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Conjugate gradient techniques are iterative algorithms used to solve unconstrained 

optimization problems. Hybrid techniques, which employ the conjugate gradient 

technique, are a branch of these algorithms. We apply the maximum mathematical 

function to group the essential quantities and determine the associated new conjugate 

gradient (CG) parameter that produces homogeneous and mixed and spectral gradient 

algorithms. The newly created parameter has a numerator containing the most important 

values from the investigation and a denominator with the most important quantities. 

Furthermore, using precise inspection operations, the conjugate hybrid gradient 

technique meets global convergence requirements. Numerical tests on a variety of test 

functions show that the proposed method has better convergence properties and is more 

efficient at computing. The parameters 𝛽𝑘
𝑁 and 𝜃𝑘

𝑁 determine the new direction. These

algorithms can yield favourable ratios in particular scenarios, which is an advantage. 

Globally convergent functions are defined as convex functions that exhibit uniform 

genericity. We have shown numerical data that compare our newly proposed CG 

algorithms with standard algorithms to illustrate the efficacy of our approach. The 

results were obtained using the parameters 𝛽𝑘
𝑁 and 𝜃𝑘

𝑁.
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1. INTRODUCTION

Consider these unconstrained optimization problems [1]: 

𝑚𝑖𝑛 𝑓 (𝑥), 𝑥 ∈ 𝑅𝑛 (1) 

The function 𝑓 is a mapping from the 𝑛 −dimensional real 

numbers to the real numbers. The gradient of function 𝑓 at 

point 𝑥  is a continuous and differentiable function that 

represents the set of real numbers 𝑅.  In the subject of 

mathematics, there are three main groups of solutions: exact, 

approximate, and numerical approaches. Several numerical 

techniques can be employed to solve Eq. (1), including the 

Newton method, the conjugate gradient method, the steepest 

descent method, and the quasi-Newton method. The conjugate 

gradient method is indispensable, especially for problems of 

significant magnitude, owing to its straightforwardness and 

little memory use. The conjugate gradient approach is 

extremely efficient. The numerical type was categorized using 

conjugate gradient techniques, alternatively, one of its 

enhancements. The bracketing method entails commencing 

with an initial estimate 𝑥0 and subsequently iteratively

approaching a solution for Eq. (1) by decreasing until we reach 

an iteration 𝑥𝑛 . At this juncture, we initially calculate the

objective function 𝑓(𝑥)  and proceed to calculate it for 

following iterations 𝑥1, 𝑥2, 𝑥3, 𝑥4 ,𝑥5, ... and so on based on

Eq. (2). The development of a non-linear conjugate gradient 

method often entails an iterative procedure with the goal of 

attaining the optimal solution [2]. 

𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘𝑝𝑘 (2) 

𝜆𝑘  the step-length is typically determined by doing a

sequence of line searches proses. The step length 𝑥𝑘 can be

chosen using the Wolfe, Goldstein, or Armijo criterion to 

provide a sufficient reduction in the function value without too 

short steps. The direction 𝑝𝑘 is established when two terms are

present [3]. 

𝑝𝑘+1 = {
−𝑔𝑘+1   if    𝑘 = 0,
−𝑔𝑘+1 + 𝛽𝑘𝑝𝑘 ,        if    𝑘 > 0,  

(3) 

Further, for the three-term conjugate gradient (TTCG), 

Andrei [4] stated that technique enables the use of generic 

forms. 

𝑝𝑘+1 = {
−𝑔𝑘+1  𝑖𝑓   𝑘 = 0,
−𝑔𝑘+1 + 𝑎𝑠𝑘 − 𝑏𝑦𝑘  𝑖𝑓   𝑘 > 0, 

(4) 

Methods yield distinct formulas both in practical and 

analytical contexts are based on the selection of the conjugate 

parameter. The most renowned among them are: 
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Table 1. Conjugacy parameters for slandered conjugate 

gradients 
 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

 [5] 𝛽𝑘
𝐶𝐷 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

−𝑝𝑘
𝑇𝑔𝑘

 [6] 𝛽𝑘
𝐵𝐴1 =

𝑦𝑘
𝑇𝑦𝑘

−𝑝𝑘
𝑇𝑔𝑘

 [7] 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

 [8] 𝛽𝑘
𝐿𝑆 =

𝑔𝑘+1
𝑇 𝑔𝑘

−𝑝𝑘
𝑇𝑔𝑘

 [9] 𝛽𝑘
𝐵𝐴2 =

𝑦𝑘
𝑇𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

 [7] 

𝛽𝑘
𝑃𝑅 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

 [10] 𝛽𝑘
𝐷𝑌 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑝𝑘
𝑇𝑦𝑘

 [11] 𝛽𝑘
𝐵𝐴3 =

𝑦𝑘
𝑇𝑦𝑘

𝑝𝑘
𝑇𝑦𝑘

 [7] 

 

