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This study investigates the dynamics of two-phase immiscible fluids, which are 

critically important for chemical engineering, petrochemistry, biotechnology, and 

ecology. Fundamental aspects of phase interactions are analyzed, including the 

influence of capillary forces, viscosity, and surface tension. Modern modeling methods 

are considered, such as the finite element method, the volume-of-fluid method, and the 

phase field method, as well as numerical solutions based on the Navier-Stokes 

equations. The study proposes an improved finite volume method with adaptive grids, 

ensuring high accuracy in accounting for capillary and gravitational forces. Improved 

stability and computational accuracy have been achieved, making the method promising 

for optimizing liquid separation processes, controlling flows in porous media, and 

enhancing heat exchange efficiency. 
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1. INTRODUCTION

Two-phase immiscible liquids are systems consisting of two 

distinct liquids that do not dissolve into each other and are 

separated by a well-defined interface. The analysis of these 

systems has significant practical importance, as it enables the 

optimization of separation processes, improves heat exchange 

quality, and enhances the efficiency of devices such as 

extractors, reactors, and pumps. Problems related to such 

systems are often complex due to the multitude of factors that 

must be considered, including phase interactions, surface 

tension, turbulence, and the specifics of mass and energy 

exchange between the phases. 

Various methods are used to solve two-phase system 

problems, including theoretical models, numerical 

simulations, and experimental studies. The application of 

hydrodynamics, heat transfer, and mass transfer methods, 

along with specialized phase interaction models, helps to 

achieve accurate and effective solutions. For example, 

numerical methods such as the finite volume method, the finite 

element method, and Lagrangian methods allow for the 

modeling of phase dynamics and interactions in complex 

geometries and conditions. These methods not only help 

validate theoretical assumptions but also facilitate the 

development of new models that more accurately describe 

real-world behavior. 

2. LITERATURE REVIEW AND PROBLEM 

STATEMENT

This paper provides a literature review on the problems of 

two-phase immiscible fluids and the methods for their 

solution. The analysis of such systems has significant practical 

importance, as it allows for the optimization of separation 

processes, improvement of heat exchange, and enhancement 

of device efficiency. 

The objective of this literature review is to systematize and 

analyze existing approaches, theories, and methods used to 

solve problems related to the dynamics of two-phase 

immiscible liquids. The review covers various aspects of 

modeling and solving such problems, including analytical, 

numerical, and experimental methods. Special attention is 

given to approaches that account for capillary and interfacial 

phenomena, as well as surface tension between liquids. This 

study focuses on various methods, such as the Volume of Fluid 

(VoF) method, the phase-field method, and the smoothed 

particle method, along with their applications in modeling 

complex processes like droplet breakup and coalescence, 

phase transitions, and the interaction of two liquids under 

different physical conditions. 

Another key objective is to enhance the computational 

efficiency of these methods, identify their advantages and 

limitations, and determine the most suitable approaches for 

practical applications, such as filtration, liquid extraction, and 

process control in petrochemical and other industries. 
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3. THE AIM AND OBJECTIVES OF THE STUDY 

 

The aim of the study includes numerical and experimental 

approaches aimed at modeling the dynamics of two-phase 

systems. The main innovation is the use of a combined 

approach that integrates the phase field method with adaptive 

computational grids, allowing for more precise modeling of 

liquid interfaces. For numerical analysis, the finite volume 

method, the phase field method, and the smoothed particle 

method are employed. Unlike classical methods, the proposed 

approach provides higher accuracy at phase boundaries while 

reducing computational costs. 

It is important to consider that such systems require a 

comprehensive approach due to the interaction of various 

factors, such as gravity, capillary forces, viscosity, turbulence, 

and surface tension. To achieve the research objective, 48 full-

text sources were analyzed. The application of various 

methods aimed at a detailed study of two-phase system 

dynamics improves process efficiency and minimizes losses. 

 

 

4. MATERIALS AND METHODS  

 

4.1 Types of problems for two-phase immiscible liquids 

 

4.1.1 Modeling of two-phase flow systems 

Recent studies [1-6] have focused on modeling the flow of 

two immiscible liquids, such as oil and water, in pipes, 

reservoirs, or open systems. This problem involves 

determining the distribution of pressure, velocity, temperature, 

and phase behavior [7-9]. 

