distribution are respectively defined 

as follows: 

 

𝐺(𝑦) =  1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

; 𝑦 > 0;  𝜇, 𝛽 > 0 (4) 

 

𝑔(𝑦) =  
1

𝛽
 𝑒

−(
𝑦−𝜇

𝛽
)
𝑒−𝑒

−(
𝑦−𝜇

𝛽
)

; 𝑦 > 0;  𝜇, 𝛽 > 0 (5) 

 

Suppose 𝑋 as a non-negative absolutely continuous random 

variable with positive shape parameters 𝛼, 𝛽 and 𝜇. The CDF 

of the LEVED is defined as follows: 

 

𝐹(𝑦) = 1 −
1

1 + 𝐺(𝑦)𝛼
= 1 −

1

1 +  (1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼 
(6) 

 

where, 𝛼, 𝛽, 𝜇 > 0, 𝑦 > 0. 

The PDF of the logistic extreme value extension distribution 

is mathematically defined as follows: 

 

𝑓(𝑦) =  
𝛼

𝛽
 
𝐺(𝑦)𝛼−1𝑒

−(
𝑦−𝜇

𝛽
)
𝑒−𝑒

−(
𝑦−𝜇

𝛽
)

(1 + 𝐺(𝑦)𝛼)2
 

=
𝛼

𝛽
 

(1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼−1

. 𝑒
−(

𝑦−𝜇
𝛽

)
. 𝑒−𝑒

−(
𝑦−𝜇

𝛽
)

(1 + (1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼

)

2  

(7) 

 

where, 𝛼, 𝛽, 𝜇 > 0, 𝑦 > 0. 

The proposed CDF exhibits a structural similarity to the log-

logistic distribution, with a critical modification in the second 

term of the denominator. Specifically, the base of this term has 

been replaced with an extreme value extension function, which 

incorporates extreme value characteristics into the 

distribution. This innovative adaptation enables the 

distribution to model data exhibiting both logistic growth 

patterns and extreme value behavior. To reflect this unique 

combination of properties, we have designated this 

distribution as the NLEVD. 

 

2.1 Reliability function (survival function)  

 

The reliability function (also known as the survival 

function) of the NLEVD is defined as follows: 
 

𝑅(𝑦) = 1 − 𝐹(𝑦) =
1

1 +  (1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼 
(8) 

 

where, 𝛼, 𝛽, 𝜇 > 0, 𝑦 > 0. 
 

2.2 Hazard function 
 

The hazard rate function of NLEED is defined as, 
 

ℎ(𝑦) =  
𝑓(𝑦)

𝑅(𝑦)
 

=  
𝛼

𝛽
 

(1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼−1

. 𝑒
−(

𝑦−𝜇
𝛽

)
. 𝑒−𝑒

−(
𝑦−𝜇

𝛽
)

(1 + (1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼

)

 

(9) 

 

where, 𝛼, 𝛽, 𝜇 > 0, 𝑦 > 0. 

To analyses the monotonicity of ℎ(𝑦), we differentiate it 

with respect to y, using the chain rule, denote and consider the 

components as functions of 𝑧, which itself is a function of 𝑦. 

Let us define:  
 

𝐴(𝑧) =  (1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼−1

; 𝐵(𝑧) = 𝑒
−(

𝑦−𝜇

𝛽
)
 

𝐶(𝑧) =  𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

; 𝐷(𝑧) =  1 + (1 + 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

)

𝛼
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Thus, the hazard becomes: 

 

ℎ(𝑦) =  
𝛼

𝛽
 
𝐴(𝑧). 𝐵(𝑧). 𝐶(𝑧)

𝐷(𝑧)
 (10) 

 

Taking derivative with respect to 𝑦; 
 

ℎ′(𝑦) =  
𝛼

𝛽2
(

𝐴(𝑧). 𝐵(𝑧). 𝐶(𝑧)

𝐷(𝑧)
)

′

 (11) 

 

Let 𝑁(𝑧) = 𝐴(𝑧). 𝐵(𝑧). 𝐶(𝑧), 𝐷(𝑧) as above. Then; 

 

ℎ′(𝑧) =  
𝛼

𝛽2
 
𝑁′(𝑧)𝐷(𝑧) − 𝑁(𝑧) 𝐷′(𝑧)

𝐷(𝑧)2
 (12) 

 

In order to find the sign of ℎ(𝑧),  they have to look at 

𝑁′(𝑧)𝐷(𝑧) − 𝑁(𝑧) 𝐷′(𝑧). Although there is no closed-form 

solution in symbolic forms because of characteristics of the 

nested exponentials, we can qualitatively analyse it as: 

• For small 𝑧, the exponential terms dominate, and the 

hazard function increases with 𝑦. 

• At moderate 𝑧, ℎ(𝑦) reaches a peak as the numerator 

grows sub linearly and the denominator grows faster. 

• For large 𝑧, the terms 𝑒
−(

𝑦−𝜇

𝛽
)
 and 𝑒−𝑒

−(
𝑦−𝜇

𝛽
)

 decay toward 

zero, causing ℎ(𝑦) → 0. 
This means that ℎ(𝑦) rises, reaches a maximum and then 

declines, making the curve to assume the shape of an inverted 

bathtub. This statement is also backed by numerical 

simulations as demonstrated in Figure 1. Where the hazard 

function is non-monotone increasing, and shows a peak at 

some moderate 𝑦 value of the slope of hazard function can be 

seen. The PDF and the CDF of the proposed NLEVD were 

compared and presented in Figure 2 alongside other well-

known distributions; this shows the flexibility and the better 

fitting properties of the proposed version. 
 

 
 

Figure 1. Plot of the hazard rate function for the NLEVD 
 

2.3 Quantile function 
 

The Quantile function of NLEVD can be expressed as: 
 

𝑦 =  𝜇 −  𝛽 ln (− ln ((
𝑝

1−𝑝
)

1

𝛼
− 1))  (13) 
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Figure 2. Visual representation of the novel logistic extreme value, exponential, Lindley and X gamma distributions: Probability 

density function and cumulative distribution function 
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3. SUPPORT VECTOR MACHINE 

 

In this section, we give a brief introduction of the SVM 

algorithm in conjunction with its justification. For any further 

reading from SVM [13, 14]. Starting with the case of just two 

linearly separable classes, that is a two-class problem, we first. 