In this context, where ‖.‖ called the Euclidean norm, and 

𝑔𝑘+1  given for 𝑔(𝑥𝑘+1), while 𝑦𝑘 = 𝛻𝑓𝑘+1 − 𝛻𝑓𝑘  represents 

vectors, It is imperative to guarantee that the function value 

decreases in a manner that is appropriate without an 

insufficient number of repetitions. To determine the step 

length 𝜆𝑘 , one can use commonly used criteria such as the 

Wolfe, Goldstein, or Armijo conditions. When analyzing the 

convergence of the CG technique in theory, it is typical to 

employ an inexact line search (ILS) strategy, such as the strong 

Wolfe conditions (SWC), to determine the value of 𝜆𝑘  that 

meets the specified criteria, as explained in reference [12]. 

The step length 𝜆𝑘 can be determined using different line 

search methods, including exact line search and inexact line 

search. The exact line search formula is defined as follows: 
 

𝑓(𝑥𝑘 + 𝜆𝑘𝑝𝑘) = 𝑙𝑖𝑚
𝜆≥0

𝑓(𝑥𝑘 + 𝜆𝑘𝑝𝑘) (5) 

 

When dealing with an uncontrolled search line, it is 

imperative to adjust the suitable step size to guarantee a 

decrease following the given criteria: 
 

𝑓(𝑥𝑘 + 𝜆𝑘𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝜆𝑘𝑔𝑘
𝑇𝑝𝑘 ,    0 ≤ 𝛿 ≤

1

2
, 

|𝑝𝑘
𝑇𝑔(𝑥𝑘 + 𝜆𝑘𝑝𝑘)| ≤ −𝜎𝑝𝑘

𝑇𝑔𝑘 ,    𝛿 ≤ 𝜎 ≤ 1 

(6) 

 

Recently, certain academics have introduced novel 

approaches and updated methodologies, as indicated by 

references [8-14]. In the following sections, we will 

thoroughly analyze the provided formula, demonstrate its 

diminishing property, and provide significant insights into its 

convergence. 
 

 

2. BACKGROUND FOR ORIGINAL CG 
 

The Fletcher-Reeves (FR) and Liu-Storey (LS) conjugate 

gradient methods are two specific adaptations of the conjugate 

gradient algorithm that are employed in the context of 

unconstrained optimization. Although they have a common 

foundation, they vary in the method used to compute the 

conjugate direction parameter 𝛽𝑘 . Here is a quantitative 

comparison of the two methods: 

Firstly, the general conjugate gradient (GCG) Algorithm 

updates the solution vector 𝑥𝑘  and search direction 𝑝𝑘 

iteratively according to the following procedure: 
 

Initialization 

     𝑥0 =initial guess, 𝑑0 = −𝛻𝑓(𝑥0), that when 𝑘 = 0 

Iteration  

   For      𝑘 = 1,2,3, … 

             𝑥𝑘 = 𝑥𝑘−1 + 𝜆𝑘−1𝑝𝑘−1 

where, 𝛼𝑘 is chosen to minimize 𝑓(𝑥𝑘−1 + 𝜆𝑘𝑝𝑘) 

         Then the Direction 𝑝𝑘 

                      𝑝𝑘 =  −𝛻𝑓(𝑥𝑘) + 𝛽𝑘𝑝𝑘 

                     𝛻𝑓(𝑥𝑘) = 𝛻𝑓(𝑥𝑘−1 + 𝛼𝑘−1𝑝𝑘−1) 

                     𝛽𝑘=(varies between methods types) 

The FR Method: 

The parameter 𝛽𝑘  in the FR technique is calculated as 

follows: 

 

𝛽𝑘 =
‖𝛻𝑓(𝑥𝑘)‖2

‖𝛻𝑓(𝑥𝑘−1)‖2
 (7) 

 

The LS Method: 

The parameter 𝛽𝑘  in the FR technique is calculated as 

follows: 

 

𝛽𝑘 = −
𝛻𝑓(𝑥𝑘)𝑇(𝛻𝑓(𝑥𝑘) − 𝛻𝑓(𝑥𝑘−1))

𝑑𝑘
𝑇𝑔𝑘

 (8) 

 

 

3. NEW CG DIRECTION BY RETAIL 

HYBRIDIZATION 

 

Recent research has concentrated on improving the 

conventional conjugate gradient method, as illustrated in 

Table 1, by integrating factors inside the methodology. We 

have created a range of hybrid algorithms that exploit the 

advantages of classical conjugate gradient techniques. We 

investigated multiple hybrid techniques to develop 

computationally efficient conjugate gradient methods with 

excellent convergence properties. The performance of hybrid 

CG surpasses that of ordinary conjugated gradient algorithms 

[14, 15]. Malik et al. [13] have recently devised an innovative 

approach utilizing a formula. The coefficient is defined as 

follows. 