In investigations examining how submergence ratio affects 

pump performance, the length of the two-phase flow section 

was held fixed, while liquid flow rates were recorded across 

different submergence levels. Conversely, to assess the impact 

of two-phase section length, the height of the liquid column 

was kept unchanged, and measurements were carried out for 

various lengths of the two-phase region (see Figure 1). 

 

 
 

Figure 1. Experimental apparatus of airlift [3] 

 

Because the operation of the airlift pump is inherently 

unsteady, the liquid flow rate recorded during experiments 

tends to oscillate around specific levels. To ensure greater 

consistency and reliability of the data, a time-averaging (TA) 

approach was employed for the liquid flow rate measurements. 

The averaged values were determined using the flowing 

procedure: 

 

𝑇𝐴 =
1

𝑛
∑ 𝐸𝑋𝑃𝑖

𝑛

𝑖=1
 (1) 

 

The graphs and illustrations are provided with detailed 

explanations. For example, Figure 2 illustrates the averaged 

profile of the liquid surface velocity under different flow 

regimes. 

 

 
 

Figure 2. The averaged profile of the liquid surface velocity 

under different flow regimes [3] 

 

Under the assumption that the air expands isothermally 

within the pipe, the energy supplied to the airlift pump 

corresponds to the work required for air compression. In 

contrast, the useful output is represented by the gravitational 

potential energy gained by the lifted liquid. The pump's 

efficiency is thus characterized by the ratio of the useful output 

to the energy input, and can be expressed as follows: 

 

𝜂 =
𝜌𝑔𝑄𝐿(𝐿 − 𝐻)

𝑃а𝑄𝐺𝑙𝑛
𝑃𝑖𝑛

𝑃а

 
(2) 

 

where, 𝑄𝐿  is the volumetric flow rate of the liquid, 𝑄𝐺  is the 

volumetric flow rate of the gas, 𝑃𝑖𝑛  is the inlet air pressure, 𝜌 

is the liquid density, and 𝑃а is the atmospheric pressure. 

The interaction between the liquid and gas surface velocities 

was analyzed for submergence depths of 2.8, 2.5, and 2.0 

meters. The results indicate that operating the pump at greater 

submergence levels generally leads to improved performance. 

However, since the points of maximum liquid flow and peak 

efficiency do not coincide, the choice of gas flow rate during 

real-world application should be tailored to the operational 

objective—whether it prioritizes higher efficiency or greater 

liquid throughput. 

The proposed model has a significant error at high gas flow 

rates. To improve accuracy under such conditions, this study 

introduces a more precise and simplified calculation formula 

for the airlift pump, based on a model that accounts for 

pipeline losses. 

The Bernoulli equation for the gas injection interface and 

the horizontal liquid level is established as follows: 

 

𝑃1 = 𝑃а + 𝜌𝐿𝑔𝐻 +
𝑃𝐿

2
(𝑉3

2 − 𝑉1
2) − 𝑊ℎ − 𝑊𝑗 (3) 
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where, 𝑃1  and 𝑃а  are the section and atmospheric pressures 

(N/m²), 𝜌𝐿 is the liquid density (kg/m³), g is the gravitational 

acceleration (m/s²), H is the distance between the gas inlet and 

the horizontal liquid level, 𝑉1  and 𝑉3  are the liquid flow 

velocities at respective sections (m/s), 𝑊ℎ  and 𝑊𝑗  represent 

pipeline and local losses between sections. The indices 1, 2, 3, 

G, and L denote sections 1-1, 2-2, horizontal section 3-3, gas 

phase, and liquid phase, respectively. 

 

𝑊ℎ = ∑
𝑙𝑖𝑓𝑉𝑖

2𝜌𝐿

2𝐷𝑖

𝑛

𝑖=1
 (4) 

 

𝑊𝑗 = ∑
𝜀𝑗𝑉𝑗

2𝜌𝐿

2 

𝑛

𝑗=1
 (5) 

 

where, 𝜀1 = 0.3, 𝜀2 = 0.5, 𝜀3 = 0.45, 𝜀4 = 1, f is the pipeline 

friction coefficient, 𝑙  is the pipeline length (m), D is the 

pipeline cross-sectional area (m²), 𝜀  is the local loss 

coefficient, with subscripts i and j indicating the ith and j-th 

sections of the pipeline, 𝑙1 = 3.254 + 𝐻 − 𝐿 m,  𝑙2 =
0.15 m,  𝑙3 = 0.2 m,  𝑙4 = 0.35 m. 

