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Financial markets are highly dynamic, driven by complex interactions between 

sentiment, volatility, and structural asset dependencies. Traditional portfolio 

optimization methods often rely on static assumptions, rendering them ineffective under 

volatile or rapidly shifting conditions. To address these limitations, we propose a 

Modular Portfolio Learning System (MPLS) based on a hierarchical multi-agent 

reinforcement learning architecture. MPLS dynamically adjusts asset allocations in 

response to multi-source market signals, guided by a central Decision Fusion 

Framework (DFF) trained via Proximal Policy Optimization (PPO). The system 

integrates three analytical modules: (1) a Sentiment Analysis Module (SAM) leveraging 

FinBERT to extract market mood from financial news, (2) a Volatility Forecasting 

Module (VFM) combining LSTM and Bayesian modeling for risk estimation, (3) a 

Graph Neural Network (GNN) that captures inter-asset and sectoral relationships. A 

dedicated PPO agent in DFF learns to adaptively fuse these signals over time. The 

hierarchical architecture of MPLS features a High-Level Agent (HLA) for sector 

allocation and Low-Level Agents (LLAs) for intra-sector decisions, combining strategic 

foresight with tactical flexibility. Empirical results across S&P 500, DAX, and FTSE 

100 under multiple regimes show that MPLS outperforms conventional baselines, 

achieving up to +38.2% improvement in Sharpe Ratio and −24.1% reduction in 

maximum drawdown compared to single-agent PPO and risk-parity models. MPLS thus 

provides a scalable and interpretable solution for adaptive portfolio optimization under 

uncertainty. 
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1. INTRODUCTION

Financial markets are complex and highly dynamic, 

influenced by macroeconomic factors, investor sentiment, 

volatility fluctuations, and inter-sector dependencies [1-4]. 

Traditional portfolio optimization techniques, such as 

Markowitz’s mean-variance model [5], rely on static 

assumptions and often fail to capture abrupt market regime 

shifts. Although machine learning [6] and reinforcement 

learning (RL) [7] approaches have shown promise in adapting 

to changing environments, they frequently operate in isolation, 

lacking integration of diverse market signals into a unified 

decision-making framework. 

To address these challenges, we propose the Modular 

Portfolio Learning System (MPLS)—a hierarchical multi-

agent reinforcement learning framework [8] designed to 

optimize portfolio allocations dynamically. MPLS integrates 

sentiment analysis, volatility forecasting, and inter-asset 

dependency modeling into a unified learning architecture, 

enabling it to continuously adjust strategies in response to 

evolving market conditions. By jointly leveraging behavioral, 

statistical, and structural signals, MPLS captures a more 

holistic representation of the market, enhancing its 

adaptability and robustness. 

To learn optimal decision policies, MPLS employs 

Proximal Policy Optimization (PPO) [9], a policy-gradient 

reinforcement learning algorithm known for its training 

stability and sample efficiency. This enables the system to 

balance return maximization with dynamic risk control, 

offering a robust solution to modern portfolio management. 

This paper presents the following key contributions to 

portfolio optimization research: 

• A Novel Decision Fusion Framework (DFF): MPLS

employs a PPO-trained agent to dynamically weigh

insights from the Sentiment Analysis Module (SAM),

Volatility Forecasting Module (VFM), and Graph Neural

Networks (GNNs), enabling context-aware allocation

strategies.

• A Hierarchical Multi-Agent Architecture: A High-

Level Agent (HLA) formulates macro-level sector

allocation, while Low-Level Agents (LLAs) optimize

asset selections within each sector, ensuring coordination

between strategic and tactical investment layers.

• Integration of Advanced Learning Modules: MPLS

incorporates FinBERT-based sentiment analysis [10],

LSTM-enhanced volatility prediction [11], and GNN-

based asset relationship modeling to capture

multidimensional financial signals [12].

• Comprehensive Empirical Evaluation: The system is

evaluated on real historical market data to assess the
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impact of multi-agent coordination and signal fusion on 

portfolio performance across both stable and volatile 

market regimes. 

The remainder of this paper is organized as follows: Section 

2 reviews related work in portfolio optimization and 

reinforcement learning. Section 3 presents the MPLS 

framework, detailing its architecture, analytical components, 

and reinforcement learning mechanisms. Section 4 describes 

the experimental setup, including datasets, preprocessing, and 

evaluation metrics. Section 5 discusses the results and ablation 

studies, and Section 6 concludes the paper and outlines 

potential directions for future research. 

2. RELATED WORKS

Portfolio optimization has traditionally relied on statistical 

models such as the Markowitz mean-variance framework. 

While foundational, these approaches assume linearity and 

stationarity, making them ineffective in volatile or non-

stationary markets. To address these limitations, recent 

research has turned to deep reinforcement learning (DRL) [13-

15] with algorithms like Deep Q-Network [16-18], Deep

Deterministic Policy Gradient [19], and PPO [9] showing

promise in learning adaptive trading policies from historical

data [20, 21].

Multi-agent reinforcement learning (MARL) has also 

emerged to decompose complex decision-making tasks. 

Hierarchical MARL, such as FeUdal Networks [8], improves 

scalability and interpretability by separating high-level 

strategy from low-level execution [8]. However, these 

approaches are rarely applied to real-world portfolio systems 

or fail to integrate diverse financial signals in a unified 

manner. 

Recent advances in reinforcement learning have introduced 

transformer-based models that leverage temporal self-

attention to capture long-range market dependencies [22, 23]. 