Several types of hybrids conjugate gradient methods have 

been established in the literature. The most prevalent hybrid 

conjugates gradient methods encompass the Touati-Ahmed 

and Storey (TS) technique [14], the Hu and Storey (HuS) 

technique [9], the Gilbert and Nocedal (GN) technique [3], the 

Dai and Yuan (hDY and LS-CD) technique [11], the Li and 

Zhao (P-W) technique [16], and the Hybrid-Jinbao [13], Han 

and Jiang (HJHJ) approach [15]. 

The proposed hybrid parameter 𝛽𝑁 is of the minimax type. 

It is completely different from the parameters proposed in this 

research line, as it includes the four most important and 

famous basic formulas in the field of conjugate gradient. 

Furthermore, it benefits from hybrid algorithms' advantages 

and excellent practical performance. The parameter 𝛽𝑁 is 

derived by combining the numerator and denominator terms 

from the FR and LS methods. Specifically, we use the 

maximum function to select the most significant terms, 

ensuring robustness and efficiency, by combining multiple 

parts of the regular coupled gradient operator. 

 

𝛽𝑁 =
𝑚𝑎𝑥{‖𝑔𝑘+1‖2

2, 𝑔𝑘+1
𝑇 𝑦𝑘}

𝑚𝑎𝑥 {‖𝑔𝑘‖2
2, − 𝑔𝑘

𝑇𝑑𝑘}
 (9) 

 

where, ‖𝑔𝑘+1‖2
2, 𝑔𝑘+1

𝑇 𝑦𝑘  are numerator of the formulas FR 

and LS, respectively. Also ‖𝑔𝑘‖2
2  and −𝑔𝑘

𝑇𝑑𝑘  represent the 

denominator of the formulas FR and LS, respectively. 

 

𝑝𝑘+1
𝑁𝑒𝑤 = {

−𝑔𝑘+1                        if    𝑘 = 0,

−𝑔𝑘+1 + 𝛽𝑘+1 
𝑁 𝑝𝑘 ,        if    𝑘 > 0,

 (10) 

 

We also want to enhance the trend by incorporating a 

regularization parameter, 𝜃𝑘 , into the derivative 𝑔𝑘 . We 
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provide our approach utilizing an equation analogous to the 

one provided above, incorporating newly computed values for 

𝛽𝑘 and an extra spectral parameter 𝜃𝑘. Beginning with Eq. (9), 

we integrate the equation for the Bergin and Martinez spectral 

trend corresponding to the alteration defined in Eq. (11). 

 

𝑝𝑘+1
𝑁𝑒𝑤 = {

−𝑔𝑘+1                          if    𝑘 = 0,
−𝜃𝑘𝑔𝑘+1 + 𝛽𝑘+1 𝑝𝑘 ,        if    𝑘 > 0,

 (11) 

 

Moreover, the spectral search direction may expedite the 

swift decline towards the ideal point. The main difference 

between standard and spectral conjugate gradient methods lies 

in the computation of the search direction  𝑝𝑘+1  (11). The 

standard conjugate gradient approach determines the search 

direction by applying formula Eq. (10), while the spectral 

conjugate gradient method determines the search direction by 

scaling using Eq. (11).  

In regards to the decision to select a particular value for the 

parameter 𝜃𝑘 in the proposed direction. The SCD technique, 

which is also proposed by Zhang and Zhou [17], is a spectral 

conjugate gradient method. Using the conjugate gradient 

coefficient (𝛽) and spectral gradient parameter (𝜃𝑘), the SCD 

method is executed as follows: 

𝛽 = 𝛽𝑘+1
𝐹𝑅 , 𝜃𝑘+1 = 1 + 𝛽𝑘+1

𝐹𝑅 
𝑝𝑘

𝑇𝑔𝑘

‖𝑔𝑘‖2
 (12) 

 

The direction's final form is provided as determined by new 

parameters: 
 

𝑝𝑘+1 = {
−𝑔𝑘+1                        if    𝑘 = 0,

−𝜃𝑘+1 
𝑁 𝑔𝑘+1 + 𝛽𝑘+1 

𝑁 𝑝𝑘 ,        if    𝑘 > 0,
 (13) 

 

Denoting the conjugate parameter 𝛽𝑘
𝑁 in Eq. (9) and spectral 

scaling for the gradient 𝜃𝑘
𝑁 as follows as Eq. (12). 