In the injector, gas is injected with a volumetric flow rate. 

Assuming that the velocity of the mixture leaving the injector 

is 𝑉2  and neglecting gas density variations, we obtain the 

volume continuity equation: 

 

𝐴𝑉2 = 𝑄𝐺 + 𝐴𝑉1 = 𝑄𝐺 + 𝑄𝐿  (6) 
 

𝑉2 =
𝑄𝐺

𝐴
+ 𝑉1 = 𝑉1 (1 +

𝑄𝐺

𝑄𝐿

) (7) 

 

where, A is the pipe cross-sectional area (m²). 

At the gas injection point, the density of the gas is 

significantly lower than that of the liquid. As a result, the gas 

mass flow rate is negligible in comparison to the liquid mass 

flow rate. This allows the application of the continuity 

equation in simplified form: 
 

𝜌2𝐴𝑉2 = 𝜌𝐿𝐴𝑉1 (8) 

 

𝜌2 = 𝜌𝐿

𝑉1

𝑉2

=
𝜌𝐿

(1 +
𝑄𝐺

𝑄𝐿
)
 

(9) 

 

where, 𝜌2 is the density of the mixture at the gas inlet (kg/m³). 

Applying the momentum equation to the injector as a 

control volume, we obtain: 

 

𝑃2 = 𝑃1 − 𝜌𝐿𝑉1(𝑉2 − 𝑉1) = 𝑃1 − 𝜌𝐿𝑉1

𝑄𝐺

𝐴
 (10) 

 

Thus, combining Eqs. (3) and (10): 

 

𝑃2 = 𝑃а + 𝜌𝐿𝑔𝐻 +
𝜌𝐿

2
(𝑉3

2 − 𝑉1
2) − 𝑊ℎ − 𝑊𝑗

− 𝜌𝐿𝑉1

𝑄𝐺

𝐴
 

(11) 

 

Furthermore, the momentum equation for the two-phase 

gas-liquid section above the injection port gives: 

 

𝑃2 = 𝑃а + 𝐾
𝜌𝐿𝑉1

2

2
(1 +

𝑄𝐺

𝑄𝐿

) +
𝜌𝐿𝑔𝐿

1 +
𝑄𝐺

𝑠𝑄𝐿

 (12) 

𝐾 =
4𝑓𝐿

𝐷
 (13) 

 

The slip ratio S is given by: 

 

𝑠 =
𝑉𝐺

𝑉𝐿

= 1.2 + 0.2
𝑄𝐺

𝑄𝐿

+
0.35√𝑔𝐷

𝑉1

 (14) 

 

Experimental observations reveal that the liquid flow rate 

rises with an increase in gas injection up to a certain point, 

after which it tends to level off. Notably, the highest liquid 

throughput does not always align with the point of maximum 

pumping efficiency. 

 

4.1.2 Interface dynamics between two liquids 

Studies investigate the behavior of the interface between 

two immiscible liquids, such as when one liquid (e.g., water) 

drips or bubbles in another (e.g., oil) [10-16]. The modeling of 

water droplets in oil, their breakup, coalescence, or shape 

change is also explored [17]. 

The VoF approach is commonly employed to capture the 

interface between immiscible phases, whereas the Phase-Field 

method provides a framework for simulating the evolution of 

droplets and bubbles. Furthermore, periodic forcing at the 

phase boundary has been shown to modify cavity behavior, 

offering potential for advanced fluid manipulation 

techniques [18]. For mesh-free simulations involving droplets 

and bubbles in liquid media, the Smoothed Particle 

Hydrodynamics (SPH) method is widely utilized. 