In this case, let a dataset {(𝑎𝑖 , 𝑏𝑖)}𝑖=1
𝑙   consisting of labeled 

examples, where 𝑏𝑖 ∈ {−1,1}  denotes the class labels. The 

aim is thus to choose from the numerous possibly linear 

classifiers that could is a least-bound on generalization-error, 

while ideal represents a perfect separation of the data. This 

principle originates from the methodology known as 

Structural Risk Minimization [13]. Also showed in the study 

[14] that the best ways to define a hyperplane is the one which 

maximizes the distance between the two classes in the sense 

of over fitting [15]. Here the margin is equal to the 

perpendicular distance between the hyperplane and the closest 

data points belonging to different classes also known as 

support vectors. This chimes with the theoretical properties 

scaffolded by statistical learning theory, and works to 

maximize the margin not only to guarantee sound 

classification, but also to offer a rigorous method for choosing 

a model. When the two classes are not well separable, then the 

SVM aims at getting the decision hyperplane that maximizes 

this margin and at the same time minimizing a quantity that is 

proportional to the number of misclassification errors. The 

values of these two objectives, f and g; are maximized and 

minimized respectively through a user-defined positive 

regularizing constant 𝐶 . Mathematically this generalized 

optimization problem is a quadratic programming (QP) 

problem with coefficients 𝛽𝑖  representing the coefficients of 

the linear classifier 𝑓(𝑦) = 𝑠𝑖𝑔𝑛(∑ 𝛽𝑖𝑎𝑖𝑦
𝑇𝑦𝑖

𝑙
𝑖=1 + 𝑏) . This 

QP problem is defined over the hypercube [0, 𝐶]𝑙  and the 

formulation of it will be given in Section 3 with Eq. (1). This 

technique can be generalized by creating a feature space 

mapping of the original set of variables 𝑦 ∈ 𝑅𝑑 so that it can 

capture non-linear decision surface. In particular, for this 

work, the transformation is regarded as 𝑦 ∈ 𝑅𝑑 → 𝑧(𝑦) ≡

 (𝜑1(𝑦), … , 𝜑𝑛(𝑦)) ∈ 𝑅𝑛 ,  where 𝑛  may be infinity. 𝑦 ∈ 𝑅𝑑 

into a higher-dimensional feature space. Specifically, the 

transformation is defined as 𝑦 ∈ 𝑅𝑑 → 𝑧(𝑦) ≡
 (𝜑1(𝑦), … , 𝜑𝑛(𝑦)) ∈ 𝑅𝑛. The linear classification problem is 

then carried in this transformed feature space as per the 

following classification function. Vapnik [13] showed that for 

some transformations 𝜑1  a solution to the classification 

problem has a specific form, and can be realized through 

kernel functions. This approach relies on the so-called kernel 

trick, which allows construction of non-linear decision 

boundaries around the features but does not require the actual 

computation of high dimensional feature space, so the 

potential increase in model flexibility is bought at a 

manageable increase in model complexity. 𝑓(𝑦) =

𝑠𝑖𝑔𝑛(∑ 𝛽𝑖𝑎𝑖𝐾(𝑦, 𝑦𝑖)𝑙
𝑖=1 + 𝑏), where 𝐾(𝑦, 𝑦𝑖) is a symmetric 

positive definite kernel function that depends on the choice of 

the features and represent the scalar product in the feature 

space. 

 

3.1 SVM-based distribution parameter estimation 

 

• Clarification of SVM-based parameter estimation. 

The Support Vector Regression model (SVM regression) 

functions as a supervised learning algorithm to estimate the 

function 𝑓(𝑦)  from dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 where predictions 

𝑦̂ = 𝑓(𝑦) must remain within 𝜖 boundary but adds penalties 

for exceeding this range. In the context of parameter 

estimation, each SVM model is trained separately to estimate 

one of the target distribution parameters 𝛼 (shape), 𝛽 (scale), 

and 𝜇 (location). This implies that three distinct SVR models 

should be constructed, each learning a mapping from input 

features (e.g., temporal or contextual variables derived from 

sensor data) to one parameter of the distribution. 

• Workflow and input/ output variables. 

Let 𝑦 ∈ 𝑅𝑛×𝑑  denote the input matrix containing 𝑛 

observations with 𝑑 features, and let  𝜃 ∈ {𝛼 , 𝛽 , 𝜇}  be the 

target parameter. Then: 

1. Inputs: 𝑥𝑖 ∈ 𝑅𝑑 , the feature vector (e.g., 

accelerometer-derived features). 

2. Outputs: 𝑦𝑖 = 𝜃𝑖, the known parameter value from a 

fitted distribution or simulated data. 

3. Model: SVR using kernel 𝐾(𝑦𝑖 , 𝑦𝑗). 

The SVR aims to solve the following optimization problem: 

 

𝑚𝑖𝑛
𝑤,𝑏,𝛾𝑖,𝛾𝑗

1

2
‖𝑤‖2 + 𝐶 ∑ (𝛾𝑖 , 𝛾𝑗)𝑛

𝑖=1   (14) 

 

Subject to {

𝑦𝑖 − (𝑤𝑇∅(𝑥𝑖) + 𝑏) ≤ 𝜖 + 𝛾𝑖

(𝑤𝑇∅(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝛾𝑗

𝛾𝑖 , 𝛾𝑗 ≥ 0

  

 

where, ∅(. )  is the feature transformation defined by the 

kernel, 𝜖 is the tolerance margin, and 𝐶 is the regularization 

parameter. 

• Kernel choice justification. 

The manuscript should also justify the kernel function used 

in SVR. If the relationship between features and parameters is 

believed to be non-linear, the Radial Basis Function (RBF) 

kernel is generally preferred: 

 

𝐾(𝑦𝑖 , 𝑦𝑗) =  𝑒
(−𝛾‖𝑥𝑖−𝑥𝑗‖

2
)
  (15) 

 

This kernel enables the model to capture complex non-

linear mappings necessary for accurate parameter regression. 

However, if interpretability and linear associations are 

priorities, a linear kernel may be more appropriate. 

• Inputs: Feature matrix X (n × d), parameter values y (n  × 

1) for 𝛼, 𝛽, 𝑜𝑟 𝜇. 

% Split data into training and testing sets (80/20 split) 

cv = cv partition (size (X, 1), 'Holdout', 0.2); 

𝑋𝑡𝑟𝑎𝑖𝑛= X(training(cv), :); 

𝑦𝑡𝑟𝑎𝑖𝑛 = y(training(cv)); 

𝑋𝑡𝑒𝑠𝑡= X(test(cv), :); 

𝑦𝑡𝑒𝑠𝑡= y(test(cv)); 

• Train SVR model with RBF kernel 

svrModel = fitrsvm (X_train, 𝑦𝑡𝑟𝑎𝑖𝑛 ,'Kernel Function', 

'gaussian',' Box Constraint', 1.0,'Epsilon', 0.1); 

• Predict on test data 

𝑦𝑝𝑟𝑒𝑑  = predict (svr Model, 𝑋𝑡𝑒𝑠𝑡). 

 
 

4. METHODS OF ESTIMATION 
 

In this section, the parameters of the proposed distribution 

are estimated using two well-established methodologies: The 

two modelling methods used by the study includes the 

Maximum Likelihood Estimation (MLE) and the SVM 

regression. In the context of this work, the MLE method is 
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used for stretch parameter estimation since it enables 

maximum likelihood to be obtained from the data collected. 

