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Accurate forecasting of air pollutant concentrations is critical for environmental 

management and public health protection, particularly in urban areas with dynamic, 

uncertain pollution patterns. This study proposes a lightweight and interpretable forecasting 

framework based on both Fuzzy C-Means (FCM) and Interval Type-2 Fuzzy C-Means 

(IT2FCM) clustering to predict short-term carbon monoxide (CO) levels. The framework 

employs cluster centroids as prediction anchors, with IT2FCM capturing uncertainty via 

lower and upper membership functions. Averaging these bounds provides the final forecast 

to balance precision and robustness. Real-world CO concentration data from an air quality 

monitoring station in Semarang, Indonesia, were used to validate the model. Following a 

systematic sensitivity analysis to optimize model parameters, experimental results show that 

IT2FCM significantly outperforms both standard FCM and classical time-series models 

(Autoregressive Integrated Moving Average and Double Exponential Smoothing), 

achieving an exceptionally low prediction error (MAPE=3.78%). Visual evaluation via 

heatmaps and dendrograms confirms the model's internal consistency and cluster 

separability. This research highlights the potential of fuzzy clustering—especially Interval 

Type-2 models—as an effective alternative to statistical forecasting techniques in uncertain 

real-time environmental contexts. 
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1. INTRODUCTION

The increasing severity of urban air pollution has prompted 

governments and researchers to develop smarter, more 

proactive monitoring systems [1]. Carbon monoxide (CO), a 

toxic gas primarily produced from incomplete combustion, is 

among the most critical pollutants monitored in urban air 

quality management programs [2]. Short-term exposure to 

elevated levels of CO can lead to severe cardiovascular and 

neurological effects, while long-term exposure has been linked 

to chronic respiratory illnesses and increased mortality risks 

[3-5]. In countries with dense populations and high vehicle 

use, such as Indonesia, monitoring and predicting CO 

concentration is crucial for issuing early warnings and 

protecting vulnerable groups [6-8]. 

Despite the availability of environmental sensor networks, 

the challenge remains in generating reliable, real-time 

predictions from data that are often noisy, nonlinear, and 

uncertain [9]. Traditional forecasting methods such as 

Autoregressive Integrated Moving Average (ARIMA) and 

Double Exponential Smoothing have been widely used in air 

quality time series modeling due to their interpretability and 

mathematical tractability [10-12]. However, these methods 

typically assume linear relationships and stationary time 

series, which may not hold in dynamic urban conditions 

characterized by abrupt changes, sensor drift, and complex 

meteorological interactions [13].  

To overcome these limitations, researchers have 

increasingly turned to machine learning and soft computing 

approaches, which offer better adaptability to nonlinearities 

and uncertainty in the data. Among them, fuzzy clustering, 

particularly Fuzzy C-Means (FCM), has gained attention due 

to its capability to partition ambiguous data and represent 

partial memberships [14, 15]. In environmental contexts, 

where pollutant levels often fluctuate near decision boundaries 

and sensor readings may be imprecise, FCM can uncover 

meaningful data groupings that conventional classifiers might 

miss [16]. 

Nevertheless, classical FCM, which relies on Type-1 fuzzy 

sets, does not fully address the uncertainty in the membership 

functions themselves. When data are highly overlapped or 

noisy, the crisp nature of Type-1 memberships may result in 

unstable or biased clustering outcomes. To address this, 

Interval Type-2 Fuzzy Sets (IT2FS) have been introduced as 

an extension that allows membership degrees to be expressed 

as bounded intervals. This results in a more robust and 

uncertainty-aware clustering method known as Interval Type-

2 Fuzzy C-Means (IT2FCM) [17-19]. 
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IT2FCM provides a more expressive modeling framework 

by incorporating both lower and upper membership functions, 

enabling it to better handle overlapping clusters and uncertain 

boundaries [20, 21]. Several studies have shown that IT2FCM 

improves classification and clustering stability in applications 

ranging from medical diagnostics to image processing [22], 

but its application to environmental time-series prediction—

particularly for air pollution forecasting—remains 

underexplored. 

Another challenge lies in the interpretability and 

computational efficiency of predictive models for deployment 

in real-time systems, such as IoT-based air quality monitoring 

stations [23]. Many advanced deep learning models offer high 

accuracy but at the cost of transparency and processing time, 

making them less ideal for embedded or edge-computing 

environments [24, 25]. In contrast, centroid-based prediction 

models using fuzzy clustering offer a lightweight alternative 

with strong explanatory value [26]. Rather than fitting 

complex regression equations, these models predict future 

values based on cluster centroids [27], ensuring fast [28], 

interpretable [29], and adaptable forecasting [30]. 