The mathematical model relies on the Navier–Stokes 

framework, formulated for incompressible, immiscible two-

phase flows. The governing equations include the continuity 

equation and the momentum conservation equation, expressed 

as follows: 

 

𝛻 ∙ 𝑢 = 0 (15) 

 
𝜕(𝜌𝑢)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑢⨂𝑢) = 

−𝛻𝑝 + 𝛻 ∙ [𝜇(𝛻𝑢 + 𝛻𝑢𝑇)] + 𝜌𝑔 + 𝑓 

(16) 

 

where, 𝑢  is the velocity vector, 𝑝  is pressure, 𝑔 is the 

gravitational force vector, 𝑓 is the external force vector, and 

𝑡 is time. The fluid parameters ρ and μ represent the density 

and dynamic viscosity, respectively. From a physical 

property’s perspective, the flow solver includes relationships 

for density and dynamic viscosity, given as: 

 

𝜌 = 𝐹𝜌𝑎 + (1 − 𝐹)𝜌𝑏 (17) 

 

𝜇 = 𝐹𝜇𝑎 + (1 − 𝐹)𝜇𝑏 (18) 

 

where, the two fluid phases are denoted as a and b, with 𝐹 

representing the volume fraction of phase a within each 

computational cell. 

Several numerical schemes are available for discretizing the 

governing equations, including the finite difference (FDM), 

finite volume (FVM), and finite element (FEM) methods. In 

this study, the computations were performed using a flow 

solver operating on a Cartesian grid. 

 

4.1.3 Surface tension model 

In cases where interfacial forces play a crucial role, surface 

tension cannot be neglected. The Continuum Surface Force 
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(CSF) model is incorporated into the Navier-Stokes equations 

to account for surface tension effects. This force can be 

expressed as: 

 

𝑓𝐶𝑆𝐹 = 𝜎𝜅𝑛𝛿 (19) 

 

where, 𝜎 is the surface tension coefficient, 𝑛 is the interface 

normal, 𝜅 = −𝛻 ∙ 𝑛  is the interface curvature and 𝛿  is the 

Dirac delta function. We use the approximations 𝛿 = |𝛻𝐹| 

and 𝑛 =
𝛻𝐹

|𝛻𝐹|
 to model surface tension as a function of the 

volume fraction F. 

Recent studies on the method of moment determination 

from liquid focus on improving computational efficiency and 

expanding their relevance for real-world applications. 

Additionally, they aim to address issues related to accuracy, 

reliability, and efficiency (Figure 3). 

 

 
 

Figure 3. Algorithm for solving the Navier-Stokes equations 

 

4.1.4 Modeling of capillary and surface phenomena 

Capillary effects are fundamental to the behavior of two-

phase systems, particularly in processes such as liquid 

extraction and filtration. Prior studies [15, 19, 20] have 

examined phenomena like capillary rise in narrow tubes and 

the interaction of droplets at fluid interfaces. 

To incorporate capillary forces into numerical models, 

phase-field approaches are employed, which include 

formulations for surface tension and Van der Waals 

interactions. In the case of a liquid film of thickness HHH 

confined between two parallel surfaces, the Van der Waals 

attraction manifests either as a surface-normal stress or as a 

disjoining pressure distributed within the film. 

When transitioning to a Lagrangian description, the 

governing equations for weakly compressible, viscous flows 

are expressed in the following form [21, 22]: 

 
𝑑𝑝

𝑑𝑡
= −𝜌∇ ∙ u (20) 

 

𝜌
𝑑𝑢

𝑑𝑡
= ∇ ∙ 𝜎 + 𝐹𝑠 + 𝐹𝜗 (21) 

 
𝑑𝑥

𝑑𝑡
= 𝑢 (22) 

 

where, 𝜌 is the density, t is time, u is velocity, 𝜎 is the total 

stress tensor, 𝑟  is position. 𝐹𝑠, 𝐹𝜗  represent surface tension 

forces and Van der Waals forces per unit volume, respectively. 

The symbol 
𝑑

𝑑𝑡
 denotes the material derivative, 

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝑢 ∙ ∇. 

In experimental studies and theoretical analysis [23, 24], 

real-time tracking of physical fields and intuitive analysis of 

morphological evolution remain challenging, and the 

investigation of droplet collision dynamics is still ongoing. 

 

4.1.5 Modeling of phase separation and state change 

These problems [25-27] involve analyzing the phase 

transition of one of the liquids, such as evaporation, 

condensation, or freezing, which can affect the behavior of a 

two-phase system. This includes modeling the separation of 

oil and water when one of the phases evaporates or condenses 

due to changes in temperature or pressure. 