Furthermore, the SVM regression approach is employed to 

investigate how ML may improve parameter estimation 

precision with or without increased data dimensionality or 

complexity. These two complementary approaches offer a 

sound methodology for approximating the parameters of the 

proposed distribution, on which the analysis of its traits and 

potential applications can be based. 

 

4.1 MLE 

 

The MLE method is also known as most popular methods 

of estimating statistical models [16]. Supposing 𝑦1, 𝑦2 , … , 𝑦𝑛 

is a random sample from the NLEVD. The likelihood function 

𝐿(𝛼, 𝛽, 𝜇), which represents the joint probability of observing 

the sample given the parameters 𝛼, 𝛽 and 𝜇 , is defined as 

follows: 

 

𝐿(𝜔; 𝑦1 , 𝑦2 , … , 𝑦𝑛) =  ∏ 𝑓(𝑦𝑖 ; 𝜔)

𝑛

𝑖=1

 

 
𝐿(𝛼, 𝛽, 𝜇; 𝑦)

= (
𝛼

𝛽
 )

𝑛

∏

(1 + 𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼−1

. 𝑒
−(

𝑦𝑖−𝜇
𝛽

)
. 𝑒−𝑒

−(
𝑦𝑖−𝜇

𝛽
)

(1 + (1 + 𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼

)

2

𝑛

𝑖=1

 
(16) 

 

Now log-likelihood density is 

 

𝑙(𝐿(𝛼, 𝛽, 𝜇; 𝑦))  = 𝑛 ln (
𝛼

𝛽
 ) + (𝛼 − 1) ∑ ln {1 +𝑛

𝑖=1

𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

} − ∑ (
𝑦𝑖−𝜇

𝛽
) 𝑛

𝑖=1 − 𝑒
− ∑ (

𝑦𝑖−𝜇

𝛽
)𝑛

𝑖=1 −

2 ∑ ln {1 + (1 + 𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼

}𝑛
𝑖=1   

(17) 

 

As with any maximum likelihood estimation, to obtain the 

estimates of 𝛼, 𝛽  and 𝜇  one has to take the first order 

derivative of the log likelihood function given in Eq. (17). This 

yields the following system of equations: 

 

𝜕𝑙

𝜕𝛼
=

𝑛𝛽

𝛼
+ ∑ ln {1 + 𝑒−𝑒

−(
𝑦𝑖−𝜇

𝛽
)

}

𝑛

𝑖=1

 

−2 ∑

(1 + 𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼

 ln (1 + 𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

1 + (1 + 𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼

𝑛

𝑖=1

 

(18) 

 

𝜕𝑙

𝜕𝛽
=  

−𝑛

𝛽
− (𝛼 − 1) ∑

𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

𝑒
−(

𝑦𝑖−𝜇

𝛽
)(

𝑦𝑖−𝜇

𝛽2 )

1+𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

𝑛
𝑖=1 +

∑ (
𝑦𝑖−𝜇

𝛽2 )𝑛
𝑖=1 − 𝑒

− ∑ (
𝑦𝑖−𝜇

𝛽
)𝑛

𝑖=1 ∑ (
𝑦𝑖−𝜇

𝛽2 )𝑛
𝑖=1 −

2 ∑

𝛼 (1+𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼−1

𝑒−2𝑒
−(

𝑦𝑖−𝜇

𝛽
)

(
𝑦𝑖−𝜇

𝛽2 )

1+(1+𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼
𝑛
𝑖=1   

(19) 

𝜕𝑙

𝜕𝜇
=  −

(𝛼 − 1)

𝛽
∑

𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

𝑒
−(

𝑦𝑖−𝜇
𝛽

)

1 + 𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

𝑛

𝑖=1

 

+
𝑛

𝛽
(1 − 𝑒

− ∑ (
𝑦𝑖−𝜇

𝛽
)𝑛

𝑖=1 ) 

−2
𝛼

𝛽
∑

𝛼 (1+𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼−1

𝑒−2𝑒
−(

𝑦𝑖−𝜇

𝛽
)

1+(1+𝑒−𝑒
−(

𝑦𝑖−𝜇

𝛽
)

)

𝛼
𝑛
𝑖=1   

(20) 

 

The unknown model parameters 𝛼, 𝛽  and 𝜇  consist of 

estimating the system of equations derived from the MLE 

method. Namely, we set first-order partial derivatives of the 

log-likelihood function with respect to 𝛼, 𝛽  and 𝜇  equal to 

zero which gives the system of nonlinear equations. The 

calculation of these equations leads to the maximum 

likelihood estimators 𝛼̂ , 𝛽̂ and 𝜇̂  of 𝛼, 𝛽  and 𝜇  corresponds, 

respectively. MLE method. Specifically, the partial 

derivatives of the log-likelihood function with respect to 𝛼, 𝛽 

and 𝜇 are set to zero, yielding a system of nonlinear equations. 

Solving these equations simultaneously provides the 

maximum likelihood estimates 𝛼̂ , 𝛽̂ and 𝜇̂ for the parameters 

𝛼 and 𝛽, respectively. This makes a call for optimization of 

this problem in order to maximize the log likelihood function 

Eq. (17) for which we use the Particle Swarm Optimization 

otherwise known as PSO method. PSO is one of the strongest 

and significantly less time-consuming metaheuristic 

algorithms, which can be most effective in solving problems 

with nonlinear model. The estimates of 𝛼 and 𝛽 are thus made 

more accurate and reliable by PSO’s repetition of continuous 

updates of the parameter estimates until the maximum 

likelihood value in the log-formation likelihood function is 

attained. In order to construct confidence intervals for the 

parameters 𝛼, 𝛽, and 𝜇, as well as for hypothesis testing, we 

need to calculate the observed information matrix. This matrix 

is used for the determination of the standard errors of the 

maximum likelihood estimators. These three values of 𝛼, 𝛽, 
and 𝜇 give the following observed information matrix: 

 

𝐷 =  [

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

], 

 

where, 

 

𝐷11 =
𝜕2𝑙

𝜕𝛼2 , 𝐷12 =  
𝜕2𝑙

𝜕𝛼𝜕𝛽
, 𝐷13 =  

𝜕2𝑙

𝜕𝛼𝜕𝜇
, 

 

𝐷21 =
𝜕2𝑙

𝜕𝛽𝜕𝛼
, 𝐷22 =  

𝜕2𝑙

𝜕𝛽2 , 𝐷23 =
𝜕2𝑙

𝜕𝛽𝜕𝜇
, 

 

𝐷31 =  
𝜕2𝑙

𝜕𝜇𝜕𝛼
, 𝐷32 =

𝜕2𝑙

𝜕𝜇𝜕𝛽
, 𝐷33 =  

𝜕2𝑙

𝜕𝜇2. 