While these architectures have achieved strong empirical 

results in financial tasks, their deployment remains limited by 

high computational demands and reduced interpretability. In 

parallel, hierarchical reinforcement learning (HRL) 

methods—such as option-critic and HRL-PPO variants [24], 

—have been explored to model temporally abstract decision 

layers, improving sample efficiency and policy stability in 

long-horizon settings. However, these approaches are often 

evaluated in synthetic environments or focus on narrow signal 

types. To the best of our knowledge, existing methods rarely 

offer a unified, modular architecture that integrates diverse 

sources such as sentiment, volatility, and structural 

interdependencies in a manner tailored to real-world portfolio 

optimization. 

Complementary techniques have focused on modeling 

individual signals. FinBERT [10] has been used to extract 

sentiment from financial news, while LSTM-based models 

address volatility forecasting [11]. Graph Neural Networks 

(GNNs), particularly Graph Attention Networks (GATs), are 

increasingly used to model asset interdependencies, though 

most applications focus on prediction rather than allocation 

and seldom integrate with RL frameworks [25].  

In contrast, the MPLS integrates hierarchical reinforcement 

learning with dynamic signal fusion across sentiment, 

volatility, and structural dependencies. This unified and 

interpretable framework addresses the fragmentation of prior 

work and supports robust, adaptive portfolio optimization 

under uncertainty. 

3. METHODOLOGY

3.1 MPLS architecture 

The MPLS is a hierarchical multi-agent reinforcement 

learning framework for adaptive portfolio optimization. It 

responds to evolving market dynamics by fusing sentiment, 

volatility, and structural signals within a unified learning 

architecture. An overview of the system’s architecture is 

illustrated in Figure 1. 

Figure 1. The decision flow in the MPLS framework 
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MPLS features a two-tier agent hierarchy: An HLA sets 

sector-level strategies based on macroeconomic trends, 

sentiment, and volatility forecasts, while sector-specific LLAs 

refine asset-level allocations using localized indicators. This 

separation of strategic and tactical control enhances flexibility 

and scalability. 

To capture interdependencies across assets and sectors, 

MPLS incorporates GNNs, modeling the market as a dynamic 

graph of financial relationships. Each agent learns policies 

within a Markov Decision Process (MDP), and final decisions 

are coordinated via a Decision Fusion Framework (DFF) that 

adaptively weights signal contributions using reinforcement 

learning. 

3.2 SAM 

The SAM plays a pivotal role in the MPLS by transforming 

unstructured financial text into actionable sentiment signals. 

Given that investor sentiment often drives short-term market 

dynamics and volatility [2], SAM provides a quantifiable 

measure of market mood, enabling MPLS to incorporate 

behavioral finance insights into its portfolio decision-making 

process. 

SAM processes financial news, analyst reports, earnings 

call transcripts, and social media using FinBERT [10], a 

transformer model specifically fine-tuned on financial text 

corpora. 

For each document 𝑑, the sentiment score 𝑠𝑑 is computed

as: 

𝑆𝑑 =  [𝑝𝑝𝑜𝑠, 𝑝𝑛𝑒𝑢 , 𝑝𝑛𝑒𝑔] (1) 

where, 𝑝𝑝𝑜𝑠 , 𝑝𝑛𝑒𝑢 , and 𝑝𝑛𝑒𝑔  represent the predicted

probabilities of positive, neutral, and negative sentiment. 

These values are aggregated across sources and time to form a 

daily sentiment index [26], adjusted for source credibility and 

volume using weighted averaging and a 3–5 days exponential 

smoothing filter. 

To align sentiment with trading data, timestamps are 

matched to trading days. Same-day impact is assumed for 

news, while social media and earnings calls are lagged by one 

day to account for delayed reactions. 

To mitigate noise and misinformation—especially during 

crises like COVID-19—SAM incorporates three mechanisms: 

(i) confidence-based filtering discards low-certainty FinBERT

outputs (< 0.6); (ii) sentiment scores are smoothed using a 3-

day EMA; (iii) emotionally charged keywords are normalized

to reduce overreaction to social media language.

A feedback loop further refines model weights if sentiment 

predictions contradict actual market behavior. These 

robustness techniques ensure SAM remains stable and 

informative even under extreme market narratives. 

Given its daily inference structure, SAM operates in batch 

mode and completes processing within 45 seconds on standard 

GPU hardware. Its modular implementation supports parallel 

execution, ensuring low-latency integration with the DFF. 

The resulting sentiment index is passed to the Decision 

Fusion Framework (Section 3.5), where it is combined with 

other signals for final allocation decisions. 

3.3 VFM 

The VFM estimates market uncertainty using a hybrid 

architecture that combines sequential learning with 

uncertainty modeling. It fuses an LSTM network, which 

captures temporal patterns in historical volatility and returns, 

with a Bayesian Network that provides predictive variance 

estimates. Given an input sequence 𝑋𝑡 of past volatility values,

the LSTM predicts a mean future volatility: 

𝜇̂𝑡 = 𝑓𝐿𝑆𝑇𝑀(𝑋𝑡) (2) 

To account for uncertainty, a Bayesian Network outputs the 

full volatility distribution: 

𝑃(𝜎𝑡
2|𝑋𝑡 , 𝑍𝑡) = 𝑁(𝜇𝑡 , 𝜎𝑡

2) (3) 

In Eq. (3), 𝑍𝑡 denotes a vector of macro-financial indicators

used to condition the Bayesian inference process. These 

include interest rates, inflation, market volatility indices, and 

sector-level economic signals. Unlike neural embeddings, 

these features are selected based on domain expertise and data 

availability, allowing for interpretable modeling of causal 

financial relationships. 