This study proposes a novel, centroid-based prediction 

framework combining FCM and IT2FCM for forecasting 

short-term CO concentration. It introduces a practical 

approach where the next predicted value is derived from the 

cluster centroid associated with the latest data point. For 

IT2FCM, the model aggregates predictions from lower and 

upper memberships into a single average value, balancing 

between sensitivity and robustness. The framework is 

evaluated using real-world CO concentration data from an 

urban monitoring station in Semarang, Indonesia, and 

compared with classical time-series models. 

 

 

2. THEORETICAL BACKGROUND 
 

2.1 Related works 

 

Recently, several studies have demonstrated the 

effectiveness of IT2-FCM and its hybrid variants in 

environmental time series forecasting. For instance, Yin et al. 

[31] showed that an IT2-FCM-FTS approach outperformed 

traditional ARIMA models in forecasting daily AQI levels in 

Beijing. Chen et al. [32] applied an enhanced IT2-FCM-FTS 

model for spatial NDVI prediction, achieving lower RMSE 

than both ARIMA and classical FCM. In Sydney, Bhanja and 

Das [33] combined Interval Type-2 fuzzy time series with 

butterfly optimization to improve AQI prediction accuracy. 

Pinto et al. [34] presented SODA‑T2FTS, a data-driven 

univariate IT2 fuzzy time series model that uses SODA for 

automated partitioning; it exhibited low error, fast 

computation, and robustness to noise on financial datasets. 

Moreover, Shao et al. [35] integrated a GARCH-based 

volatility model with an IT2-FIS to handle high-variability 

forecasting problems in air quality and traffic flow. However, 

most of these studies focus on univariate or spatial cases and 

have yet to explore real-time multivariate prediction and 

deployment implications in IoT-based systems, which this 

study aims to address. 
 

2.2 FCM clustering 

 

FCM is a soft clustering algorithm that enables data points 

to belong to multiple clusters with varying degrees of 

membership. It has been widely applied in pattern recognition, 

image analysis, and environmental data modeling due to its 

ability to model uncertainty and overlapping data structures 

[36]. Despite its effectiveness in dealing with imprecise 

boundaries, classical FCM assumes that membership degrees 

are crisp and deterministic, which limits its ability to model 

uncertainty in noisy or ambiguous data [37, 38]. 

 

2.3 IT2FCM 

 

IT2FS extend traditional fuzzy logic by allowing the 

membership degrees themselves to be uncertain, represented 

as bounded intervals [39]. The IT2FCM clustering algorithm 

incorporates this concept by defining both lower and upper 

membership values for each data point. This enables the model 

to better represent overlapping and uncertain data regions, 

making it particularly suitable for real-world sensor data 

where noise and ambiguity are common [40, 41]. 

 

2.4 Centroid-based prediction 

 

Centroid-based prediction leverages the centroid associated 

with the most recent observation to estimate the next data 

point. This approach is computationally efficient and offers 

strong interpretability, as it does not rely on complex 

regression functions. In the context of IT2FCM, the prediction 

is refined by averaging the lower and upper centroids, 

resulting in a bounded forecast that reflects the uncertainty in 

data-driven decisions [18, 42]. 

 

2.5 ARIMA and Double Exponential Smoothing 

 

ARIMA is a classic linear time-series forecasting model 

widely used in environmental and economic forecasting [43, 

44]. However, its assumptions of stationarity and linear 

relationships often do not hold in real-world pollution data 

characterized by abrupt changes and nonlinearity [43]. 

Double Exponential Smoothing is another traditional 

technique that predicts future values by applying exponentially 

decreasing weights to past observations [45, 46]. While 

computationally simple, its lack of adaptability to nonlinear 

dynamics and volatility makes it less suitable for 

environmental applications with high uncertainty [47]. 

 

 

3. METHODOLOGY 

 

This study proposes a comprehensive forecasting 

framework for air quality time series data, specifically 

focusing on CO concentration obtained from the AQMS 

station in Semarang. The methodological flow, as illustrated 

in Figure 1, comprises five main stages: data preparation, 

clustering using FCM and IT2FCM, prediction based on 

cluster centroids, evaluation through MAPE, and comparison 

with traditional statistical models such as ARIMA and Double 

Exponential Smoothing. 