 

𝜃𝑘 = 1 + 𝛽𝑘
𝑁 

𝑝𝑘
𝑇𝑔𝑘

‖𝑔𝑘‖2
 (14) 

 

Our proposed formulation merges the FR and LS formulas, 

in addition to the PR and CD formulas, along with their 

spectral components. Considering the maximum function, 

there are two alternatives in the numerator and two alternatives 

in the denominator, so the new parameter for the four specific 

circumstances reduces from the fundamental parameters as 

follows in Table 2: 

 

Table 2. The reduced possibilities possible from our method of hybridization 

 

If the Numerator is If the Denominator is 𝜷𝑵 

𝒎𝒂𝒙{‖𝒈𝒌+𝟏‖𝟐
𝟐, 𝒈𝒌+𝟏

𝑻 𝒚𝒌} = ‖𝒈𝒌+𝟏‖𝟐
𝟐 

max{‖𝑔𝑘‖2
2, − 𝑔𝑘

𝑇𝑑𝑘} = ‖𝑔𝑘‖2
2 

𝛽𝑁 =
‖𝑔𝑘+1‖2

2

‖𝑔𝑘‖2
2 = 𝛽𝐹𝑅 

𝒎𝒂𝒙{‖𝒈𝒌+𝟏‖𝟐
𝟐, 𝒈𝒌+𝟏

𝑻 𝒚𝒌} =  𝒈𝒌+𝟏
𝑻 𝒚𝒌 𝛽𝑁 =

𝑔𝑘+1
𝑇 𝑦𝑘

‖𝑔𝑘‖2
2 = 𝛽𝐿𝑆 

𝐦𝐚𝐱{‖𝒈𝒌‖𝟐
𝟐, − 𝒈𝒌

𝑻𝒅𝒌} = ‖𝒈𝒌‖𝟐
𝟐 

𝑚𝑎𝑥{‖𝑔𝑘‖2
2, − 𝑔𝑘

𝑇𝑑𝑘} = − 𝑔𝑘
𝑇𝑑𝑘 

𝛽𝑁 =
‖𝑔𝑘+1‖2

2

− 𝑔𝑘
𝑇𝑑𝑘

= 𝛽𝐶𝐷 

𝒎𝒂𝒙{‖𝒈𝒌‖𝟐
𝟐, − 𝒈𝒌

𝑻𝒅𝒌} = − 𝒈𝒌
𝑻𝒅𝒌 𝛽𝑁 =

𝑔𝑘+1
𝑇 𝑦𝑘

− 𝑔𝑘
𝑇𝑑𝑘

= 𝛽𝑃𝑅 

 

The updated formula of the trend comprises eight 

parameters or their enhancements, 𝛽𝑘+1
𝐹𝑅 , 𝛽𝑘+1

𝐿𝑆 ,
𝛽𝑘+1

𝐶𝐷 , and  𝛽𝑘+1
𝑃𝑅  respectively with their spectral cases 𝛽𝑘+1

𝑆𝐹𝑅 ,
𝛽𝑘+1

𝑆𝐿𝑆 , 𝛽𝑘+1
𝑆𝐶𝐷 , and 𝛽𝑘+1

𝑆𝑃𝑅  respectively depending with Eq. (15). 

The procedure of the technique that contain new 

coefficients 𝛽𝑘
𝑁  alongside 𝜃𝑘

𝑁  is delineated in the subsequent 

algorithm. 
 

3.1 Retail hybridization (FR-LS) algorithm 

 

Step (Initialization): when 𝑘 = 0  setting 𝑥0 ∈  𝑅𝑛  and 

compute all 𝑓(𝑥0), 𝑔(𝑥0) , consider 𝑝0 = − 𝑔0 and 𝜆0 = 1/
‖𝑔0‖2. 
Step (Test of convergence): ‖𝑔𝑘‖ ≤ 𝜀 , stop, and 𝑥𝑘  is the 

optimal solution elsewhere continue with next step. 

Step (Compute the 𝜶𝒌): that holding the Wolfe conditions 

and update variable 𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘𝑝𝑘.  

Compute values 𝑓𝑘+1 , 𝑔𝑘+1, 𝑦𝑘 , 𝑝𝑘 

Step (Direction): compute 𝑝 = − 𝜃𝑘
𝑁𝑔𝑘+1 +  𝛽𝑘

𝑁 𝑝𝑘 , where, 

𝛽𝑘
𝑁 computed as in Eq. (9) and 𝜃𝑘

𝑁 in Eq. (14). 

Step (Powell restart): If satisfied then set 𝑝𝑘+1 = −𝑔𝑘+1 else 

𝑝𝑘+1 = 𝑝. 

Step (The initial guess 𝝀𝒌): Compute the initial guess for: 

 

𝜆𝑘 = 𝜆𝑘−1 (
‖𝑝𝑘‖2

‖𝑝𝑘−1‖2

) (15) 

 

increase 𝑘 return.” 

To substantiate the analytical proof of the suggested 

algorithm, we examine the specifics of the assumptions, 

theorems, and theories relevant to it. 

 

 

4. ANALYSIS OF CONVERGES  

 

Given the following assumptions, we must demonstrate that 

the new CG algorithms possess the fundamental attribute of 

global convergence. 