This dual-model approach enables VFM to deliver both 

precise volatility forecasts and associated confidence 

intervals. When the estimated uncertainty 𝜎𝑡
2  exceeds a

predefined threshold, the system promotes a more 

conservative allocation strategy. This threshold was 

empirically calibrated by analyzing the distribution of 

posterior variance estimates over the 2010–2018 training 

period. The 75th percentile of this distribution was selected to 

effectively capture abnormal volatility episodes while 

avoiding excessive reactivity to moderate fluctuations.  

Notably, VFM employs a classical Bayesian Network, not 

a Bayesian Neural Network (BNN). This choice ensures 

greater interpretability and computational efficiency. The 

Bayesian structure captures conditional dependencies among 

macroeconomic inputs, using a hybrid strategy that combines 

domain knowledge and data-driven structure learning. Key 

relationships—such as inflation influencing interest rates, and 

interest rates affecting volatility—are encoded based on 

macroeconomic theory. In addition, structure learning 

algorithms (PC and BIC) were applied on historical macro-

financial data (2010–2018) to detect latent dependencies. The 

final graph was selected based on likelihood score to ensure 

both robustness and interpretability. 

VFM’s volatility forecasts and associated confidence 

bounds are sent to the DFF for downstream fusion and 

decision-making (see Section 3.5). 

3.4 GNN module 

The GNN module in MPLS models interdependencies 

among assets, sectors, and macroeconomic indicators. Unlike 

traditional methods that assume asset independence, it 

leverages GATs to learn dynamic financial relationships. 

The market is represented as a graph G=(V,E), where nodes 

𝑣𝑖 ∈ 𝑉 denote assets or sectors, and edges (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 capture

co-movement or sectoral links. Node features ℎ𝑖  integrate

historical returns, sentiment scores (from SAM), and volatility 

forecasts (from VFM). 

Edge weights are computed using 60-day rolling Pearson 

correlations, updated every 𝑇𝑔 = 5 trading days. This weekly

interval balances responsiveness and noise control, as shorter 

windows proved unstable and longer ones lagged in adapting 

to structural shifts. 

The GAT architecture comprises four layers, selected 
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empirically for its optimal balance between expressiveness 

and stability. Deeper configurations (e.g., six layers) led to 

oversmoothing, degrading performance. To regularize 

training, dropout (0.2), LeakyReLU activation, and layer 

normalization are applied. 

ℎ𝑖
(𝑡+1)

=  𝜎(𝑊. ∑ 𝛼𝑖𝑗ℎ𝑗
(𝑡)

𝑗 ∈𝑁(𝑖) ) (4) 

In Eq. (4), 𝑁(𝑖) denotes the set of neighbors of node 𝑖, and 

𝛼𝑖𝑗  represents the attention coefficient between node 𝑖  and

node 𝑗 , which is learned during GAT training. This 

aggregation mechanism allows each node to refine its 

embedding using the weighted contributions of its neighbors. 

Full training configuration of GAT layers is detailed in 

Section 4.1. 

Learned node embeddings are fed into LLAs and the DFF, 

enriching decisions with structural context. Trained jointly via 

PPO, the GNN dynamically adapts to evolving market 

topologies, enabling MPLS to: detect sector momentum and 

reversals, capture cross-asset influence patterns, adapt to 

correlation shifts across regimes, and mitigate systemic risk 

through structural diversification.  

3.5 Decision fusion and multi-agent coordination 

MPLS adopts a hierarchical multi-agent reinforcement 

learning architecture powered by PPO. The system 

coordinates macro-level strategies through an HLA, which 

allocates capital across sectors, and LLAs, which execute 

asset-level decisions within each sector. The DFF is 

implemented as an autonomous PPO-trained agent. Rather 

than applying fixed or rule-based weightings, it learns a 

dynamic fusion policy that adjusts the importance of each 

analytical module (SAM, VFM, GNN) based on evolving 

market conditions. Its goal is to maximize long-term portfolio 

performance by learning to emphasize reliable signals and 

downweight misleading ones. This formulation enables the 

DFF to serve as a policy-driven aggregator, rather than a static 

fusion layer. 

At each timestep 𝑡, the DFF constructs a fusion state vector 

aggregating signals from the SAM, VFM, and GNN: 

𝑆𝑓𝑢𝑠𝑖𝑜𝑛 =  [𝑆𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 , 𝑆𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 , 𝑆𝐺𝑁𝑁] (5) 

A Softmax layer outputs attention weights: 

𝐴𝑓𝑢𝑠𝑖𝑜𝑛 =  [𝜔𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 , 𝜔𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 , 𝜔𝐺𝑁𝑁], ∑ 𝜔𝑖  = 1 (6) 

Each analytical module (SAM, VFM, GNN) proposes its 

own sector-level allocation vector 𝑎𝑘 . These vectors are

aggregated by the DFF using the attention weights to form a 

single fused sector allocation: 

𝜋(𝑠) =  ∑ 𝜔𝑘 . 𝑎𝑘
𝑘
𝑘=1 (7) 

This fused policy π(s) is then passed to the HLA, which uses 

it as a base strategy to allocate capital across sectors. In other 

words, the HLA does not act independently, but conditions its 

final sector allocation directly on this weighted fusion output. 

The resulting sector weights are then passed to LLAs, which 

refine allocations at the asset level within each sector. LLAs 

take into account both the high-level sector allocation from the 

HLA and sector-specific dynamics to ensure responsive and 

regime-aware execution. This two-tiered delegation ensures 

both strategic alignment (via DFF and HLA) and tactical 

adaptability (via LLAs). 