 

3.1 Data preparation  

 

In this stage, the collection and preparation of concentration 

data from the available dataset are performed. Raw data is read 

and structured into a matrix form suitable for clustering 

analysis. Subsequently, the optimal number of clusters is 

determined; in this study, the number of clusters is set as c=3.  
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The optimal number of clusters was determined not 

empirically, but through a systematic sensitivity analysis 

aimed at identifying the parameter that minimizes the Mean 

Absolute Percentage Error (MAPE) as detailed in Section 3.3. 

 

 
 

Figure 1. Research methodology 

 

3.2 Clustering  

 

This stage involves data clustering using two methods: 

FCM and IT2FCM. 

 

3.2.1 FCM 

FCM is a fuzzy clustering method optimizing the following 

objective function (1).  

 

𝐽𝑚(𝑈, 𝑉) = ∑ ∑(𝑈𝑖𝑗)
𝑚

||𝑥𝑖 − 𝑣𝑗||
2

𝑐

𝑗=1

𝑛

𝑖=1

 (1) 

 

where, 𝑈𝑖𝑗  represents the membership degree of data point 𝑥𝑘 

to cluster 𝑖 , 𝑣𝑗  denotes the centroid of cluster 𝑗 , 𝑐  is the 

number of clusters, and 𝑚 is the fuzziness parameter, with m 

> 1 in this study. 

 

3.2.2 IT2FCM 

IT2FCM extends the FCM concept by incorporating two 

fuzziness parameters, lower m₁ and upper m2, to handle high 

uncertainty in data. While its objective function is 

conceptually similar to that of FCM, the core of the IT2FCM 

algorithm lies in its handling of uncertainty through type-

reduction. The objective function can be expressed as:  

 

𝐽𝑚1,𝑚2(𝑈𝐿 , 𝑈𝑈, 𝑉𝐿 , 𝑉𝑈)

= ∑ ∑ [(𝑈𝐿𝑖𝑗)
𝑚1

||𝑥𝑖 − 𝑣𝐿𝑗||
2

𝑐

𝑗=1

𝑛

𝑖=1

+  (𝑈𝑈𝑖𝑗)
𝑚2

||𝑥𝑖 − 𝑣𝑈𝑗||
2

] 

(2) 

 

where, 𝑈𝐿𝑖𝑗 , 𝑈𝑈𝑖𝑗 are respectively the lower and upper 

membership degrees for data 𝑥𝑖 and 𝑣𝐿𝑗, 𝑣𝑈𝑗  are the lower and 

upper centroids of cluster j. It is critical to note that the 

centroids 𝑣𝐿𝑗  and 𝑣𝑈𝑗  are not optimized independently. 

Instead, they are computed through an iterative type-reduction 

process, which is a hallmark of type-2 fuzzy systems. This 

study employs an approach aligned with established literature, 

where the type-reduced centroid for each cluster is first 

calculated, and then the lower and upper centroids (vLj and vUj) 

are derived from this type-reduced set. Algorithms such as the 

Karnik-Mendel (KM) algorithm are standard methods for 

performing this type-reduction [48]. This ensures that the 

centroids properly reflect the footprint of uncertainty modelled 

by the interval memberships, rather than being simple 

independent optimizations. 

This study set the fuzzifier parameter m=2.0 for standard 

FCM, aligning with common practice and its robustness to 

noise in real-world datasets [49, 50]. Following the sensitivity 

analysis described in Section 3.3, the optimal fuzziness 

parameters were identified as m₁ and m₂. This interval, in 

conjunction with c clusters, was proven to provide the lowest 

prediction error, offering a refined balance between model 

sensitivity and robustness against data uncertainty. 

 

 
 

Figure 2. Sensitivity analysis 
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3.3 Sensitivity analysis for parameter optimization 
 

To ensure the robustness and optimal performance of the 

proposed model, and in response to reviewer feedback, a 

sensitivity analysis was conducted. This process involved 

systematically evaluating the model's performance across a 

range of key parameters: the number of clusters (c) and the 

fuzziness interval [m₁, m₂]. The number of clusters c was 

varied from 2 to 5. The fuzziness interval was tested with three 

different configurations representing distinct uncertainty 

footprints: [1.5, 3.0], [1.8, 2.2], and [1.2, 4.0]. The model's 

performance for each parameter combination was measured 

using MAPE. This systematic approach allows for the data-

driven selection of optimal parameters, moving beyond 

empirical estimation and enhancing the model's credibility. 

The results of this analysis are visualized in the heatmap in 

Figure 2. 
 

