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The healthcare business relies heavily on effective blood supply chain management, yet 

common forecasting models frequently fail to account for all the variables affecting 

blood demand blood demand. On the one hand, the demand is known to be seasonal, 

but on the other hand, there are also many unexpected disruptions. This study 

investigates the use of a Gated Recurrent Unit (GRU) model for time-series forecasting 

to increase the accuracy and efficiency of blood demand predictions. This study creates 

a GRU-based forecasting model to reduce inventory shortages and waste using daily 

blood donation statistics from the Indonesian Red Cross (PMI) in Yogyakarta. The 

model results in more consistent healthcare delivery. In this study, data preprocessing 

comprised chronological alignment, normalization, and the improvement of temporal 

dependency detection using a sliding window approach. The GRU model is better than 

standard forecasting approaches on the test dataset, with a Mean Absolute Error (MAE) 

of 0.2033 and a Mean Squared Error (MSE) of 0.0923. The visual and statistical 

examinations show consistent prediction accuracy. The model can adjust to variations 

in blood demand, making it useful for enhancing blood supply chain management. This 

research not only underscores the applicability of deep learning in healthcare logistics 

but also lays the groundwork for scalable, data-driven solutions in perishable goods 

supply chains, promising enhanced resource allocation, reduced waste, and improved 

preparedness in healthcare settings. 
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1. INTRODUCTION

The healthcare system relies heavily on the availability and 

management of a robust blood supply chain. For example, over 

40,000 units of blood products are needed daily in the United 

States [1]. Blood supply chains are critical for various medical 

procedures, from emergency trauma cases (where a single 

patient may require up to 100 units) to routine surgeries, 

supporting 16 million annual [1]. However, managing blood 

resources presents unique challenges due to their limited shelf 

life (42 days for whole blood and five days for platelets) [2]. 

Indonesia has been experiencing the most severe national 

blood shortage in the past two decades, with the supply 

declining by 25% since July 2024. The donor numbers 

dropped, with only 3% of eligible people donating [3, 4], and 

there were external disruptions like extreme weather events 

[5]. To prevent further shortages and waste in the blood supply 

chain, a reliable forecasting system and inventory 

management are needed. This is crucial because shortages and 

waste will pose a risk to the healthcare system; for example, 

the 25% shortage aforementioned has impacted 18% of 

medical practices [6]. To build a reliable forecasting system 

and inventory management, first, we need to understand the 

business process of the blood supply chain, as shown in Figure 

1. 

Figure 1 shows that one of the critical success factors in the 

blood supply chain is that the blood bank management must 

carry out proper planning. In the case of failure in predicting 

demand from hospitals, the blood bank will have to deal with 

two risks. First, there will be a shortage as the supply is lower 

than the demand, which not only poses a risk to patients’ 

conditions and mortality but also tarnishes the blood bank’s 

reputation. Second, the blood bank may experience 

inefficiency due to overstock, which will result in expired 

products and waste that require proper disposal. 

Blood demand patterns are non-linear and unpredictable, so 

traditional forecasting techniques commonly used in inventory 

management, such as moving averages and exponential 

smoothing, are unsuitable. The supply chain requires more 

advanced systems. Modern machine learning models could be 

a promising solution, as shown in past research, where they 

reduce blood shortage rates by 32.1% and wastage rates by 

26.6% compared to traditional forecasting techniques [7]. The 

traditional techniques work well for stable demand patterns 

but may not be compatible with the rapid changes in healthcare 

supply chain management (SCM). Numerous variables are at 

play in this context, which challenges accurate forecasting. For 
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example, the blood supply is projected to decrease from 2.6 

million units in 2021 to 1.4 million units by 2050 [8]. 

Traditional models lack the flexibility to fit all influencing 

factors with such notable changes and sensitivity to demand 

volatility caused by local events and demographic shifts [9, 

10]. A significant trend is seasonal variations in blood donor 

turnout, which typically rises during holidays and school 

breaks. However, traditional forecasting methods can 

occasionally struggle to accurately reflect these cyclical 

variations [11]. Overlooking any of these vital components 

could lead to inaccurate predictions and disrupt supply 

coordination, therefore compromising the overall functioning 

of the healthcare system. 

The incorporation of machine learning into blood supply 

chain forecasting has generated revolutionary changes. 

Although increasing the amount of gathered blood by roughly 

11%, previous research suggests this approach could reduce 

shortages and waste by as much as 20% [12]. Of all machine 

learning techniques, recurrent neural networks (RNNs) have 

been particularly effective in controlling sequential data. 

Furthermore, models with multiple variables sometimes 

outperform traditional univariate techniques [11]. In time-

series forecasting, the Gated Recurrent Unit (GRU) model, a 

variant of RNN, outperforms Long Short-Term Memory 

(LSTM) networks by achieving lower Root Mean Squared 

Error (RMSE) (970.99 vs. 2170.50) and better Mean Absolute 

Error (MAE) (1199.107 vs. 1881.31) [13].  

For blood demand forecasting, where its capacity to capture 

complicated, time-dependent relationships has helped 

optimize inventory levels and improve general healthcare 

supply chain efficiency through more exact predictions and 

real-time adaptability, his increased accuracy together with 

GRU's lower computational needs makes it an ideal choice 

[14]. This paper creates a GRU-based model to forecast blood 

demand and better control blood supply networks. The main 

goal is to create an accurate forecasting system that can help 

reduce blood shortages and prevent excess inventory. In this 

way, the blood supply chains will be more efficient and 

reliable. 