Reward Structure and Optimization 

The PPO agent in DFF, along with the HLA and LLAs, 

receives a reward at the end of each episode based on risk-

adjusted performance: 

𝑅 =  𝛼. 𝑆𝑅 −  𝛽. 𝜎 (8) 

In Eq. (8), the reward signal combines the Sharpe Ratio 

(SR) and the annualized portfolio volatility (σ). The 

coefficients α and 𝛽  govern the trade-off between return 

maximization and risk penalization. In our initial 

configuration, we used α=1 and 𝛽=0.8, giving slightly more 

weight to return than to volatility. These initial values were 

subsequently fine-tuned on the validation set via Bayesian 

optimization, yielding optimal values of α=1.2 and 𝛽 =1.0, 

which provide greater sensitivity to drawdown risk without 

suppressing performance gains. 

State and Action Representations 

• HLA State:

𝑆𝑡
𝐻𝐿𝐴 = [𝑀𝐼𝑡 , 𝐺𝑆𝑡 , 𝑉𝐹𝑡 , 𝑃𝐻𝑡] (9) 

where, 𝑀𝐼𝑡 , 𝐺𝑆𝑡 , 𝑉𝐹𝑡  and  𝑃𝐻𝑡  refer to MacroIndicators,

GlobalSentiment, VolatilityForecast, and PortfolioHistory, 

respectively. 

• HLA Action:

𝑎𝑡
𝐻𝐿𝐴 = [𝑤𝑇𝑒𝑐ℎ , 𝑤𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 , 𝑤𝐸𝑛𝑒𝑟𝑔𝑦] (10) 

• LLA State:

𝑠𝑡
𝐿𝐿𝐴 = [𝑆𝑆𝑡 , 𝑆𝑉𝑡 , 𝐴𝑇𝑡 , 𝐺𝑅𝑡] (11) 

where, 𝑆𝑆𝑡 , 𝑆𝑉𝑡 , 𝐴𝑇𝑡  and 𝐺𝑅𝑡 refer to Sector Sentiment, Sector

Volatility, Asset Trends, and GNN Relations, respectively. 

• LLA Action:

𝑎𝑡
𝐿𝐿𝐴 = [𝑤𝐴1

, 𝑤𝐴2
, … , 𝑤𝐴𝑛

] (12) 

Learning Horizon and Stability 

• Episodes: Each agent operates over a rolling window

of 20 trading days, making periodic decisions.

• Reward Shaping: Intermediate pseudo-rewards (e.g.,

short-term returns and volatility variation) are

introduced to address reward sparsity and stabilize

learning.

The modular nature of this architecture allows 

interpretability and scalability. Each module’s outputs (e.g., 

FinBERT sentiment scores, GNN correlations, and volatility 

estimates) can be analyzed independently to understand their 

contribution to final allocation decisions. 

4. EXPERIMENTS AND RESULTS

4.1 Experimental setup 

We evaluate MPLS using a ten-year dataset (2010–2020) 
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that integrates 60 stocks from the S&P 500 (U.S.) [27], DAX 

(Germany) [28], and FTSE 100 (U.K.) [29] indices. To ensure 

diversity and avoid selection bias, 20 stocks per index were 

selected based on liquidity (average daily volume), market 

capitalization, and sectoral coverage across Technology, 

Healthcare, and Energy. 

The dataset includes OHLCV data, macroeconomic 

indicators (interest rates, inflation, GDP from Fed, ECB, BoE), 

volatility indices, and sentiment scores extracted using 

FinBERT from financial news. All data are synchronized on a 

unified daily timeline (UTC-based). Regional market 

discrepancies are addressed by mapping each asset’s closing 

price to the same calendar day, and non-trading days are 

handled via forward-filling. To handle non-synchronous 

trading hours (e.g., between U.S. and European markets), 

closing prices are normalized to a unified reference day using 

time zone alignment and latest-available value mapping. 

Macroeconomic and sentiment data are timestamp-aligned, 

with a one-day lag when necessary to reflect realistic 

information availability. 

The dataset is split chronologically: 70% for training, 10% 

for validation, and 20% for testing. Model evaluation relies on 

standard financial metrics, ensuring fair and consistent 

performance comparisons across market regimes.  

We assess system performance in two distinct market 

regimes: 

• Pre-COVID (2019–early 2020): Representing

stable conditions.

• COVID crisis (March–June 2020): Representing

volatile, sentiment-driven conditions.

Model Architecture and Training Configuration 

For reproducibility and clarity, we specify the architectural 

and training details of each core module. The SAM utilizes 

FinBERT, initialized with pretrained weights and fine-tuned 

for five epochs on a financial news corpus using a learning rate 

of 2 ×  10−5, a batch size of 32, and the Adam optimizer. The

classification head includes two fully connected layers of sizes 

[768, 128] with ReLU activation. 

The VFM comprises a two-layer LSTM with 64 hidden 

units per layer, using tanh activation and a dropout rate of 0.3. 

The Bayesian Network contains 10 nodes representing 

macroeconomic and market indicators, with a hybrid 

expert/data-driven structure and parameters learned via 

maximum likelihood estimation. 

The GNN module adopts a four-layer GAT, each with 64 

hidden units and four attention heads, using LeakyReLU 

activation and layer normalization. 

All PPO-based agents (HLA, LLA, and DFF) are trained 

using a shared configuration: learning rate 3 ×  10−4 , clip

ratio 0.2, entropy coefficient 0.01, and the Adam optimizer. 

Policy/value networks have hidden layers of sizes [256, 128] 

with ReLU activation, trained for 10 epochs per update using 

a mini-batch size of 256 and 2048 rollout steps. 