 

4.1 Assumptions (A) 

 

(i) “The set S, defined as 𝑆 = {𝑥: 𝑥 ∈ 𝑅𝑛 , 𝑓(𝑥) ≤  𝑓(𝑥0)}, is 

bounded. Here, 𝑥0  represents the initial point, and there 

exists a positive constant such that, for all ℬ > 0 as given 

below in Eq. (16).” 

(ii) “In a neighbourhood Ω of S, the function 𝑓 is continually 

differentiated, and its gradient 𝑔  satisfies the Lipschitz 

continuity condition. This means that there exists a non-

negative constant 𝐿 ≥ 0 such that:” 

 
‖g(x) − g(y)‖ ≤ 𝐿 ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝛺 (16) 

 

Clearly, based on the Assumption (A, i), there exists a 

positive constant D such that: 
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ℬ = 𝑚𝑎𝑥{‖𝑥 − 𝑦‖, ∀ x, 𝑦 ∈ 𝑆} (17) 

 

Let 𝓑 represent the diameter of Ω. Based on assumption (A, 

ii), we may conclude that there is a constant γ ≥ 0, which 

satisfies the following: 

 
‖g(x)‖ ≤ 𝛾, ∀ 𝑥 ∈ 𝑆 (18) 

 

In particular studies of computer graphics approaches, the 

necessity of an appropriate descent or descent requirement is 

crucial, however this condition might be challenging to uphold 

consistently [18]. 

 

4.2 Theorem (Descendant Property) 

 

Assuming that the assumptions (A) are valid and employing 

a line search method that satisfies the strong Wolfe (SW) 

requirements considering Eq. (6), demonstrating that the 

search directions 𝑝𝑘 obtained from Eqs. (13) and (14), satisfy 

the descent condition: 

 

𝑝𝑘+1
𝑇 𝑔𝑘+1 ≤ 0 (19) 

 

Proof: We prove the theorem using mathematical induction. 

For 𝑘 = 0, the initial search direction is typically chosen as 

𝑔0
𝑇𝑑0 = ‖𝑔0‖ ≤ 0.  
Thus, this satisfies the descent condition (19) for 𝑘 = 0. 

Assume that for some k, the descent condition holds: 

𝑔𝑘−1
𝑇 𝑑𝑘−1 ≤ 0 true for all 𝑘 − 1 ≥ 1. 
We now prove that the descent condition holds for 𝑘, i.e., 

𝑔𝑘
𝑇𝑑𝑘 ≤ 0. 

Starting with the definition of direction 𝑝𝑘+1 in Eq. (14), 

multiply both sides by: 𝑔 = 𝑔𝑘+1. 

𝑝𝑘+1
𝑇𝑔 = −𝜃𝑘

𝑁‖𝑔‖2 + 𝛽𝑘
𝑁𝑝𝑘

𝑇𝑔, 𝛽𝑘
𝑁 =

𝑚𝑎𝑥{‖𝑔𝑘+1‖2
2,𝑔𝑘+1

𝑇 𝑦𝑘}

𝑚𝑎𝑥 {‖𝑔𝑘‖2
2,− 𝑔𝑘

𝑇𝑑𝑘}
 

We analyze the four possible cases for: 

Case (i): If 𝑚𝑎𝑥{‖𝑔𝑘+1‖2
2, 𝑔𝑘+1

𝑇 𝑦𝑘} = ‖𝑔𝑘+1‖2
2  and 

𝑚𝑎𝑥 {‖𝑔𝑘‖2
2, − 𝑔𝑘

𝑇𝑑𝑘} = ‖𝑔𝑘‖2
2 implies 𝛽𝑘

𝑁 = 𝛽𝑘
𝐹𝑅. 

Case (ii): 𝑚𝑎𝑥{‖𝑔𝑘+1‖2
2, 𝑔𝑘+1

𝑇 𝑦𝑘} =  𝑔𝑘+1
𝑇 𝑦𝑘  and 

 𝑚𝑎𝑥 {‖𝑔𝑘‖2
2, − 𝑔𝑘

𝑇𝑑𝑘} = ‖𝑔𝑘‖2
2 = − 𝑔𝑘

𝑇𝑑𝑘  implies 𝛽𝑘
𝑁 =

𝛽𝑘
𝐿𝑆. 

Case (iii): If 𝑚𝑎𝑥{‖𝑔𝑘+1‖2
2, 𝑔𝑘+1

𝑇 𝑦𝑘} =  𝑔𝑘+1
𝑇 𝑦𝑘  and 

𝑚𝑎𝑥 {‖𝑔𝑘‖2
2, − 𝑔𝑘

𝑇𝑑𝑘}=‖𝑔𝑘‖2
2. 

That 𝛽𝑘
𝑁 =

‖𝑔𝑘+1‖2
2

− 𝑔𝑘
𝑇𝑑𝑘

= 𝛽𝑘
𝐶𝐷. 