3.4 Prediction 

 

The prediction process is conducted based on the cluster 

centroids obtained from the previous clustering results. The 

predicted value 𝑥𝑖̂ for each data point is computed using the 

centroid of the cluster with the highest membership degree in 

function (3). 

 

(𝑥𝑖)̂ = 𝑣𝑗 , 𝑗 = arg 𝑚𝑎𝑥𝑗 (𝑈𝑖𝑗) (3) 

 

where, 𝑣𝑗  is the centroid of the cluster having the highest 

membership degree for data point 𝑥𝑖 . Furthermore, the 

prediction mechanism is a centroid-based forecasting model 

that establishes a temporal link between consecutive data 

points via cluster membership. The process for forecasting the 

value at time t+1 based on the observation at time t is as 

follows: 

1. State Identification: For the current data point xt, its 

corresponding cluster membership is determined by 

finding the cluster j with the highest degree of 

membership.  

2. Forecast Generation: The forecast for the next time 

step, denoted as 𝑥̂𝑡 + 1 then set to be the centroid value 

of the identified cluster, 𝑣𝑗.  

This can be formally expressed as: Let 𝐶(𝑥𝑡) be the cluster 

assigned to observation 𝑥𝑡 . Then the forecast is 𝑥̂𝑡 + 1 =
𝑣𝐶(𝑥𝑡). This approach effectively treats the cluster centroids as 

representative states of the system. The forecast is based on 

the assumption that the system will persist in its current state, 

represented by its cluster centroid, into the next time step. For 

the IT2FCM model, the final forecast 𝑥̂𝑡 + 1 is the average of 

the lower and upper centroids for the assigned cluster, i.e., 

(𝑣𝐿,𝐶(𝑥𝑡)
+𝑣𝑈,𝐶(𝑥𝑡))

2
. 

 

3.5 Evaluation 
 

Prediction performance evaluation is conducted using 

MAPE, computed with the Eq. (4). A lower MAPE indicates 

better prediction accuracy. 
 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |𝑛

𝑖=1
𝑥𝑖−𝑥𝑖̂

𝑥𝑖
 ×  100%  (4) 

 

3.6 Comparison with statistical models 
 

For comparison purposes, two traditional statistical 

methods, namely ARIMA and Double Exponential 

Smoothing, are employed. 

 

3.6.1 ARIMA 

The ARIMA model is formulated in Eq. (5) with parameters 

𝑝, 𝑑, 𝑞  representing autoregressive order, differencing, and 

moving average order, respectively. This study selected 

parameters 𝑝, 𝑑, 𝑞  for ARIMA via a combination of 

stationarity tests and inspection of ACF/PACF plots. A grid 

search over p=0–5, d=0–2, q=0–5 was conducted to find the 

model with the lowest AIC; ARIMA (2,1,2) was chosen. 

Additionally performed residual diagnostics to ensure model 

adequacy. We also tested auto_arima() in pmdarima, 

confirming similar parameter ranges and AIC values. 

 

𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞): 
𝑦𝑡 = 𝑐 + ∑ 𝜙𝑖𝑦𝑡−𝑖 + ∑ 𝜃𝑗 ∈𝑡−𝑗+∈𝑡

𝑞
𝑗=1

𝑝
𝑖=1   

(5) 

 

3.6.2 Double Exponential Smoothing 

Double Exponential Smoothing is a time series forecasting 

method that addresses the limitation of simple exponential 

smoothing by incorporating a trend component. It uses two 

equations to update both the level and the trend in Eq. (6).  

 

𝑦̂𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑦̂𝑡−1 + 𝑏̂𝑡−1) 

𝑏𝑡 = 𝛽(𝑦̂𝑡 − 𝑦̂𝑡−1) + (1 − 𝛽)𝑏𝑡−1 
(6) 

 

DES parameters 𝛼 and 𝛽 were tuned via grid search (𝛼, 𝛽 

∈ [0.1, 0.9]) to minimize MAPE on training data, resulting in 

𝛼 =0.35 and 𝛽 =0.15. This study further verified that a 

parameter estimation routine in Statsmodels yielded 

comparable values, optimizing via log-likelihood, where is the 

smoothing parameter for the level, and is the smoothing 

parameter for the trend component [51]. This method 

improves adaptability to trends but still assumes linearity and 

may struggle in volatile environments typical of sensor-based 

pollution monitoring. 

 

 

4. RESULT  

 

4.1 Data source 

 

The dataset used in this study was obtained from the AQMS 

Station in Mijen, Semarang City, through the official portal of 

the Ministry of Environment and Forestry (KLHK), Indonesia. 