Hyperparameter Tuning 

To ensure fair and stable training across all PPO-based 

agents, we employ a hybrid tuning strategy combining grid 

search and Bayesian optimization. A Gaussian process-based 

optimizer with an Expected Improvement acquisition function 

is used to explore promising regions of the hyperparameter 

space, following [27]. 

The final configuration, applied uniformly across the HLA, 

LLAs, and the DFF, is summarized in Table 1. 

Table 1. Hyperparameters used in MPLS training 

Parameter Value 

Learning rate 3 × 10−4 
PPO clip ratio 0.2 

Entropy coefficient 0.01 

Discount factor (𝛾) 0.99 

GAE Lambda (𝜆) 0.95 

Value loss coefficient 0.5 

Update steps 2048 

Mini-batch size 256 

PPO epochs 10 

Optimizer Adam 

Gradient clipping Max norm = 0.5 

Evaluation Metrics 

System performance is measured using the following 

financial metrics: 

• Cumulative Return

• Sharpe Ratio (risk-adjusted return)

• Sortino Ratio (downside risk-adjusted return)

• Maximum Drawdown

• Annualized Volatility

Baseline Models for Comparison 

To evaluate the added value of the MPLS framework, we 

benchmark against: 

• Markowitz Mean-Variance Optimization (MVO):

A classical risk-return model.

• Single-Agent RL: A flat PPO-based agent using

the same data and action space.

• Equal-Weighted Portfolio (EWP): A simple, naïve

strategy that uniformly allocates capital across

assets.

These baselines offer diverse comparisons—traditional, 

learning-based, and naive—demonstrating the system’s 

strengths in adaptability, modularity, and risk-aware decision-

making. 

Computational Infrastructure and Optimization Trials 

To support efficient training and reproducibility, all PPO-

based agents (HLA, LLA, and DFF) were optimized using 

Bayesian optimization with Gaussian Processes and the 

Expected Improvement acquisition function. Each agent type 

underwent 50 optimization trials, leveraging a 3-fold cross-

validation scheme on the training set. 

Experiments were conducted on Google Colab Pro+ with an 

NVIDIA Tesla T4 GPU (16 GB VRAM), 32 GB RAM, and 

an Intel Xeon 2.2GHz CPU. Each complete training run 

required approximately 2.5 hours per agent configuration, 

balancing computational feasibility and search depth. 

4.2 Performance evaluation 

We assess MPLS against three baselines—Markowitz 

MVO, Single-Agent RL, and Equal-Weighted Portfolio 

(EWP)—across two distinct regimes: pre-COVID (stable) and 

COVID (volatile). MPLS outperforms all baselines on 

cumulative return, risk-adjusted ratios (Sharpe, Sortino), and 

drawdown control in both regimes. 

All results reported in this section are computed under the 

assumption of frictionless execution—excluding transaction 

costs, slippage, and leverage—to maintain consistency and 

comparability across all evaluated models. 

In the pre-COVID phase, MPLS achieved a Sharpe Ratio of 
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2.31 and a cumulative return of 39.87%, outperforming 

Single-Agent RL (34.98%) and MVO (27.68%). It also 

maintained a lower drawdown (−8.46%) and moderate 

volatility (22.18%).  

During COVID, MPLS remained robust despite extreme 

conditions, reaching a Sharpe Ratio of 2.08, with reduced 

drawdown (−14.83%) and a cumulative return of 49.75%, 

outperforming Single-Agent RL (37.64%) and all baselines. 

While transaction costs and slippage were not modeled to 

preserve fair comparisons, their impact is acknowledged. 

Future extensions will integrate cost-aware components (e.g., 

liquidity spreads, slippage). To capture tail risk, we also report 

VaR and CVaR at the 95% confidence level. MPLS 

consistently exhibited lower values across regimes, 

confirming its ability to mitigate rare but severe losses (see 

Tables 2-3). 