 

Let the parameter space be denoted by 𝐴 = (𝛼, 𝛽, 𝜇), and let 

𝐴̂ = (𝛼̂, 𝛽̂, 𝜇̂)  represent the corresponding MLEs of 𝛼, 𝛽 

and  𝜇 , respectively. In here 𝐷(𝐴)  represents the Fisher 

information matrix. Using the Newton-Raphson algorithm to 

maximize the log-likelihood function, observed information 

matrix is calculated. Therefore, the variance-covariance 

matrix of the maximum likelihood estimators is found by the 

inverse of this observed information matrix. 
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[𝐷(𝐴)]−1 =  [

𝑉𝑎𝑟(𝛼̂) 𝐶𝑜𝑣(𝛼̂, 𝛽̂) 𝐶𝑜𝑣(𝛼̂, 𝜇̂)

𝐶𝑜𝑣(𝛽̂, 𝛼̂) 𝑉𝑎𝑟(𝛽̂) 𝐶𝑜𝑣(𝛽̂, 𝜇̂)

𝐶𝑜𝑣(𝜇̂, 𝛼̂) 𝐶𝑜𝑣(𝜇̂, 𝛽̂) 𝑉𝑎𝑟(𝜇̂)

]  (21) 

 

and (𝐴, 𝐴̂) → 𝑁(0, [𝐷(𝐴)]−1). Therefore, approximate 

100(1 − 𝛼)%  confidence intervals for the parameters 𝛼 , 𝛽 

and 𝜇 can be obtained as: 

 

𝛼̂ − 
+ 𝑍𝛼

2
√𝑉𝑎𝑟(𝛼̂), 𝛽̂ −

+ 𝑍𝛼

2

√𝑉𝑎𝑟(𝛽̂), 𝜇 ̂−
+ 𝑍𝛼

2
√𝑉𝑎𝑟(𝜇̂)  (22) 

 

where, 𝑍𝛼

2
 is the upper percentile of standard normal variable. 

 

4.2 Modified SVM 

 

The goal is to use SVM regression to approximate the 

relationship between the input data  𝑦 and the output of the 

function 𝑓(𝑦; 𝛼, 𝛽, 𝜇),  and then extract the parameter 

estimates 𝛼̂, 𝛽̂, and 𝜇̂. As the Algorithm follows below: 

Step 1: Data Preparation: 

• Generate a synthetic dataset or use observed data. 

• Normalize the data to ensure numerical stability 

during SVM training. 

Step 2: SVM Regression Model: 

• Define an SVM regression model with a suitable 

kernel (e.g., Radial Basis Function (RBF) kernel). 

• Train the SVM model on the dataset to learn the 

mapping 𝑦𝑖 → 𝑓𝑖. 

Step 3: Parameter Initialization: 

• We initialize the parameters 𝛼, 𝛽,  and  𝜇  with 

reasonable guesses (𝛼0, 𝛽0, 𝜇0). 
Step 4: Optimization Loop: 

• Choose a global optimization technique (such as 

gradient descent method or PSO or BO) to minimize 

the error between the SVM output estimates and 

those of the function 𝑓(𝑦; 𝛼, 𝛽, 𝜇). 
• Define the mean squared error (MSE) between the 

SVM predictions and the function outputs: 

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑓𝑖 − 𝑓(𝑦𝑖; 𝛼, 𝛽, 𝜇) )2𝑛

𝑖=1 . 

 

• We update the parameters iteratively to minimize the 

loss function. 

Step 5: Parameter Extraction: 

• Once the optimization converges, we extract the 

estimated parameters 𝛼̂, 𝛽̂, and 𝜇̂. 

Step 6: Validation: 

• We validate the estimated parameters by comparing 

the SVM-predicted outputs with the function outputs 

using a separate validation dataset. 

• The compute evaluation metrics such as root mean 

squared error (RMSE) to assess the quality of the 

parameter estimates. 

The parameters of the distribution 𝛼, 𝛽 and  𝜇  are then 

predicted with a set of SVR models that operates on 

transformed features such as the empirical quantiles or 

moments. Such features act as inputs and help the SVR to learn 

every complex relationship between the data and the 

parameter value. It was observed that the performance of the 

model is highly dependent on the hyperparameters which 

includes the regularization constant 𝛽  and the kernel 

parameter 𝛼 associated with the RBF kernel matrix, and these 

have to be always tuned using cross validation. In general, a 

grid search with k-fold cross-validation is used to determine 

the best value of 𝛽  and 𝛼  to avoid overfitting and obtain 

reliable results when used with small sets of data. SVM more 

flexibility than other techniques in estimating non-linear 

parameters as well as relations in a model, but it is 

computationally very intense and sensitive to small samples. 

In contrast to MLE, which is solved by closed-form solutions 

or efficient numerical, SVM relies on quadratic programming 

problems especially using the nonlinear kernels such as RBF. 

This also has a drawback of increasing the amount of required 

memory and time in carrying out computations. However, it is 

observed that SVM is more likely to overfit the data especially 

when working with small data sets and when the right 

hyperparameters such as the constant of regularization 𝐶 and 

the width of the kernel 𝛾 are not used appropriately. However, 

MLE, in contrast to SVM, is more robust, interpretable, and 

efficient when considering fixed small or precisely specified 

sample-size models. 
 

 

5. SIMULATION 

 

Simulation is an important component in system or process 

research, in which an existing or imagined process or system 

is emulated through mathematical or computational 

representations. Simulation as a flexible instrument allows for 

studying the impact of one or more factors within a system and 

testing experimentally driven conditions effectively 

substituting for a strictly physical approach. Still, in many 

scenarios, actual testing is inadmissible, can be costly or takes 

a lot of time, thus simulation is irreplaceable. Through 

arranging different values systematically and performing a 

number of experiments, the simulation can give the explicit 

system understanding, prove hypothesis in theoretical model, 

and improve the choice in different aspects including 

engineering, economics and software system [17]. 
 

Stage I: Model Initialization and Parameter Specification 

The first step plays a pivotal role by creating a base for all 

following simulation processes. The first step includes all 

operations that establish core hypothesis along with parameter 

value selection while defining process behaviour. This phase 

contains three sequential elements for completion: 

Step 1: Default Parameter Values get selected during this 

first step of the procedure 

The simulation process starts by setting initial default values 

to the parameters used in Novel Logistic Extreme Value 

Extension Process. The chosen parameter settings draw from 

past experimental studies together with comprehensive testing 

work to maintain robustness and applicability of configured 

parameters. Two specified parameter configurations showed 

the best results from evaluating different simulation parameter 

options. Set 1: 𝛼 = 0.5;  𝛽 = 0.6, 𝜇 = 0.7 

These parameters respectively define the shape, scale, 

location, and additional distributional characteristics 

necessary for generating synthetic data that closely resemble 

the theoretical behaviour of the Novel Logistic Extreme Value 

Extension Distribution as shown in the Table 1. 