The selected parameter is the ambient concentration of CO. 

The data was retrieved on 19 July 2022 and served as the input 

for fuzzy-based clustering and subsequent CO concentration 

prediction. 

 

4.2 Clustering result 

 

Following the parameter optimization from the sensitivity 

analysis, the clustering process was conducted using the 

optimal parameters: 5 clusters (c=5), and a fuzziness interval 

of [1.8, 2.2] for IT2FCM. Figure 3 presents the updated 

clustering results. 

Figure 3(a) shows the output of the standard FCM method, 

which now partitions the CO concentration data into five 

distinct clusters. This finer granulation suggests the model has 

identified more nuanced concentration levels beyond a simple 

low-medium-high structure. 

Figures 3(b) and 3(c) depict the results for the IT2FCM 
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method, using the optimized lower and upper fuzziness 

parameters. Figure 3(b) (Lower Membership) and Figure 3(c) 

(Upper Membership) both illustrate the five-cluster structure. 

The subtle shifts in data point assignments and centroid 

positions between the lower and upper bounds demonstrate 

IT2FCM's capacity to robustly model the inherent uncertainty 

within the data, even with a more constrained fuzziness 

interval. This five-cluster partition forms the basis for the 

improved forecasting accuracy. 

 

 
(a) FCM clustering result 

 
(b) IT2FCM lower clustering result 

 
(c) IT2FCM upper clustering result 

 

Figure 3. IT2FCM clustering result 

 

To provide quantitative insights into the clustering results, 

Tables 1-7 present the membership degrees and centroid 

values for each method. With the optimal parameter settings, 

the data points were assigned to five clusters with varying 

degrees of membership in Table 1, while the corresponding 

cluster labels are listed in Table 2. The centroid values 

obtained from FCM are shown in Table 3, with centroids 

located approximately at 2623.99, 1306.40, 2119.22, 1678.21 

and 1096.26, respectively. These centroids reflect the 

grouping of low, medium, and high carbon monoxide 

concentrations. 

 

Table 1. FCM membership 

 
Data C1 C2 C3 C4 C5 

A1 0.00362 0.00116 0.99076 0.00372 0.00074 

A2 0.03113 0.06232 0.25980 0.61426 0.03248 

A3 0.00048 0.00363 0.00209 0.99238 0.00142 

A4 0.00530 0.06501 0.02057 0.88710 0.02202 

A5 0.00000 0.00000 0.00000 0.99999 0.00000 

A6 0.00009 0.00053 0.00041 0.99875 0.00022 

A7 0.00065 0.00027 0.99795 0.00095 0.00017 

A8 0.88003 0.01463 0.06835 0.02572 0.01128 

A9 0.94140 0.00470 0.04081 0.00966 0.00343 

A10 0.00507 0.02064 0.02779 0.93710 0.00940 

A11 0.00001 0.99934 0.00003 0.00016 0.00046 

A12 0.00046 0.03278 0.00105 0.00342 0.96229 

A13 0.00152 0.05126 0.00327 0.00924 0.93471 

A14 0.00093 0.03450 0.00202 0.00583 0.95672 

A15 0.00058 0.02305 0.00126 0.00370 0.97142 

A16 0.00049 0.03511 0.00112 0.00364 0.95965 

A17 0.00238 0.32985 0.00565 0.02023 0.64189 

A18 0.00001 0.00060 0.00003 0.00008 0.99929 

A19 0.00106 0.09093 0.00244 0.00819 0.89738 

A20 0.00009 0.99474 0.00022 0.00104 0.00391 

A21 0.01150 0.30030 0.03914 0.57205 0.07701 

A22 0.00356 0.00168 0.98758 0.00614 0.00104 

A23 0.57284 0.02276 0.33636 0.05200 0.01604 

 

Table 2. FCM assignment cluster 

 
Data Cluster Data Cluster Data Cluster 

A1 3 A9 1 A17 5 

A2 4 A10 4 A18 5 

A3 4 A11 2 A19 5 

A4 4 A12 5 A20 2 

A5 4 A13 5 A21 4 

A6 4 A14 5 A22 3 

A7 3 A15 5 A23 1 

A8 1 A16 5   

 

Table 3. FCM centroid value 

 
Cluster Centroid Value 

Cluster 1 2623.99 

Cluster 2 1306.40 

Cluster 3 2119.22 

Cluster 4 1678.21 

Cluster 5 1096.26 

 

For the IT2FCM method, both lower and upper membership 

degrees are presented in Tables 4 and 5. These tables highlight 

how the introduction of interval fuzziness allows the same data 

point to have slightly different degrees of membership under 

varying fuzziness assumptions. 