Table 2. Performance in the pre-COVID period 

Model MPLS MVO Single Agent EWP 

Sharpe Ratio 2.31 1.79 1.92 1.38 

Sortino Ratio 3.74 3.02 2.51 1.91 

Max Drawdown -8.46 -12.12 -10.23 -18.34

Annual Volatility 22.18 18.03 20.17 15.06

Cumulative Return 39.87% 27.68% 34.98% 17.82%

VaR@95% -6.12% -7.35% -6.85% -8.57%

CvaR@95% -9.03% -10.12% -9.45% -12.18%

Table 3. Performance in the COVID period 

Model MPLS MVO Single Agent EWP 

Sharpe Ratio 2.08 1.58 1.81 1.19 

Sortino Ratio 3.47 2.77 2.32 1.72 

Max Drawdown -14.83 -20.38 -17.65 -24.76

Annual Volatility 29.92 24.86 27.89 18.11

Cumulative Return 49.75% 21.93% 37.64% 10.42%

VaR@95% -9.12% -10.27% -9.84% -11.35%

CvaR@95% -13.84% -15.96% -14.52% -17.61%

Table 4. Performance without SAM, VFM, GNNs - pre-COVID period 

Model FULL MPLS NO SAM NO VFM NO GNNs 

Sharpe Ratio 2.31 2.06 1.84 1.96 

Sortino Ratio 3.74 3.21 2.88 2.97 

Max Drawdown -8.46% -10.47% -12.16% -11.02%

Annual Volatility 22.18% 23.48% 24.53% 22.91%

VaR@95% -6.12% -6.88% -7.41% -7.19%

CvaR@95% -9.03% -10.22% -11.38% -10.71%

Table 5. Performance without SAM, VFM, GNNs - COVID period 

Model FULL MPLS NO SAM NO VFM NO GNNs 

Sharpe Ratio 2.08 1.82 1.58 1.76 

Sortino Ratio 3.47 2.81 2.46 2.61 

Max Drawdown -14.83% -19.87% -22.41% -21.07%

Annual Volatility 29.92% 32.48% 34.96% 33.04%

VaR@95% -9.12% -10.83% -12.29% -11.64%

CvaR@95% -13.84% -15.94% -17.73% -16.42%

Table 6. Combined module removal – pre-COVID period 

Model FULL MPLS NO SAM + VFM NO SAM + GNNs NO VFM + GNNs 

Sharpe ± Std 2.31 ± 0.06 1.63 ± 0.08 1.74 ± 0.07 1.58 ± 0.10 

Return ± Std 39.87 ± 1.22 29.32 ± 1.84 31.18 ± 1.67 27.81 ± 2.11 

p-value (vs Full) - 0.004 0.006 0.002 

VaR@95% -6.12% -7.92% -8.41% -9.12%

CvaR@95% -9.03% -11.96% -12.88% -13.72%

Table 7. Combined module removal – COVID period 

Model FULL MPLS NO SAM + VFM NO SAM + GNNs NO VFM + GNNs 

Sharpe ± Std 2.08 ± 0.05 1.20 ± 0.09 1.38 ± 0.07 1.25 ± 0.08 

Return ± Std 49.75 ± 1.35 30.12 ± 2.24 33.47 ± 1.94 31.02 ± 1.76 

p-value (vs Full) - 0.001 0.003 0.002 

VaR@95% -9.12% -12.43% -11.95% -12.67%

CvaR@95% -13.84% -17.32% -16.52% -17.89%
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Table 8. Performance in the post-COVID period (2021-2023) 

Model MPLS MVO Single Agent EWP 

Sharpe Ratio 2.12 1.61 1.85 1.32 

Sortino Ratio 3.59 2.81 2.47 1.89 

Max Drawdown -10.71% -15.20% -13.56% -21.34%

Annual Volatility 24.80% 19.96% 22.47% 16.02%

Cumulative Return 42.13% 28.45% 35.72% 16.89%

VaR@95% -8.42% -9.03% -8.67% -9.87%

CvaR@95% -12.75% -13.81% -13.12% -14.92%

4.3 Ablation study: Module impact analysis 

To evaluate the role of each module in MPLS, we conduct 

ablation experiments by selectively removing the SAM, the 

VFM, or the GNN. Performance drops observed across both 

pre-COVID and COVID regimes (Tables 4–5) confirm that 

each component contributes meaningfully to risk-adjusted 

returns and volatility control. 

Results from the pre-COVID and COVID periods are 

presented in Tables 4 and 5, respectively. In the pre-COVID 

environment, the removal of any individual module leads to a 

noticeable decline in Sharpe and Sortino Ratios, along with 

increases in both maximum drawdown and annualized 

volatility. For instance, excluding VFM results in the most 

significant performance drop, with a reduction in the Sharpe 

Ratio from 2.31 to 1.84 and an increase in drawdown from -

8.46% to -12.16%. The absence of SAM also degrades 

performance, though to a lesser extent, highlighting its 

importance in stable market conditions for capturing investor 

sentiment trends. 

During the pre-COVID period, excluding VFM led to the 

sharpest degradation (Sharpe: 2.31 → 1.84), while SAM and 

GNNs also showed measurable but smaller impacts. In the 

COVID phase, the importance of VFM and GNNs grew, 

highlighting their role in managing structural risk and 

uncertainty. SAM’s influence weakened due to erratic 

sentiment shifts, but still added value under calmer conditions. 

To assess inter-module synergy, we further tested 

combinations of removed modules (e.g., SAM + VFM), with 

results presented in Tables 6-7. All combinations significantly 

underperformed the full MPLS. For instance, removing SAM 

and VFM jointly led to a 42.6% drop in Sharpe Ratio during 

COVID. Across all ablations, performance degradation was 

statistically significant (p < 0.01), and VaR/CVaR scores 

worsened, confirming reduced resilience. 

These results validate the complementary roles of SAM, 

VFM, and GNNs. While VFM is critical in volatile markets, 

GNNs contribute consistently by capturing interdependencies, 

and SAM enhances tactical responsiveness in stable 

conditions. Their combined integration via DFF is key to the 

system’s robustness and adaptability. 

4.4 Generalization to post-2020 regimes 

To assess the robustness of MPLS under more recent and 

structurally distinct market conditions, we extended the 

evaluation to include the 2021–2023 period. This timeframe 

captures the aftermath of COVID-19, characterized by 

macroeconomic instability including inflation surges, interest 

rate hikes, and sector rotations. 

MPLS maintained strong performance, achieving a Sharpe 

Ratio of 2.12, a maximum drawdown of −10.71%, and 

consistently lower tail-risk exposure as measured by VaR and 

CVaR. These results highlight the model’s adaptability to 

unseen regimes and reinforce its robustness beyond the 

original training horizon. Table 8 summarizes the system’s 

performance metrics over the 2021–2023 period, further 

confirming its ability to generalize beyond the COVID 

training window. 

4.5 Sector allocation analysis 

To evaluate the adaptability of the MPLS in adjusting 

portfolio composition under varying market regimes, we 

analyze the evolution of sector-level allocations across three 

core industries: Technology, Healthcare, and Energy. This 

analysis spans two distinct periods—pre-COVID (stable 

market) and COVID (high-volatility)—offering insight into 

how MPLS reallocates capital in response to changing 

economic signals and investor sentiment as shown in Figure 2. 