Case (iv): If 𝑚𝑎𝑥{‖𝑔𝑘+1‖2
2, 𝑔𝑘+1

𝑇 𝑦𝑘} =  𝑔𝑘+1
𝑇 𝑦𝑘  and 

𝑚𝑎 𝑥{‖𝑔𝑘‖2
2, − 𝑔𝑘

𝑇𝑑𝑘} = ‖𝑔𝑘‖2
2 that 𝛽𝑘

𝑁 =
𝑔𝑘+1

𝑇 𝑦𝑘

‖𝑔𝑘‖2
2 . 

As we have seen, the proposed formula in the special case 

of the four is reduced to known formulas. 

Case(i): 𝛽𝑘
𝐹𝑅 , Case(ii): 𝛽𝑘

𝐿𝑆 , Case(iii): 𝛽𝑘
𝐶𝐷 and Case(iv): 

𝛽𝑘
𝑃𝑅 . 
In all four cases, the descent condition is satisfied [5, 10, 19, 

20]. By the principle of mathematical induction, the descent 

condition holds for all 𝑘. This completes the proof. 

 

4.3 Lemma (Bounded of βN) 

 

Assume that the method is designed so that there exist 

constants λ>0 and b>1 for which the normalized conjugate 

gradient parameter satisfies [4]:  

 

𝛾 ≤ ‖𝑔𝑘‖ ≤ 𝜍, ∀𝑘 ≥ 1 (20) 

and 

 

|𝛽𝑁| ≤ 𝑏 (21) 

 

If ‖𝑝𝑘‖ ≤ 𝜇, then |𝛽𝑘| ≤
1

2𝑏
 for all.  

 

𝜇 > 0 (22) 

 

4.4 Corollary (Bounded of 𝝑𝒌
𝑵) 

 

Suppose that the assumptions (A) hold and line search with 

SW conditions Eq. (5), consider the search directions 𝑝𝑘 

generated from Eqs. (13) and (14) then 𝝑𝒌
𝑵 is bounded. 

Proof: by using Cauchy Schwarz property and Lipschitz 

inequality implies. 

 

|𝝑𝒌
𝑵| = |1 + 𝛽𝑘

𝑁 
𝑝𝑘

𝑇𝑔𝑘

‖𝑔𝑘‖2
| ≤ 1 +

1

2𝑏
 
|𝑝𝑘

𝑇𝑔𝑘|

|𝑔𝑘
𝑇𝑔𝑘|

 

≤ 1 +
1

2𝑏
 
|𝑑𝑘||𝑦𝑘|

‖𝑔𝑘‖2
< 1 +

1

2𝑏
 
𝜆 𝜍

𝛾2
= 𝑏̅ 

 

4.5 Property (Bounded of 𝜆𝑘) 

 

Assuming the existence of a descending direction 𝑝𝑘 and 𝑔𝑘 

that satisfy the Lipschitz condition, where 𝐿 is a constant that 

applies to all points within the line segment connecting 𝑥 and 

y. Provided that the line search direction fulfills the strong 

Wolfe condition [21]: 

 

𝜆𝑘 ≥
(1 − 𝜎)|𝑝𝑘

𝑇𝑔𝑘|

𝐿‖𝑝𝑘‖2
 (23) 

 

Proof: using curvature inequality in Eq. (5).  

 

𝜎𝑝𝑘
𝑇𝑔𝑘 ≤ 𝑝𝑘

𝑇𝑔𝑘+1 ≤ −𝜎𝑝𝑘
𝑇𝑔𝑘 

⇒ 𝜎𝑝𝑘
𝑇𝑔𝑘 ≤ 𝑝𝑘

𝑇𝑔𝑘+1 
(24) 

 

Subtracting 𝑝𝑘
𝑇𝑔𝑘 from both of (25) and applying the 

Lipschitz condition results: 

 

(1 − 𝜎)𝑝𝑘
𝑇𝑔𝑘 ≤ 𝑝𝑘

𝑇(𝑔𝑘+1 − 𝑔𝑘) ≤ 𝐿𝜆𝑘‖𝑝𝑘‖2 (25) 

 

Since 𝑝𝑘 is the descent direction and 𝜎 ≤ 1, then (3.4) holds 

𝜆𝑘 ≥
(1−𝜎)|𝑝𝑘

𝑇𝑔𝑘|

𝐿‖𝑝𝑘‖2 . 

The Lemma, known as the Zoutendijk condition, is utilized 

to demonstrate the global convergence of any nonlinear 

conjugate gradient algorithm. Zoutendijk [22] initially 

referenced it in relation to the resilient Wolfe line search Eq. 

(5). The condition will be formally delineated in the 

subsequent Lemma. 