The lower and upper bound centroids in Table 6 

demonstrate how IT2FCM captures uncertainty: the centroids 

shift slightly depending on whether a conservative (lower) or 
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permissive (upper) fuzziness level is applied. This interval 

representation provides a richer characterization of the data 

structure, enhancing interpretability in environments with high 

uncertainty such as environmental pollution monitoring. 

 

Table 4. IT2FCM lower membership 

 
Data C1 C2 C3 C4 C5 

A1 0.0009 0.0001 0.9978 0.0002 0.0009 

A2 0.0168 0.0175 0.2346 0.0398 0.6913 

A3 0.0001 0.0003 0.0005 0.0009 0.9982 

A4 0.0016 0.0094 0.0086 0.0368 0.9436 

A5 0.0000 0.0000 0.0000 0.0000 1.0000 

A6 0.0000 0.0000 0.0001 0.0001 0.9998 

A7 0.0001 0.0000 0.9997 0.0000 0.0002 

A8 0.9377 0.0042 0.0403 0.0059 0.0119 

A9 0.9778 0.0008 0.0174 0.0012 0.0029 

A10 0.0014 0.0031 0.0119 0.0083 0.9753 

A11 0.0000 0.0000 0.0000 1.0000 0.0000 

A12 0.0001 0.9862 0.0002 0.0128 0.0008 

A13 0.0003 0.9691 0.0009 0.0266 0.0032 

A14 0.0002 0.9814 0.0005 0.0162 0.0018 

A15 0.0001 0.9888 0.0003 0.0098 0.0010 

A16 0.0001 0.9849 0.0002 0.0140 0.0008 

A17 0.0006 0.7037 0.0018 0.2849 0.0090 

A18 0.0000 0.9998 0.0000 0.0002 0.0000 

A19 0.0002 0.9473 0.0006 0.0495 0.0025 

A20 0.0000 0.0014 0.0000 0.9983 0.0003 

A21 0.0048 0.0521 0.0222 0.2892 0.6317 

A22 0.0009 0.0002 0.9968 0.0004 0.0018 

A23 0.6371 0.0070 0.3145 0.0109 0.0305 

 

Table 5. IT2FCM upper membership 

 
Data C1 C2 C3 C4 C5 

A1 0.00979 0.00369 0.00255 0.00968 0.97429 

A2 0.55258 0.08177 0.04763 0.04636 0.27167 

A3 0.97949 0.00898 0.00412 0.00168 0.00573 

A4 0.82295 0.09214 0.03759 0.01156 0.03576 

A5 0.99989 0.00004 0.00002 0.00001 0.00003 

A6 0.99523 0.00189 0.00091 0.00043 0.00155 

A7 0.00267 0.00094 0.00064 0.00196 0.99380 

A8 0.04361 0.02720 0.02192 0.80901 0.09826 

A9 0.01878 0.01029 0.00792 0.90083 0.06218 

A10 0.88515 0.03669 0.01912 0.01152 0.04752 

A11 0.00112 0.99572 0.00272 0.00013 0.00030 

A12 0.00893 0.05964 0.92639 0.00169 0.00335 

A13 0.01847 0.07777 0.89186 0.00412 0.00777 

A14 0.01265 0.05626 0.92309 0.00276 0.00524 

A15 0.00866 0.04022 0.94573 0.00185 0.00354 

A16 0.00936 0.06293 0.92243 0.00177 0.00351 

A17 0.03399 0.35579 0.59274 0.00573 0.01175 

A18 0.00026 0.00137 0.99822 0.00005 0.00010 

A19 0.01744 0.13187 0.84114 0.00318 0.00638 

A20 0.00255 0.98878 0.00764 0.00032 0.00071 

A21 0.52379 0.30191 0.09794 0.02025 0.05612 

A22 0.01337 0.00453 0.00305 0.00856 0.97048 

A23 0.07075 0.03546 0.02651 0.53382 0.33346 

 

Table 6. IT2FCM centroid value 

 

Data 
Centroid Value 

(Lower) 

Centroid Value 

(Upper) 

Cluster 1 2620.35 1678.09 

Cluster 2 1097.52 1304.74 

Cluster 3 2119.39 1095.10 

Cluster 4 1308.16 2621.20 

Cluster 5 1678.45 2118.26 

 

4.3 Prediction result 

 

The prediction process was carried out by assigning each 

data point to the nearest cluster centroid and using that 

centroid value as the forecast. For the IT2FCM model, 

predictions were obtained using both lower and upper 

fuzziness levels. To produce a single interpretable forecast 

from IT2FCM, this study used the average of the two 

centroids, this average value reflects the central tendency of 

the uncertainty band modeled by IT2FCM. 