During the pre-COVID period, MPLS consistently 

maintains a higher allocation to the Technology sector, 

reflecting its alignment with growth-oriented market 

conditions. Allocations to Healthcare and Energy remain 

comparatively stable, with only moderate fluctuations over 

time. This behavior illustrates MPLS’s ability to preserve 

diversification while capitalizing on high-performing sectors 

during periods of low volatility. 

Conversely, in the COVID-19 crisis period, the system 

demonstrates a pronounced shift in sector allocation. Exposure 

to Technology is reduced amid increasing uncertainty, while 

Healthcare allocations rise significantly, signaling a strategic 

reallocation toward defensive sectors known for stability 

during macroeconomic shocks. 

4.6 SAM performance 

The performance of the SAM is evaluated by comparing its 

predicted sentiment scores to actual market sentiment trends 

during both the Pre-COVID and COVID periods. Sentiment 

scores are normalized to range between -1 and 1, with positive 

values indicating optimism and negative values reflecting 

bearish sentiment. 

Figure 3 presents a side-by-side time-series comparison of 

SAM’s predicted sentiment versus actual market sentiment. 

During the pre-COVID period, SAM exhibits low prediction 

error and closely tracks sentiment dynamics, demonstrating 

strong alignment between its textual sentiment outputs and 

real-world investor behavior. 

In contrast, during the COVID period—marked by abrupt 

sentiment reversals and market volatility—SAM’s prediction 

error increases. This degradation in accuracy reflects the 

heightened difficulty of modeling sentiment in crisis 

environments, where non-linear and sudden shifts are more 

frequent. The elevated prediction error during the COVID 

period may stem from increased linguistic noise and 

misinformation in online discourse during crisis periods. 

Nonetheless, SAM continues to deliver valuable directional 

cues to the overall system. 
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(a) 

(b) 

Figure 2. Sector allocation evolution of MPLS during the Pre-COVID period (a) and the COVID period (b) 

(a) 

(b) 

Figure 3. Performance of the SAM during the pre-COVID (stable) period (a) and the COVID (volatile) period (b) 
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Table 9. Sentiment analysis performance 

Period RMSE 

Pre-Covid 0.164 

COVID 0.210 

Table 10. Volatility forecasting performance 

Period RMSE 

Pre-Covid 1.47 

COVID 5.29 

Prediction accuracy is quantified using Root Mean Squared 

Error (RMSE) for both periods, with results summarized in 

Table 9. These metrics confirm SAM’s robustness in normal 

conditions and its resilience in turbulent markets. 

4.7 VFM performance 

The VFM is assessed by comparing its predicted volatility 

levels to actual market volatility over the same two periods. 

Figure 4 illustrates the alignment of VFM predictions with 

observed volatility data. 

In the pre-COVID period, VFM performs with high 

precision, capturing the temporal structure of volatility with 

minimal lag. This effectiveness is largely attributed to its 

hybrid architecture, which combines LSTM-based temporal 

modeling with Bayesian uncertainty estimation. 

During the COVID period, the model faces increased 

prediction difficulty due to sudden spikes in volatility and 

deviations from historical norms. Although VFM continues to 

capture general volatility trends, the prediction error rises, as 

measured by RMSE values (Table 10). 

These results confirm that VFM is well-suited for risk-

aware portfolio construction under stable market conditions 

and still provides useful, albeit less precise, forecasts during 

crisis periods. 

4.8 GNNs performance 

The effectiveness of the GNNs module is evaluated through 

its ability to learn and represent inter-asset correlations. This 

is achieved by comparing actual correlation matrices with 

those learned by the GNN during the Pre-COVID and COVID 

periods. 

Figure 5 displays heatmaps comparing actual and GNN-

derived correlation structures, with color gradients indicating 

the strength and direction of relationships. In the pre-COVID 

phase, the GNN captures asset interdependencies with high 

accuracy, enabling enhanced portfolio diversification and 

informed allocation across sectors. 

During the COVID period, market uncertainty introduces 

greater instability in asset correlations. Despite this, the GNN 

adapts to the changing structure, learning new patterns that 

reflect the evolving network of asset relationships. 

Quantitative evaluation is conducted using the MAE 

between the actual and learned correlation matrices. As 

reported in Table 11, the GNN maintains reasonable accuracy 

even under turbulent conditions, affirming its utility in 

modeling systemic relationships in dynamic financial 

environments. 

(a) 

(b) 

Figure 4. VFM performance during pre-COVID (a) and COVID crisis (b) periods 
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Figure 5. Comparison of actual vs. GNN-learned asset correlation matrices during pre-COVID and COVID periods 

Table 11. GNN learning accuracy 

Period Mean Absolute Error (MAE) 

Pre-COVID 0.041 

COVID 0.078 

5. DISCUSSION

5.1 Overall performance 

The results clearly demonstrate that the MPLS consistently 

outperforms traditional portfolio optimization models—

including Markowitz Mean-Variance Optimization (MVO), 

single-agent reinforcement learning (RL), and Equal-

Weighted Portfolios (EWP)—across both stable and turbulent 

market environments. This superior performance is most 

evident in cumulative returns, risk-adjusted metrics (Sharpe 

and Sortino ratios), and drawdown control. 

During the pre-COVID period, MPLS achieved stable 

portfolio growth by dynamically reallocating assets in 

response to real-time market signals. It effectively exploited 

stable asset correlations and low volatility, leveraging its 

decision modules to maintain high returns while minimizing 

risk. 

In contrast, during the COVID period, MPLS demonstrated 

robust adaptability to extreme volatility and market 

uncertainty. The system rapidly adjusted its exposure, 

reducing risk-heavy positions and reallocating capital toward 

more resilient sectors. As a result, MPLS maintained 

competitive returns while limiting drawdowns—a critical 

advantage over traditional static models during crises. 