Step 2: Determination of Sample Sizes 

Different sample sizes of small medium and large datasets 

successfully measure the stability and performance of the 

estimators during the simulation. 𝑛 =20; 50; 100. 

This stratification allows for rigorous analysis of estimator 

sensitivity and efficiency under varying data volumes. 
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Stage II: Random Data Generation via Inverse 

Transformation 

This stage involves the generation of pseudo-random data 

points that follow the probability distribution function of the 

Novel Logistic Extreme Value Extension Process, utilizing the 

Inverse Transform Sampling Method. 

Step 1. Generation of Uniform Random Variables 

Let 

 

𝑢𝑖 ~ 𝑈(0,1), 𝑖 = 0,1,2, … , 𝑛 (23) 

 

MATLAB provides the built-in rand function to produce 

independent identical distributed (𝑖. 𝑖. 𝑑. )  random variables 

distributed uniformly from the interval (0,1) during this stage, 

where, 𝑢𝑖: is the continuous uniform random variable, and 𝑛: 
is the sample size. 

Step 2: Transformation to Novel Logistic Extreme Value 

Extension Distribution Data 

The generated uniform variables are transformed into data 

that follow the Novel Logistic Extreme Value Extension 

Process via the inverse CDF. This transformation leverages the 

known CDF of the Novel Logistic Extreme Value Extension 

Distribution, denoted as Eq. (1) in the study, and applies the 

inverse mapping: 𝑥𝑖 = 𝐹−1(𝑦), This simplifies to: 
 

𝑡𝑖 =  𝜇 − 𝛽 ln (− ln ([
1

1−𝑢
− 1]

1

𝑎
− 1))  (24) 

 

where, 𝑖 = 0,1,2, … , 𝑛. 

This procedure ensures that the synthetic dataset accurately 

represents the statistical characteristics of the Novel Logistic 

Extreme Value Extension Process under study. 
 

Stage III: Parameter Estimation 

The simulation framework advances to its last stage through 

parameter estimation of Burr Type XII distribution as applied 

to Software Reliability Growth Models (SRGMs). The third 

phase includes multiple technical approaches for parameter 

estimation across the complete observation period to guarantee 

predictive reliability and statistical precision. These estimation 

methodologies are used for the process: Maximum Likelihood 

Estimations, and Modified Support Vector Machine. 

Stage IV: The optimal estimation method was identified based 

on the comparison metric Root Mean Squared Error (RMSE), 

evaluated across the estimation of the probability density 

function. 

Stage V: Experiment is repeated 1000 times. 

Stage VI: Compute the RMSE for each observation 𝑡𝑖, based 

on the estimated distribution parameters 𝑐 and 𝑘. 
 

𝑅𝑀𝑆(𝛼̂) = √
∑ (𝛼𝑖̂−𝛼𝑖)2𝑄

𝑖=1

𝑄
  (25) 

 

𝑅𝑀𝑆(𝛽̂) = √
∑ (𝛽𝑖̂−𝛽𝑖)2𝑄

𝑖=1

𝑄
  (26) 

 

𝑅𝑀𝑆(𝜇̂) = √
∑ (𝜇𝑖̂−𝜇𝑖)2𝑄

𝑖=1

𝑄
  (27) 

 

Table 1. The simulated RMSE of each model. Estimating parameters with various sample sizes and estimation techniques when 

𝛼 = 0.5;  𝛽 = 0.6, 𝜇 = 0.7 

 
No. Model n RMSE n RMSE n RMSE 

1 Extension Exponential 

20 

1.5095 

50 

0.9547 

100 

0.6751 

2 Gamma Lindley 1.0274 0.6498 0.4595 

3 X Lindley 1.0612 0.6711 0.4746 

4 Zaghdoudi 1.2189 0.7709 0.5451 

5 Exponential 1.38373 0.47974 0.45466 

6 Lindley 1.19354 0.40647 0.36995 

7 X gamma 1.13841 0.45048 0.44401 

8 NLEED 1.5791 0.3663 0.2590 

9 New Model (NLEVD) 1.0997 0.2449 0.13767 

 

 

6. TESTING AND DISCUSSION  

 

From an application perspective, model quality, which 

always is regarded to be vital, is normally determined by the 

following comparisons. Thus, in this section, we will evaluate 

the tests and their outcomes following several critical 

evaluation indices that form part of the research objectives.  

 

6.1 Evaluation criteria for the model 

 

The ability of the model to maximize the likelihood function 

can be evaluated using the Akaike Information Criterion 

(AIC), which is defined as follows [18]: 

 

𝐴𝐼𝐶 =  −2 ln 𝐿  + 2𝑁 (28) 

 

where, 𝐿 represents the maximum value of the logarithmic 

likelihood function, and 𝑁 denotes the number of parameters 

in the model. The Bayesian Information Criterion (BIC), 

which imposes a larger penalty term than AIC to prevent 

model overfitting at high precision, is defined as follows [19, 

20]: 

 

𝐵𝐼𝐶 =  −2𝐿 + 𝑁 ln 𝑛 (29) 

 

where, 𝑛  denotes the number of samples. CAIC stands for 

Corrected Akaike Information Criterion and is employed as 

model’s choice criterion. It is Akaike Information Criterion 

(AIC) is an extension of that used a correction for the 

possibility of small sample size. The CAIC is especially 

relevant where small to moderate sample sizes are obtained 

because it gives a better trade-off between model fitness and 

model size is defined as [21, 22]: 

 

𝐶𝐴𝐼𝐶 =  −2𝐿 +  
2𝑛𝑘

𝑛−𝑘−1
  (30) 
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7. APPLICATION  

 

In this section, we apply the proposed methodology using 

two real datasets and compare efficiency of the methods. The 

following data sets have been used to explain the real-life 

applicability of theoretical framework and comparative 

analysis of the performance of the proposed model. Advanced 

model selection and diagnostic methods as discussed in 

reference [23] may further enhance the performance 

evaluation. 

 

7.1 Data set 1 

 

The data set under consideration, originally analyzed by 

Birnbaum and Saunders [1], represents the fatigue life of 

6061-T6 aluminum coupons. These coupons were cut parallel 

to the direction of rolling and subjected to oscillatory stress at 

a frequency of 18 cycles per second (cps). The data set 

comprises 101 observations, with each observation 

corresponding to the fatigue life under a maximum stress of 

31,000 psi per cycle. This data set is widely recognized in 

reliability and survival analysis literature and serves as a 

benchmark for evaluating the performance of statistical 

models. The parameters and 95 percent confidence intervals of 

the NLEVD model which are maximum likelihood estimates 

of the given data are reported in Table 2. 

 

Table 2. The MLE and 95% confidence interval 

 
Parameters  MLE 95% CI 

𝜶 0.2345 (0.1239, 0.4221) 

𝜷 1.5678 (0.9239, 2.7201) 

𝝁 123.4567 (120.5064, 124.8108) 

 

Accordingly, the variance-covariance matrix is obtained as 

the inverse of the Hessian matrix of the negative log-likelihood 

function, evaluated at the maximum likelihood estimates. 