 

4.6 Lemma 

 

Considering that the hypotheses (A) are accurate. Let us 

analyze the iteration process outlined by Eqs. (2) and (3), 

where the descent condition (𝑝𝑘
𝑇𝑔𝑘 ≤ 0) is true for all 𝑘 ≥  1, 

and the condition (5) for 𝜆𝑘 is satisfied. Subsequently, 

 

∑
(𝑝𝑘

𝑇𝑔𝑘)2

‖𝑝𝑘‖ 2 
< +∞

𝑘≥0 

 (26) 
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Proof: by employing the initial inequality stated in Eq. (5), 

we may derive 𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘) ≤ 𝛿𝜆𝑘𝑔𝑘
𝑇𝑝𝑘. 

By combining this information with the results stated in 

Lemma (Bounded by 𝜆𝑘), we obtain: 

 

𝑓𝑘+1 − 𝑓𝑘 ≤ [
𝛿(1 − 𝜎)

𝐿
]

(𝑔𝑘
𝑇𝑝𝑘)2

‖𝑝𝑘‖2
 (27) 

 

By leveraging the boundedness of function 𝑓, as indicated 

in assumptions (A), therefore: 

 

∑
(𝑔𝑘

𝑇𝑝𝑘)2

‖𝑝𝑘‖2
< ∞

𝑘>1

 (28) 

 

4.7 Theorem 

 

Assuming that A is correct, and considering the new 

algorithm formed by Eqs. (2), (3), (13), and (14), where 𝜆𝑘 is 

determined using the strong Wolfe line search Eq. (5), then 

𝑙𝑖𝑚
𝑘→∞

 (𝑖𝑛𝑓‖𝑔𝑘‖) = 0. 

Proof: The contradiction approach is utilized to establish the 

incorrectness of the conclusion. Thus, we make the 

assumption that the magnitude of ‖𝑔𝑘‖ ≠ 0 , as mentioned 

earlier. Furthermore, it is confirmed that there exist two 

constants, ς and γ, both of which are bigger than zero. For all 

k greater than or equal to 0, 𝜍 ≤ ‖𝑔𝑘  ‖ ≤ 𝛾. 

Now, by computing the square norm on both sides of our 

newly determined direction. 

 

𝑝𝑘+1 = −𝝑𝒌
𝑵𝑔𝑘+1 + 𝛽𝑘

𝑁𝑝𝑘, 

‖𝑝𝑘+1‖ = ‖−𝝑𝒌
𝑵𝑔𝑘+1 + 𝛽𝑘

𝑁𝑝𝑘‖ 

            ≤ 𝝑𝒌
𝑵‖𝑔𝑘+1‖ + 𝛽𝑘+1

𝑁 ‖𝑝𝑘‖ 

            ≤ ‖𝑔𝑘+1‖ + 𝛽𝑘+1
𝑁 ‖𝑝𝑘‖ (Cauchy Schwarz inequality) 

            < 𝑏̄𝛾 + 𝑏𝜆 = 𝐸,  

 

where, 𝐸 = 𝑏̄𝛾 + 𝑏𝜆. 

Thus, ‖𝑝𝑘+1‖2 < (𝐶)2, by doing division with the quality 

‖𝑔𝑘+1‖4 we obtain: 
‖𝑝𝑘+1‖2

‖𝑔𝑘+1‖4 <
𝐶2

‖𝑔𝑘+1‖4 , ∑
‖𝑝𝑘+1‖2

‖𝑔𝑘+1‖4
∞
𝑘=1 >

𝐶2𝛾−2 = ∞. 

That is in contrast with Lemma (4.7), then 𝐿𝑖𝑚 𝑖𝑛𝑓‖𝑔𝑘‖
𝑘→∞

=

0. 
 

 

5. THE OUTCOMES OF THE COMPUTATIONAL 

TEST 

 

To evaluate the dependability and efficacy of our proposed 

New-CG approach, we performed comprehensive 

computational tests comparing it with two established 

conjugate gradient algorithms: the Fletcher–Reeves (FR) [5] 

and LS [9] methods. Our evaluation framework was 

constructed to facilitate a thorough comparison by outlining 

the test configuration, performance metrics, and dataset 

attributes. 

 

5.1 Test configuration and benchmark problems 

 

We chose a varied array of test functions from the CUTE 

collection, renowned for its variety of optimization challenges. 

The selected test problems exhibit a variety of characteristics: 

• Dimensionality: We evaluated the issues at different 

scales, specifically with 100, 400, 700, and 1000 variables. 

This variation enables the evaluation of scalability and 

robustness across both small and high-dimensional contexts. 

• Problem Characteristics: The test functions encompass 

both convex and non-convex landscapes, along with functions 

exhibiting varying degrees of smoothness and nonlinearity. 

This variety guarantees that the efficacy of the methods is 

assessed across a wide range of optimization scenarios. 

• Implementation: To guarantee numerical precision, we 

conducted all tests utilizing Fortran software with double-

precision arithmetic. 

 

5.2 Evaluation metrics 

 

We evaluated each method's performance using the 

following metrics, which are crucial in the context of 

numerical optimization: 

• Iterations: The total number of iterations required to 

satisfy the convergence criterion. This metric reflects the 

efficiency of the method in navigating the solution space. 