Figure 4 compares the actual concentration data to the 

predicted values generated by FCM and IT2FCM (both lower 

and upper scenarios). The prediction curves closely follow the 

overall shape of the actual time series, with IT2FCM 

exhibiting improved alignment during regions of rapid 

fluctuation. 

 

 
 

Figure 4. FCM and IT2FCM comparation actual data 

 

 
 

Figure 5. FCM and IT2FCM next value prediction 

 

Figure 5 presents the next-step forecasts. The prediction 

from FCM was 2454.25, while IT2FCM produced a lower 

bound of 2374.18, an upper bound of 2464.13, and a selected 

average forecast of 2419.15. This average was used in 

subsequent comparisons for consistency. 

As shown in Table 7, the use of IT2FCM-Average results in 

a value that is well-centered between the uncertainty bounds, 

providing a more stable and realistic forecast than either bound 

alone. This approach is particularly useful in environmental 

applications where short-term fluctuations and sensor noise 

are expected. 

 

Table 7. MAPE and next value prediction 

 
Method MAPE (%) Next Value Prediction 

FCM 3.790 2623 

IT2FCM (Lower) 3.785 2620 

IT2FCM (Upper) 3.781 2621 

IT2FCM (Average) 3.783 2620 

 

The quantitative evaluation using Mean Absolute 

Percentage Error (MAPE) supports this strategy. IT2FCM 
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(Average) achieved a MAPE of 3.783%, which was lower than 

FCM (3.790%) and comparable to IT2FCM Higher (3.785%) 

and Upper (3.781%), as seen in the MAPE summary. These 

findings reinforce the use of the average value as a pragmatic 

balance between precision and stability. 

 

4.4 Performance comparison with statistical models 

 

To benchmark the effectiveness of the proposed fuzzy 

clustering-based prediction models, two widely-used 

statistical forecasting methods—ARIMA and Double 

Exponential Smoothing—were also evaluated. Their 

performance was compared with FCM and IT2FCM, 

(average) in terms of both prediction accuracy and next value 

estimation. Figure 6 illustrates the actual vs. predicted 

concentration data for all methods.  

Both FCM and IT2FCM closely follow the true data 

trajectory, with smoother and more stable prediction lines. In 

contrast, ARIMA and Double Exponential Smoothing tend to 

produce more erratic results, especially during abrupt changes 

in concentration levels. These statistical models either 

overreact to recent fluctuations or underrepresent rapid rises. 

 

 
 

Figure 6. Performance comparison with statistical models 

 

The performance metrics are summarized in the 

accompanying Table 8. The result is evident that IT2FCM 

(Average) outperforms all other methods in terms of accuracy, 

with a MAPE of 3.78%, significantly lower than ARIMA 

(13.07%) and Double Exponential Smoothing (13.75%). 

While FCM performs reasonably well, the added flexibility 

and uncertainty modeling of IT2FCM yield superior and more 

reliable predictions. 
 

Table 8. Performance comparison with statistical models 
 

Method MAPE (%) Next Value Prediction 

IT2FCM (Average) 3.78 2620 

ARIMA 13.07 2333 

Double Exp, Smoothing 13.75 2455 

 

 

5. DISCUSSION 
 

The results presented in the previous sections demonstrate 

that the proposed fuzzy clustering-based forecasting 

approach—especially the IT2FCM—offers notable 

advantages over conventional statistical models for short-term 

prediction of CO concentration levels. 

The first key finding is that IT2FCM consistently 

outperformed both FCM and baseline statistical methods 

(ARIMA, Exponential Smoothing) in terms of accuracy. This 

is evident from the MAPE, where the optimized IT2FCM 

(Average) model achieved a significantly lower MAPE of 

3.79%. This result is not just a marginal improvement but a 

substantial leap in accuracy, with a prediction error less than 

one-third of that produced by traditional models like ARIMA 

(13.07%) and Exponential Smoothing (13.75%). These 

improvements validate the hypothesis that fuzzy clustering 

methods can more effectively model environmental data, 

which is often noisy, overlapping, and uncertain [52, 53]. 