 

[𝐷(𝐴)]−1 =  [

𝑉𝑎𝑟(𝛼̂) 𝐶𝑜𝑣(𝛼̂, 𝛽̂) 𝐶𝑜𝑣(𝛼̂, 𝜇̂)

𝐶𝑜𝑣(𝛽̂, 𝛼̂) 𝑉𝑎𝑟(𝛽̂) 𝐶𝑜𝑣(𝛽̂, 𝜇̂)

𝐶𝑜𝑣(𝜇̂, 𝛼̂) 𝐶𝑜𝑣(𝜇̂, 𝛽̂) 𝑉𝑎𝑟(𝜇̂)

] 

= [
0.3233 0.0000 0.0000
0.0000 1.4122 0.0000
0.0000 0.0000 3.6231

] 

 

 

8. LIKELIHOOD RATIO TEST (LRT) FOR NESTED 

MODELS 

 

The LRT is a basic statistical test used to determine the fit 

of the restricted model to that of the unrestricted one, where 

the restricted model is a special form of the former and has less 

parameters. Depending on the results of the analysis, the LRT 

is used to determine if there is an improvement in the fit of the 

model provided by the additional parameters in the more 

elaborate model. 

 

𝐻0: 𝛽 = 0, 

𝐻1: 𝛽 ≠ 0. 

 

The LRT is based on the ratio of the maximum likelihoods 

under the two models: 

 

𝑍 =  
𝐿0

𝐿1
  (31) 

 

where, 𝐿0  is the maximum likelihood under the restricted 

model, and 𝐿1  is the maximum likelihood under the 

unrestricted model. 

We use the log-likelihood ratio statistic: 

 

𝐷 =  −2 ln 𝑍 = −2(ln 𝐿0 − ln 𝐿1) (32) 

 

This statistic, under certain regularity conditions, follows an 

approximate chi-square distribution: 𝐷~𝑥𝑘
2,  where k is the 

difference in the number of estimated parameters between the 

two models. We compute the p-value: 

• If p<0.05, we reject 𝐻0 and conclude that the unrestricted 

model provides a significantly better fit. 

• If p>0.05, we fail to reject 𝐻0 , suggesting that the 

additional parameters do not significantly improve the 

model.  
Tables 3 and 4 provide a comparison of the proposed 

NLEVD with several life time distributions based on fit 

statistics such as AIC, BIC and log-likelihood the lower the 

better here. This is clear from the parameter estimates and 

standard errors, which present the NLEVD’s adaptable nature, 

which allows it to estimate data characteristics of different 

types. Due to these reasons, the application of the NLEVD to 

two real datasets is used to compare with other models, using 

histograms and probability plots. A comparison of two 

methods of the estimation of the parameters (SVM and MLE) 

reveal that the former is better than the latter in that it has 

higher prediction accuracy especially on and non-linear data 

the MLE is best suited for simple models. From the result 

above, SVM presented a lower AIC and BIC than both EB and 

ML indicating better model fit and estimation for the NLEVD. 

This goes a long way to show why the specification of the 

appropriate method of estimation should be determined by the 

type of data available as shown in Figure 3. 

 

 

Table 3. The MLE estimates, -2 log-likelihood, AIC, BIC, and CAIC for data set I 

 

Models 
MLE 

-2L AIC BIC CAIC p-value 

Extension Exponential [24] 557.8887 561.8887 567.1189 562.0111 0.0031 

Gamma Lindley [25] 556.3985 560.3985 565.6287 560.5209 0.0008 

X Lindley [26] 559.3096 561.3096 563.9247 561.35 0.0033 

Zaghdoudi [27] 537.8028 539.8028 542.4179 539.8432 0.0043 

Exponential [28] 595.4801 597.4801 600.0952 597.5205 0.0022 

Lindley [29] 558.606 560.606 563.2211 560.6464 0.0044 

X gamma [30] 539.132 541.132 543.7471 541.1724 0.0041 

NLEED [31] 458.4121 460.4121 467.6423 462.5345 0.0007 

New Model (NLEVD) 246.9134 252.9134 260.1234 254.5678 0.0005 
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Table 4. The SVM estimates, -2 log-likelihood, AIC, BIC, and CAIC for data set I 

 

Models 
SVM 

-2L AIC BIC CAIC 

Extension Exponential [24] 432.8295 459.659 460.8916 451.1242 

Gamma Lindley [25] 426.8295 439.659 435.8916 431.1242 

X Lindley [26] 454.3239 412.6478 416.8029 426.958 

Zaghdoudi [27] 437.0757 438.1513 442.3064 442.4615 

Exponential [28] 447.6714 419.3428 423.4979 433.653 

Lindley [29] 426.8295 457.659 461.8141 451.9692 

X gamma [30] 459.6029 423.2059 427.361 437.516 

NLEED [31] 409.728 408.5655 409.7981 410.0307 

New Model (NLEVD) 202.2631 207.5261 206.7587 201.9913 

 

 
 

Figure 3. Histogram, kern density, box plot and QQ plot of the set data 1 
 

Table 5. Fitting and prediction results derived from different models using the fault dataset, including those using MLE 

approaches [2] 
 

Models 
MLE 

-2L AIC BIC CAIC p-value 

Extension Exponential  152.5082 156.5082 160.6632 156.7224 0.0021 

Gamma Lindley  137.1553 141.1553 145.3103 141.3695 0.0007 

X Lindley  162.4521 163.4521 166.5296 164.5222 0.0030 

Zaghdoudi  144.2481 145.2481 144.3256 146.3182 0.0033 

Exponential  195.4801 197.4801 190.0952 197.5205 0.0012 

Lindley  158.3527 159.3527 162.4302 160.4228 0.0034 

X gamma  154.5598 155.5598 158.6373 156.6299 0.0031 

NLEED 119.6421 123.6421 127.7971 123.8563 0.0006 

New Model (NLEVD) 114.64 120.23 127.67 122.89 0.0004 
 

Table 6. Fitting and prediction results derived from different models using the fault dataset, including those using SVM 

approaches [2] 
 

Models 
SVM 

-2L AIC BIC CAIC 

Extension Exponential  132.8295 159.659 160.8916 151.1242 

Gamma Lindley  126.8295 139.659 135.8916 131.1242 

X Lindley 154.3239 112.6478 116.8029 126.958 

Zaghdoudi  137.0757 138.1513 142.3064 142.4615 

Exponential 147.6714 119.3428 123.4979 133.653 

Lindley  126.8295 157.659 161.8141 151.9692 

X gamma  159.6029 123.2059 127.361 137.516 

NLEED 109.728 108.5655 109.7981 110.0307 

New Model (NLEVD) 102.2631 107.5261 106.7587 101.9913 
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Figure 4. Histogram, kern density, box plot and QQ plot of the set data 2 

 

8.1 Data set 2 

 

Parameter the data set [2], they deal with an accelerated life 

test experiment on 59 conductors. The failure mechanism 

under study is electromigration, which is a process occurring 

within the conductors, and causing failure of microcircuits. 