• Function Evaluations: The number of function evaluations 

performed, which is typically the most computationally 

intensive part of the algorithm. This serves as an indirect 

measure of the computational cost per iteration. 

• CPU Time: The overall CPU time required to achieve 

convergence. This metric provides a practical indication of the 

method's efficiency in real-world computational 

environments. 

The convergence criterion used in all experiments was: 

 

‖𝛻𝑓(𝑥𝑘+1)‖ ≤ 1 × 10−6 (29) 

 

ensuring that each algorithm attained a high level of accuracy. 

The diagram illustrates the percentage P of tasks that were 

finished in a time frame less than the intended duration for 

each respective method. The graph displays the accuracy rate 

of each method in solving test questions on the right side, 

together with the efficiency of a certain strategy in solving test 

questions on the left side. The topmost curve is the curve that 

exhibits the highest level of efficacy in terms of problem-

solving efficiency. 

 

5.3 Integration of performance curves 

 

Figures 1-3 illustrate the performance curves for the New-

CG, FR-CG, and LS-CG methodologies: 

• Figure 1 illustrates the percentage P of test issues resolved 

within a specified the number of iterations, emphasizing the 

efficacy of each strategy. 

• Figure 2 illustrates the accuracy attained by each method, 

indicating the number of function evaluations required for 

convergence. 

• Figure 3 presents a comprehensive analysis of CPU 

performance, detailing resource utilization and the scalability 

of the problem. 

The uppermost curve in each figure represents the strategy 

exhibiting the superior overall performance regarding 

computing efficiency and accuracy. 

The comparative method developed by researchers Dolan 

and Moré [23], which consisted of generating performance 

curves for each algorithm, indicated that the proposed method 

is superior than the traditional methods. The higher the curve, 

the greater the likelihood that the greatest number of functions 

will be solved and that the objective will be accomplished. 
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Figure 1. The efficacy of the comparative algorithms 

regarding iterations 
 

 
 

Figure 2. The efficacy of the comparative algorithms 

regarding number of function evaluations 

 

 
 

Figure 3. The efficacy of the comparative algorithms 

regarding iterations CPU 

 

5.4 Discussion  

 

We demonstrate how the properties of traditional methods 

overlap with those of the method that we have invented. 

Comparing Mathematically 

A. Revision for 𝛽𝑘: 

FR: If we see in Eq. (7), this formula depends only on the 

norm of the gradients at the current and previous iterations. 

LS: As we see in Eq. (8), this formula involves both the 

gradients and the search direction, potentially providing more 

information about the problem structure. 

New: The vectors used in both formulas include . 

B. Conjugacy Condition: 

Both approaches have the goal of preserving the conjugacy 

of search directions. However, the LS method is typically seen 

as more adaptable because it incorporates the search direction 

dk in its update. Our method certainly achieves this property 

since we use hybridization. 

C. Computational Complexity: 

Both methods have comparable computing complexity, 

with the main computational task being the evaluation of the 

gradient and line search. At the same pace of calculations 

without the expense of the calculations of the gradation and 

the search line, since we took some balances between the two 

methods. 

D. Behavior and Performance: 

• The FR approach is generally uncomplicated and 

frequently yields satisfactory results, however it can be 

susceptible to variations in the precise line search. 

• The LS method's extensive utilization of information 

enhances its resilience, particularly in situations when the 

problem is inadequately conditioned. 

• Failures of results are often, however, subject to 

differences in the exact line search for FR corrected by the 

flexibility of the LS method, especially in situations 

where the problem is not sufficiently defined. 

E. Convergence: 

• The FR-CG algorithm is proven to converge for convex 

functions when accurate line searches are used. 

• LS-CG exhibits superior practical performance on non-

quadratic problems; however, it might require precise line 

search to achieve resilience. 

• The new nested algorithm shows superior practical 

performance on non-quadratic and LS-competitive 

problems. 

The primary differentiation lies in their computation of the 

parameter beta, which leads to differential features and 

potential performance attributes. 

 

 

6. CONCLUSION 

 

This article demonstrates the effectiveness of new hybrid 

conjugate gradient algorithms in solving unconstrained 

optimization problems by optimizing a new parameter based 

on the essential quantities extracted from the objective 

function. Theoretical analyses demonstrate that this method 

guarantees global convergence. Meanwhile, numerical tests 

illustrate the superiority of the new algorithms in terms of 

computational efficiency and convergence speed compared to 

conventional algorithms. Using the parameters 𝛽𝑘  and 𝜃𝑘 

indicates the method’s ability to identify effective 

optimization directions in the solution space, enhancing its 

suitability for diverse applications. The results demonstrate 

that the proposed method represents a qualitative addition to 

the conjugate gradient approach, especially in cases requiring 

general nonlinear and convex functions unsuitable for global 

convergence. 
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