Secondly, the use of interval modeling in IT2FCM 

introduces flexibility by capturing a range of potential centroid 

rather than a single point estimate. This design aligns well with 

real-world air quality monitoring, where variability is 

common, due to sensor noise, atmospheric conditions, and 

temporal patterns. By averaging the lower and upper bounds 

of IT2FCM centroids, the model yields a prediction that is both 

stable and interpretable, bridging precision and caution—

essential in applications involving public health or 

environmental alerts [54]. 

A crucial contribution of this revised study is the inclusion 

of a sensitivity analysis, which addresses the parameter 

selection limitations of the initial approach. This analysis 

revealed that increasing the number of clusters from 3 to 5 

allows the model to capture more granular patterns in the CO 

concentration data, likely corresponding to more nuanced 

states of air quality (e.g., very low, low, medium, high, very 

high). Similarly, the optimal fuzziness interval of [1.8, 2.2] 

demonstrates that a more constrained, moderate uncertainty 

footprint yields better results for this specific dataset compared 

to wider intervals. This data-driven parameter tuning not only 

validates the chosen parameters but also enhances the 

robustness and credibility of the proposed forecasting model. 

A particularly insightful contribution is the use of the 

centroid-based prediction mechanism, which differs from 

traditional regression-based forecasting [55]. This lightweight 

mechanism avoids overfitting [56], ensures fast computation 

[57], and enables deployment in edge-computing scenarios 

such as IoT-based air quality monitoring stations [58]. 

A key limitation in the initial version of this study—the 

empirical selection of parameters—has now been directly 

addressed. By incorporating a systematic sensitivity analysis 

to optimize the number of clusters and fuzziness levels, the 

model's parameters are no longer based on heuristic choices 

but on a data-driven optimization process. This enhancement 

significantly strengthens the methodology's rigor. However, a 

remaining limitation is that the current study focuses solely on 

univariate prediction. Incorporating multivariate inputs (e.g., 

temperature, humidity, wind) could further enhance the 

model’s forecasting capabilities. 

In summary, the IT2FCM-based approach introduces a 

novel direction in environmental time-series prediction by 

integrating fuzzy uncertainty modeling, interpretability, and 

computational simplicity. It represents a promising tool for 

smart environmental monitoring systems and offers potential 

integration into early warning platforms. 

Future enhancements of the proposed IT2FCM model could 

include the use of multivariate input features, such as 

incorporating auxiliary environmental parameters (e.g., 

temperature, wind speed, humidity) to better capture the 

dynamic dependencies influencing pollutant concentration. 

Additionally, integrating adaptive clustering mechanisms—

such as using validity indices or data-driven cluster 

evolution—could allow the model to adjust the number of 

clusters in response to non-stationary changes in 

environmental patterns. These improvements could 

significantly increase the model’s predictive robustness and 

operational flexibility in dynamic IoT deployments. 
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6. CONCLUSION  

 

This study proposed a centroid-based forecasting approach 

for predicting ambient CO concentrations using FCM and 

IT2FCM clustering methods. The model was designed to 

handle uncertainty and overlapping patterns commonly found 

in environmental sensor data by leveraging fuzzy logic and 

interval modeling. 

After performing a sensitivity analysis to identify optimal 

parameters (c=5, m=[1.8, 2.2]), the experimental results 

demonstrated the profound superiority of the proposed 

approach. The optimized IT2FCM (Average) model achieved 

the lowest MAPE at just 3.78%. This result is not only a 

significant improvement over the standard FCM model 

(3.79%) but represents a different class of accuracy compared 

to the traditional statistical models, ARIMA (13.07%) and 

Double Exponential Smoothing (13.75%). The findings 

strongly confirm that a data-driven, optimized IT2FCM model 

offers a far more accurate and reliable method for forecasting 

in complex environmental scenarios. 

In future work to implement IT2‑FCM in microcontroller 

devices, measure execution time, memory usage, and power 

draw, and compare performance to ARIMA and DES models 

under identical conditions. Additionally, we will explore 

implementation optimizations — including memory-efficient 

representation and simplified fuzzification — to enable real-

time uncertainty-aware forecasting on resource-constrained 

hardware. In future work to implement IT2‑FCM in 

microcontroller devices, measure execution time, memory 

usage, and power draw, and compare performance to ARIMA 

and DES models under identical conditions. Additionally, we 

will explore implementation optimizations—including 

memory-efficient representation and simplified 

fuzzification—to enable real-time uncertainty-aware 

forecasting on resource-constrained hardware. 

Overall, the integration of IT2FCM clustering with a 

centroid-based prediction mechanism presents a promising, 

interpretable, and accurate approach to real-time 

environmental forecasting. 
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