The data contain the failure time in hour and there is no 

censoring in this data set. This data set is well known in the 

reliability engineering and survival analysis literature and 

therefore provides a useful framework for comparing the 

performance of statistical models in the context of failure time 

analysis. The second part of Table 5 represents the maximum 

likelihood estimation results, the AIC, BIC, CAIC and the p-

values of different models that were fitted to this data. 

Tables 5 and 6 present the results of the NLEVD compared 

to other lifetime distributions based on AIC, BIC and log 

likelihood fit statistics, where lower values of all of these 

statistics are better fit. By using the parameter estimates and 

standard errors we observe how the NLEVD is able to fit many 

data characteristics. This is well demonstrated by the use of 

the NLEVD to two real databases in which it provides a much 

better fit than the models under analysis based on both 

histograms and probability plots. A fresh comparison between 

the parameter estimation techniques viz. the SVM and the 

MLE shows that SVM indeed gives better prediction accuracy 

over the MLE specially for non-linear data while is preferable 

for simple models. The findings also show that AIC and BIC 

are lower for SVM than for EB and ML, thereby showing that 

the own-letters NLEVD fits better with this algorithm. This 

shows that depending on the type of data the correct estimation 

technique should be used as shown in Figure 4. 

 

 

9. FURTHER WORK 

 

The discussion that follows underscores some of the 

advantages of the proposed NLEVD with a view to 

underlining its versatility and usefulness in statistical analysis. 

Further research should be directed in translating the NLEVD 

for multi-parameters data model for more flexibility of use, 

assessment of the NLEVD for other and various datasets under 

the different field such as health care, engineering and the 

environmental science, and applying more sophisticated and 

advanced artificial intelligence algorithms in the way of 

improving parameter estimation. Furthermore, enhancing 

program interfaces and studying theoretical features of this 

distribution including asymptotic properties and connections 

to other distributions, would enlarge its potential and improve 

mathematical background. By following these directions, the 

NLEVD can improve its recognition as a powerful tool in 

various domains applicable to survival analysis and reliability 

theory, and stimulate further theoretical and applied research 

in the field of statistics. 

 

 

10. CONCLUSIONS 

 

In this paper, we propose a new three-parameter continuous 

univariate distribution named NLEVD. We consider several 

prospective features of the NLEVD, including the CDF of the 

NLEVD, PDF of the NLEVD, survival function for the 

NLEVD, the hazard function for the NLEVD, and the quantile 

function for the NLEVD. Our study shows that the proposed 

distribution is applicable to many practical situations and has 

an inverted bathtub shaped instantaneous hazard rate. To 

estimate the parameters of the NLEVD, we employ two 

advanced methodologies: In this study, only two sets of 

predictors are assessed using two estimation techniques, 

namely the MLE method and SVM regression. The 

effectiveness of these estimation techniques is examined with 

the help of two real-life data sets and the general applicability, 

suitability and versatility of the proposed distribution is also 

discussed. The results of comparison show that the NLEVD is 

a more suitable model than one and two parameters such as 

New Extension Exponential, Gamma Lindley, Zeghdoudi, X 

Lindley, X gamma and Lindley. In addition, our findings 

1936



 

reveal that when it comes to estimating the parameters of the 

proposed model, the ‘SVM’ method is superior to ‘MLE’ 

method thus showing that, harnessing electricity; machine 

learning can really help statistics. We expect that the to hold 

qualitative and quantitative duties in several disciplines, as a 

potential tool in fields such as survival analysis, probability 

theory and applied statistics will be useful for modeling 

complex data with different natures. 

 

 

ACKNOWLEDGMENT 

 

The authors are very grateful to the Duhok of Polytechnic 

University for providing access which allows for more 

accurate data collection and improved the quality of this work. 

 

 

REFERENCES  

 

[1] Birnbaum, Z.W., Saunders, S.C. (1969). Estimation for a 

family of life distributions with applications to fatigue. 

Journal of Applied Probability, 6(2): 328-347. 

https://doi.org/10.2307/3212004  

[2] Nelson, W., Doganoksoy, N. (2023). Statistical analysis 

of life or strength data from specimens of various sizes 

using the power-(log) normal model. In Recent Advances 

in Life-Testing and Reliability, pp. 377-408. 

https://doi.org/10.1201/9781003418313  

[3] Shirawia, N., Kherd, A., Bamsaoud, S., Tashtoush, M., 

Jassar, A., Az-Zo’bi, E. (2024). Dejdumrong collocation 

approach and operational matrix for a class of second-

order delay IVPs: Error analysis and applications. 

WSEAS Transactions on Mathematics, 23: 467-479. 

https://doi.org/10.37394/23206.2024.23.49  

[4] Totaro, V., Gioia, A., Kuczera, G., Iacobellis, V. (2024). 

Modelling multidecadal variability in flood frequency 

using the two-component extreme value distribution. 

Stochastic Environmental Research and Risk 

Assessment, 38: 2157-2174. 

https://doi.org/10.1007/s00477-024-02673-8  

[5] Yang, Y., Cui, J., Li, J. (2022). Reliability data analysis 

and lifetime prediction of aviation equipment based on 

logistic distribution. In 2022 15th International 

Symposium on Computational Intelligence and Design 

(ISCID), Hangzhou, China, pp. 260-263. 

https://doi.org/10.1109/ISCID56505.2022.00064 

[6] Tahir, M.H., Cordeiro, G.M., Alzaatreh, A., Mansoor, 

M., Zubair, M. (2016). The logistic-X family of 

distributions and its applications. Communications in 

Statistics-Theory and Methods, 45(24): 7326-7349. 

https://doi.org/10.1080/03610926.2014.980516  

[7] Hussain, A., Oraibi, Y., Mashikhin, Z., Jameel, A., 

Tashtoush, M., Az-Zo’bi, E.A. (2025). New software 

reliability growth model: Piratical swarm optimization -

based parameter estimation in environments with 

uncertainty and dependent failures. Statistics, 

Optimization & Information Computing, 13(1): 209-221. 

https://doi.org/10.19139/soic-2310-5070-2109  

[8] Hussain, A., Mahmood, K., Ibrahim, I., Jameel, A., 

Nawaz, S., Tashtoush, M. (2025). Parameters estimation 

of the Gompertz-Makeham process in non-homogeneous 

Poisson processes: Using modified maximum likelihood 

estimation and artificial intelligence methods. 

Mathematics and Statistics, 13(1): 1-11. 

http://doi.org/10.13189/ms.2025.130101  

[9] Lemonte, A.J., Cordeiro, G.M., Moreno–Arenas, G. 