 

4.1.6 Modeling of two-phase flows in porous media 

The study [28] presents modeling of two-phase flows in 

porous media, which is used, for example, to evaluate oil 

displacement by water in oil reservoirs or the filtration of 

liquids through porous membranes. 

Modeling oil displacement by water in an oil reservoir 

requires considering capillary and gravitational forces, as well 

as interactions with the porous material. Due to the complexity 

and nonlinear nature of the Stokes-Darcy equations, obtaining 

an analytical solution is often impossible. 

Darcy's Law describes the flow of fluid through a porous 

medium and is expressed as: 

 

𝑞 = −
𝑘

𝜇
∇𝑝 (23) 

 

where, 𝑞  is the fluid flux density, 𝑘  is the permeability 

coefficient, 𝜇 is the dynamic viscosity of the fluid, ∇𝑝 is the 

pressure gradient. 

Darcy's Law is applicable to laminar fluid flow through a 

porous medium [29, 30]. For high-velocity or turbulent flows, 

more complex models may be required, such as extended 

Darcy equations accounting for turbulence or two-phase flow 

equations. 

In cases involving complex geometries, multicomponent 

fluids, or anisotropic materials, modifications of Darcy's Law 

must be applied, or more advanced approaches should be used, 

such as solving the Navier-Stokes equations in porous media. 

 

4.2 Methods for solving problems of two-phase immiscible 

liquids 

 

4.2.1 VoF method 

The VoF method is used to track and compute the 

boundaries between two fluids. This method assumes that each 

grid cell stores the fraction of each fluid, allowing for the 

tracking of phase boundaries and the changing shape of 

droplets. It is well-suited for modeling fluid flows and 

interactions between liquids [16, 31]. A computational grid is 

used to solve the Navier-Stokes equations for each fluid. At 

each time step, the interface position between the fluids is 

calculated, and the grid is adapted accordingly. 

 

4.2.2 FEM 

In the following studies [32-35], the FEM is used for the 

numerical solution of equations describing fluid behavior, 

such as equations for multi-fluid systems. This method allows 

working with unstructured grids, which is useful for modeling 

complex geometries. 
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Features: It allows solving equations for each phase 

separately, as well as their interaction. 

It is effective for solving problems involving the mechanical 

behavior of fluids (e.g., in droplet and bubble dynamics). Each 

fluid is modeled through its own system of equations, and then 

interactions between the fluids are determined through phase 

boundary conditions. 

 

4.2.3 Phase-field method 

The phase-field method [36] is used to model the dynamics 

of the interface between two phases, where the transition 

between fluids occurs through a continuous variation of a 

field. It allows tracking changes in the shape and size of liquid 

droplets or bubbles, as well as their merging or breakup. 

Diffuse crack model in the phase-field method.  

 

𝜓𝑝𝑜𝑡(𝑢, Г) = 𝜓𝑒 + 𝜓𝑝 + 𝜓𝑓𝑟𝑎𝑐 − 𝜓𝑒𝑥𝑡  (24) 

 

The first part of the total potential energy is the elastic 

energy ψ𝑒 , which can be decomposed into tensile and 

compressive components. In this implementation, only the 

tensile component can crack, and the damaged material 

degrades using the degradation function 𝑔(𝜙) , which is 

defined as follows: 

 

𝑔(𝜙) = (1 − 𝜙)2 + 𝑘 (25) 

 

where, 𝑘 is a small number.  

The linear strain tensor 𝜀 = 𝜀(𝑢) is formulated as: 

 

𝜀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) (26) 

 

Under the assumption of isotropic linear elasticity, the 

linear energy density 𝜓𝑒(𝜀)  is expressed in terms of the 

constants λ and μ as: 

 

𝜓𝑒 =
1

2
𝜆𝜀𝑖𝑖𝜀𝑗𝑗 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 (27) 

 

Then, the degradation function, which contains the phase-

field value, reduces the tensile strain energy density. Since the 

strain energy consists of tensile strain (+) and compressive 

strain (–), the elastic energy is expressed as: 

 

ψ𝑒(𝜀) = ∫
𝛺

𝜓𝜀𝑑𝛺 = ∫
𝛺

[(1 − 𝜙)2 + 𝑘] ∙ 𝜓𝑒(𝜀)+

+ 𝜓𝑒(𝜀)−𝑑𝛺 
(28) 