5.2 Sector allocation adaptability 

One of MPLS’s most notable strengths lies in its ability to 

dynamically reallocate capital across sectors based on 

macroeconomic shifts and investor sentiment. In stable market 

conditions, MPLS maintained a diversified sector exposure, 

adjusting allocations based on historical patterns and 

underlying economic indicators. 

However, during the COVID crisis, the system responded 

decisively by shifting away from volatile sectors like 

Technology and increasing its allocation to healthcare. This 

reallocation mirrors institutional investor behavior and was 

driven by the integration of sentiment analysis and macro-risk 

signals. The observed shift demonstrates MPLS’s capacity to 

detect and act on evolving market regimes, improving 

resilience and strategic alignment. 

These dynamic reallocations underscore MPLS’s 

effectiveness in synthesizing both quantitative and qualitative 

signals, allowing it to balance return optimization with risk 

mitigation in a principled manner. 

5.3 Module-level contributions 

SAM contributes to MPLS by integrating behavioral 

finance into the portfolio decision-making process. During the 

pre-COVID period, it captured investor mood shifts with high 

accuracy, aligning well with actual sentiment trends. This 

alignment improved the system’s responsiveness and 

contributed to enhanced risk-adjusted returns. 

In the COVID phase, characterized by erratic sentiment 

swings, SAM’s predictive accuracy declined, as reflected by 

higher RMSE values. However, even under such challenging 
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conditions, it provided valuable directional signals that helped 

guide MPLS’s sector allocation and short-term adjustments, 

reinforcing the value of sentiment cues in dynamic investment 

environments. 

The VFM is central to MPLS’s risk-aware strategy. In stable 

markets, it accurately forecasts volatility patterns using a 

hybrid model that combines temporal learning via LSTMs and 

uncertainty estimation via Bayesian Networks. This facilitates 

prudent asset allocation under predictable conditions. 

During the COVID crisis, despite facing forecasting 

challenges due to unprecedented volatility spikes, VFM 

successfully captured broad volatility trends. Although RMSE 

values increased, the module continued to play a key role in 

rebalancing the portfolio away from high-risk assets and 

enhancing exposure to safer sectors. This demonstrates VFM’s 

contribution to maintaining system stability even under market 

stress. 

The GNN module significantly enhances MPLS’s ability to 

model asset-level interdependencies. In the pre-COVID 

environment, the GNN effectively learned correlation 

structures that supported improved diversification and sector-

wise asset selection. 

Although the COVID crisis introduced fragmented and less 

predictable relationships among assets, the GNN adapted to 

these changes by recalibrating its learned correlation patterns. 

The slight increase in MAE during this period reflects the 

challenge, but GNNs still outperformed static correlation-

based approaches. This confirms the value of dynamic graph-

based modeling in tracking market structure evolution. 

The DFF serves as the integrative engine of MPLS, 

combining outputs from SAM, VFM, and GNNs into a unified 

decision vector. Unlike traditional rule-based systems, DFF 

leverages reinforcement learning (PPO) to dynamically adjust 

the relative importance of each signal, based on observed 

market states. 

This adaptive weighting mechanism enables the system to 

shift focus as needed—emphasizing volatility forecasts in 

high-risk environments, or prioritizing sentiment and 

structural trends during calmer periods. DFF’s flexibility and 

contextual awareness are essential to MPLS’s ability to 

maintain performance while adapting to shifting market 

regimes, ultimately enhancing both robustness and strategic 

precision. 

While transformer-based RL models offer compelling 

performance in unstructured environments, MPLS 

demonstrates competitive results with improved 

interpretability and lower computational cost. Future work 

may incorporate temporal attention into agent-level encoders 

to further enhance signal integration. 

5.4 Scalability and real-time deployment 

Although MPLS is implemented as an offline daily 

inference system, latency and scalability remain key 

considerations for potential real-time deployment. In the 

current setup, both sentiment extraction and GNN graph 

updates are executed once per trading day in batch mode, 

minimizing computational overhead and ensuring temporal 

consistency. 

On standard hardware (NVIDIA T4 GPU with 16 GB 

RAM), the full inference pipeline—including SAM, VFM, 

and GNN processing—completes in under 3 minutes. The 

modular architecture also supports parallel computation across 

signal modules, which further improves scalability and 

enables efficient integration into operational pipelines. 

Future enhancements will explore streaming-compatible 

designs and incremental GNN updates to support more 

responsive, near-real-time decision-making in high-frequency 

market environments. 

6. CONCLUSION

This study introduced the MPLS, a hierarchical multi-agent 

reinforcement learning framework for adaptive portfolio 

optimization. Empirical results across multiple regimes show 

that MPLS consistently outperforms traditional methods—

including MVO, single-agent RL, and equal-weighted 

portfolios—achieving notable improvements in returns, 

drawdown control, and risk-adjusted metrics. 

The system’s strength lies in its modular design: SAM 

captures market sentiment, VFM estimates volatility with 

uncertainty, and GNNs model structural dependencies. These 

modules are fused through a PPO-driven DFF, enabling 

context-aware and explainable allocations. 

Despite strong results, MPLS has limitations. It relies on 

historical data, assumes constant liquidity, and omits 

execution costs and intraday dynamics. Moreover, its current 

implementation is limited to equity markets and daily 

inference. 

Future work will focus on modeling transaction frictions, 

detecting regime shifts, enabling real-time updates, and 

extending MPLS to broader asset classes. In summary, MPLS 

offers a robust and scalable foundation for intelligent portfolio 

decision-making under uncertainty. 
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