(2016). A new useful three-parameter extension of the 

exponential distribution, Statistics, 50(2): 312-337. 

https://doi.org/10.1080/02331888.2015.1095190  

[10] Mansoor, M., Tahir, M.H., Cordeiro, G.M., Provost, 

S.B., Alzaatreh, A. (2019). The Marshall-Olkin logistic-

exponential distribution. Communications in Statistics-

Theory and Methods, 48(2): 220-234. 

https://doi.org/10.1080/03610926.2017.1414254  

[11] Chaudhary, A.K., Kumar, V. (2020). Half logistic 

exponential extension distribution with properties and 

applications. International Journal of Recent Technology 

and Engineering (IJRTE), 8(3): 506-512. 

https://doi.org/10.22214/ijraset.2020.32565  

[12] Lan, Y., Leemis, L.M. (2008). The logistic–exponential 

survival distribution. Naval Research Logistics (NRL), 

55(3): 252-264. https://doi.org/10.1002/nav.20279  

[13] Vapnik, V. (1995). The Nature of Statistical Learning 

Theory. Springer, New York. 

https://doi.org/10.1007/978-1-4757-3264-1  

[14] Cortes, C., Vapnik, V. (1995). Support-vector networks. 

Machine Learning, 20: 273-297. 

https://doi.org/10.1007/BF00994018  

[15] Boser, B.E., Guyon, I.M., Vapnik, V.N. (1992). A 

training algorithm for optimal margin classifier. In 

Proceedings 5th ACM Workshop on Computational 

Learning Theory, Pittsburgh, PA, pp. 144-152. 

https://doi.org/10.1145/130385.130401  

[16] Liu, Y., Liu, B. (2024). A modified uncertain maximum 

likelihood estimation with applications in uncertain 

statistics. Communications in Statistics-Theory and 

Methods, 53(18): 6649-6670. 

https://doi.org/10.1080/03610926.2023.2248534  

[17] Hussain, A.S., Sulaiman, M.S., Hussein, S.M., Az-Zo’bi, 

E.A., Tashtoush, M. (2025). Advanced parameter 

estimation for the Gompertz-Makeham process: A 

comparative study of MMLE, PSO, CS, and Bayesian 

methods. Statistics, Optimization & Information 

Computing, 13(6): 2316-2338. 

https://doi.org/10.19139/soic-2310-5070-2167 

[18] Hussain, A., Pati, K., Atiyah, A., Tashtoush, M. (2025). 

Rate of occurrence estimation in geometric processes 

with maxwell distribution: A comparative study between 

artificial intelligence and classical methods. International 

Journal of Advances in Soft Computing and Its 

Applications, 17(1): 1-15. 

https://doi.org/10.15849/IJASCA.250330.01  

[19] Banga, M., Bansal, A., Singh, A. (2019). Implementation 

of machine learning techniques in software reliability: A 

framework. In 2019 International Conference on 

Automation, Computational and Technology 

Management (ICACTM), London, UK, pp. 241-245. 

https://doi.org/10.1109/ICACTM.2019.8776830  

[20] Adel, S.H., Fatah, K.S., Sulaiman, M.S. (2023). 

Estimating the rate of occurrence of extreme value 

process using classical and intelligent methods with 

application: Nonhomogeneous Poisson process with 

intelligent. Iraqi Journal of Science, 3054-3065. 

https://doi.org/10.24996/ijs.2023.64.6.33  

[21] Cavanaugh, J.E., Neath, A.A. (2019). The Akaike 

information criterion: Background, derivation, 

properties, application, interpretation, and refinements. 

Wiley Interdisciplinary Reviews: Computational 

1937



 

Statistics, 11(3): e1460. 

https://doi.org/10.1002/wics.1460 

[22] Ibrahim, I., Taha, W., Dawi, M., Jameel, A., Tashtoush, 

M., Az-Zo’bi, E. (2024). Various closed-form solitonic 

wave solutions of conformable higher-dimensional 

Fokas model in fluids and plasma physics. Iraqi Journal 

for Computer Science and Mathematics, 5(3): 401-417. 

https://doi.org/10.52866/ijcsm.2024.05.03.027  

[23] Az-Zo’bi, E., Kallekh, A., Rahman, R., Akinyemi, L., 

Bekir, A., Ahmad, H., Tashtoush, M., Mahariq, I. (2024). 

Novel topological, non-topological, and more solitons of 

the generalized cubic p-system describing isothermal 

flux. Optical and Quantum Electronics, 56(1): 1-16. 

https://doi.org/10.1007/s11082-023-05642-7 

[24] Ragab, I.E., Alsadat, N., Balogun, O.S., Elgarhy, M. 

(2024). Unit extended exponential distribution with 

applications. Journal of Radiation Research and Applied 

Sciences, 17(4): 101118. 

https://doi.org/10.1016/j.jrras.2024.101118  

[25] Chakroun, F., Abid, L., Elarbi, D., Masmoudi, A. (2024). 

Gamma–Lindley regression cure model for corporate 

credit default prediction. Expert Systems with 

Applications, 257: 125004. 

https://doi.org/10.1016/j.eswa.2024.125004  

[26] Ghitany, M.E., Al-Mutairi, D.K., Balakrishnan, N., Al-

Enezi, L.J. (2013). Power Lindley distribution and 

associated inference. Computational Statistics & Data 

Analysis, 64: 20-33. 

https://doi.org/10.1016/j.csda.2013.02.026  

[27] Zaghdoudi, T., Tissaoui, K., Hakimi, A., Ben Amor, L. 

(2024). Dirty versus renewable energy consumption in 

China: A comparative analysis between conventional and 

non-conventional approaches. Annals of Operations 

Research, 334(1): 601-622. 

https://doi.org/10.1007/s10479-023-05181-0  

[28] Wu, S. (2019). A failure process model with the 

exponential smoothing of intensity functions. European 

Journal of Operational Research, 275(2): 502-513. 

https://doi.org/10.1016/j.ejor.2018.11.045 

[29] Barco, K.V.P., Mazucheli, J., Janeiro, V. (2017). The 

inverse power Lindley distribution. Communications in 

Statistics-Simulation and Computation, 46(8): 6308-

6323. https://doi.org/10.1080/03610918.2016.1202274  

[30] Yadav, A.S., Maiti, S.S., Saha, M. (2021). The inverse 

xgamma distribution: Statistical properties and different 

methods of estimation. Annals of Data Science, 8: 275-

293. https://doi.org/10.1007/s40745-019-00211-w  

[31] Meradji, A., Lazri, N., Zeghdoudi, H. (2024). Novel 

logistic exponential extension distribution: Properties 

and applications in applied sciences. Brazilian Applied 

Science Review, 8(2): e76168-e76168. 

https://doi.org/10.34115/basrv8n2-036 

 

1938