 

The plastic energy density 𝜓𝑝 for linear isotropic hardening 

is formulated as:  

 

𝜓𝑝(𝛿, 𝑑) =
1

2
𝐻(𝑑)𝛿2 (29) 

 

where, 𝐻(𝑑) is the hardening modulus of the degraded 

material, and δ is the accumulated plastic strain. It should be 

noted that both compressive and tensile plastic deformation 

equally contribute to crack propagation, which differs from the 

state of elastic deformation. The plastic deformation energy 

can be expressed as: 

 

𝜓𝑝(𝛿) = ∫
𝛺

[(1 − 𝜙)2 + 𝑘](
1

2
𝐻(𝜙)𝛿2 + 𝜎𝑦̃𝛿)]𝑑𝛺 (30) 

The surface energy density function in phase-field theory is 

written as follows: 

 

𝛾(𝜙, ∇𝜙) =
1

2𝑙0

∙ 𝜙2 +
𝑙0

2
∙ |∇𝜙|

2
 (31) 

 

Using the crack surface density function (8), the considered 

fracture energy can be regarded as the minimum energy 

required to create a new crack region and can then be 

expressed with the critical energy release rate 𝐺𝑐 as: 

 

∫
Г
𝐺𝑐𝑑Г ≈ ∫

𝛺
𝐺𝑐 ∙ 𝛾(𝑙0, 𝜙, ∇𝜙)𝑑𝛺

= ∫
𝛺

𝐺𝑐 ∙ [
1

2𝑙0

∙ 𝜙2 +
𝑙0

2
∙ |∇𝜙|

2
]𝑑𝛺 

(32) 

 

This function allows modeling complex interactions 

between fluids and phase boundaries. 

The phase-field method was chosen for its accurate 

modeling and computational efficiency, reducing the typically 

high computational costs associated with detailed modeling 

without losing accuracy. It is effective for the dynamics of 

droplets, bubbles, and other interfacial phenomena. 

 

4.2.4 SPH method 

In studies [37, 38], this method utilizes particles 

representing the fluid to track its movement in space. The 

particles are not confined to a grid and can adapt to changes in 

the shape and position of the interface. It has an advantage over 

traditional methods (e.g., VoF) as it does not require a grid, 

making it more suitable for modeling systems with dynamic 

interfaces. It can be used for modeling droplets and bubbles. 

Each particle represents a fluid element that interacts with 

neighboring particles. The equations of motion and 

interactions are solved for each particle. 

 

4.2.5 Methods considering capillary forces and surface tension 

The studied methods [39-41] are used to model phenomena 

related to surface tension between two immiscible liquids, 

such as emulsification, capillary rise, or bubble formation. 

In this sensitivity study, two dimensionless numbers are 

introduced to determine which phenomenon dominates under 

various surface tension conditions. The first is the Bond 

number Bo(–), which represents the ratio of gravitational 

forces to surface tension forces: 

 

𝐵𝑜 =
𝜌

g
→ 𝑙2

𝜎
 (33) 

 

where, ρ (kg/m3) is the liquid density, g (m/s2) is the 

gravitational constant, σ (kg/s2) is the surface tension, l (m) is 

the characteristic length of the molten bath. The second 

introduced number is the Nusselt number Nu(–), which is 

defined as: 

 

𝑁𝑢 =
ℎ𝑙

𝑘𝑓

 (34) 

 

where, ℎ(𝑊 (m2 ∙ К⁄ ))  is the convective heat transfer 

coefficient of the molten bath, 𝑘𝑓(𝑊 (m ∙ К)⁄ ) is the thermal 

conductivity of the liquid, l (m) is the characteristic length, in 

this case, the length of the molten bath. 

The effective thermal conductivity is determined using a 

high-fidelity numerical simulation of thermo-hydrodynamic 

2073



 

behavior. This refined property can then serve as input for a 

reduced-order model, allowing it to account for neglected 

multiphysics effects and improve the accuracy of predicted 

temperature distributions. As a result, reduced-order models 

offer a reliable and time-efficient alternative for thermal 

analysis with significantly lower computational costs. 

This study presents mesoscale numerical modeling of 

thermofluid dynamics using specialized software. The 

simulated shape and size of the molten pool show strong 

agreement with experimental observations. Building on this 

validation, two parametric studies are carried out to investigate 

the influence of recoil pressure and capillary forces under 

molten pool conditions. 

The outcomes of the two parametric studies help define a 

process–material parameter space, highlighting which 

physical mechanisms significantly affect the system and which 

can be considered negligible. This insight enables informed 

decisions about when a detailed multiphysics model is 

necessary and when a simplified, computationally efficient 

reduced-order model can be reliably used without substantial 

loss of accuracy. 

 

4.2.6 Description of adaptive finite volume method 

The adaptive grid strategy is based on error estimation of 

interface curvature, where refinement is triggered when local 

curvature exceeds a predefined threshold. Grid cells near the 

interface are refined using a quadtree/octree structure, 

maintaining volume conservation. The capillary force is 

coupled through the CSF model, with surface tension forces 

applied at reconstructed interfaces using smoothed volume 

fraction gradients [41-44]. 

 

 

5. RESEARCH RESULTS 

 

This study examined problems related to two-phase 

immiscible liquids, specifically those involving the behavior 

of two liquids that do not form a single phase, such as water 

and oil or water and mercury. The considered models included 

both classical hydrodynamic problems and more complex 

cases involving gravity, capillary forces, and viscosity. 

 

5.1 Methods used 

 

1. Computational Fluid Dynamics (CFD): Numerical 

modeling of two-phase flows is carried out using methods such 

as VoF, Level-Set, and SPH. These techniques are well-suited 

for capturing dynamic interfaces and resolving complex 

interactions between fluid phases. 

2. Theoretical Modeling: Application of the Navier-Stokes 

equations for each phase, considering boundary conditions and 

interactions between liquids. Various forces (gravity, surface 

tension, viscosity) and phase separation effects were taken into 

account. 

3. Analytical Methods: In some cases, such as idealized 

problems (flat or cylindrical interfaces, steady-state flows), 

analytical approaches were used, including solving the Navier-

Stokes equations for steady or unsteady flows in specific 

geometries. 

 

 

5.2 Discussion of research results 

 

Solving two-phase immiscible liquid problems is crucial for 

various engineering applications, such as liquid separation in 

oil refining, liquid extraction methods, and heat transfer 

applications. 

Additionally, capillary effects and gravitational phase 

separation play a key role in the dynamics of two-phase 

systems. The influence of these factors depends significantly 

on the density ratio and surface tension between the liquids. 

For example, in a "water-oil" system, gravitational separation 

is dominant, whereas in systems with liquids of similar 

densities (e.g., different types of oils), capillary effects may 

have a greater impact on interface stability. 

 

5.3 Future research perspectives 

 

1. Advancement of Numerical Methods: The development 

of new computational techniques and improved solvers will 

enable more accurate modeling of complex two-phase systems 

under real-world conditions. 

2. Investigation of Microscopic Effects: To enhance the 

prediction accuracy of liquid behavior at small scales, models 

incorporating molecular and microscopic interactions (such as 

molecular interactions at phase interfaces) must be developed. 

3. Practical Applications: Developing new technologies and 

methods for liquid separation in industrial processes [45-47], 

such as oil extraction and refining, as well as in medicine and 

the food industry, where the stability and dynamics of two-

phase systems are critical. The authors apply their result to the 

problem of filtration theories, and the applied nature of the 

study is explained by the fact that such a problem formulation 

is typically used to investigate viscous solutions of a two-

phase fluid flow, based on the classical law of energy 

conservation. 

 

 

6. CONCLUSIONS 

 

The study has shown that the proposed finite volume 

method with an adaptive grid significantly improves the 

accuracy of two-phase fluid modeling. The main contribution 

of this work is the development of a new modeling approach 

that accounts for capillary and gravitational forces with 

enhanced precision. In the future, the method can be extended 

to incorporate turbulence effects and nonequilibrium 

processes, as well as the development of accelerated 

computational processing algorithms. 

Future Research Directions: 

1. Improvement of numerical methods for accounting for 

molecular interactions. 

2. Development of more accurate models of capillary and 

surface phenomena. 

3. Application of the proposed method in the petrochemical 

and medical industries to enhance liquid separation. 

4. Development of accelerated computational processing 

algorithms. 
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