 

 
 

Figure 1. Business process in blood supply chain 

 

 

2. RELATED WORKS 

 

Traditional blood supply chain forecasting statistics make 

use of seasonal decomposition models, Autoregressive 

Integrated Moving Average (ARIMA), and Moving Average. 

These techniques work well for spotting recurring patterns and 

demand trends. Moving Average approaches, for instance, can 

make short-term volatility less pronounced, so they can detect 

predictable, periodic spikes in blood demand, which is 

seasonal, with peaks usually seen in March and October [15]. 

ARIMA models’ prediction of blood demand shows Mean 

Absolute Percentage Errors (MAPE) of 12.99% for blood 

donation, 19.59% for blood issues, 37.15% for RDP issues, 

and 31.94% for Fresh Frozen Plasma issues [15]. Meanwhile, 

seasonal decomposition models are suitable for recurring 

patterns, such as during the peak season amid the constant 

fluctuation throughout the year. 

However, traditional methods, as exemplified above, may 

not be robust enough to forecast demand in blood BSCM as 

they cannot handle sudden changes and complex patterns. For 

instance, blood donations were severely impacted during 

global health crises like the COVID-19 pandemic, especially 

among younger donors, as donor collections at schools were 

suspended [16]. Data shows a 60.7% drop in donations from 

donors aged 16-18 years old and another 31.9% drop from 

donors aged 19-24 years old in 2021 compared to 2019 [16]. 

Moreover, traditional methods are not capable of accounting 

for multifactorial influences that drive or lower blood demand, 

such as demographic shifts and healthcare advancements. For 

example, the US aging population has driven demand for 

blood products [17]. In another context, the number of donors 

aged 65 and older increased by 40.7% in 2021 compared to 

2019 [17], highlighting the complexity of factors influencing 

donations and demand. Traditional models often can't manage 

the wild swings of modern blood supply chains due to their 

unpredictable nature. 

Lately, machine learning has gained much attention for its 

power to predict time-series data. This is useful in guessing 

changes in demand within blood supply chain systems, which 

can be quite complex [18]. By spotting hidden patterns in big 

sets of data across many kinds of products, machine learning 

like deep learning is often better than old forecasting ways that 

rely on set rules or simple math [19]. In time-series study, 

many time-based factors shape data trends. This growth 

matters a lot now [20]. In 2023, a study showed that AI and 

ML models do better than old ways for forecasting. These 
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smart systems led to an 11% rise in collected blood. They also 

cut down waste by 20% compared to the old data. This shows 

that AI tools give more accuracy and are flexible to use [12]. 

Machine learning helps boost demand guesses and smooth out 

routing in blood supply chains. This tech aids many areas of 

blood supply work. It cuts waste, speeds up the process, and 

checks that the right amount of blood goes to where it's needed 

most [21, 22]. 

The use of machine learning in blood supply has grown. It 

helps to guess how much blood is needed and makes delivery 

paths better. Among these, especially noteworthy are support 

vector machines (SVM) [23], neural networks (NN) [10], and 

RNN. SVMs are great for predicting shifts in health care 

needs. They handle many variables well and deal with 

complex, non-linear choices [24]. Neural networks can look at 

complex and deep ties in time-series data. They find patterns 

from small changes to big trends. These tools spot details at 

every level, making sense of both little shifts and broad paths 

[10]. RNN models work well to predict patterns in order over 

time, like changes in blood needs or shifts in patient numbers 

as time goes on [25]. In areas like blood supply management, 

machine learning can give exact forecasts. These predictions 

can be more accurate than those from old models. 

Specifically, RNN models can perform time-series 

prediction well because they can perform deep learning, which 

is suitable for sequential and time-dependent data [25]. RNN 

models have internal memory, so they can remember details 

about inputs that have been given earlier in the sequence [26]. 

Therefore, RNNs are superior to regular neural networks. 

They can deal with temporal data dependencies. This ability is 

useful in blood demand forecasting since demand can be 

impacted by historical occurrences and patterns. It can see 

inter-relationships and trends that statistical approaches 

frequently miss. 

Regular RNNs cannot deal with advanced demand 

forecasting scenarios because of the vanishing gradient 

problem. In this case, gradients decrease little by little during 

RNN training. When they do, the network cannot acquire long-

term dependencies. This problem is commonplace in demand 

trends that are influenced by long-term historical data. As 

such, a regular RNN model cannot make accurate predictions. 

It might not be sufficiently flexible to handle complex and 

widely differing patterns that are frequently found in blood 

demand data [27]. To address these problems and improve 

model performance, sophisticated RNN architectures have 

been created. 

RNN architecture advancement has produced GRU and 

LSTM networks. To maintain long-term dependencies and 

avoid the vanishing gradient issue [26], which the basic RNN 

models are unable to manage, LSTM networks employ a 

gating mechanism to regulate input flow. A more 

straightforward version of LSTM, GRU is intended to be more 

memory and computationally efficient without sacrificing 

gating mechanisms [28-30]. In non-linear data patterns, GRU 

has a better ability to predict, this is calculated from the 

magnitude of the MAE when compared to the ARIMA and 

LSTM methods [31]. Although the above research does not 

specifically predict data in the case of the blood supply chain, 

in general the data patterns used have similar data forms. In 

live forecasting, like blood demand, GRU is superior because 

it is simpler and converges faster. Although both GRU and 

LSTM are actually good at capturing temporal dependencies, 

GRU tends to perform better because it is flexible and 

compatible with applications that need accurate and fast 

forecasting. 

To simplify recurrent neural networks, GRU model uses a 

gating system to store and update data [32]. The reset gate 

controls how much info to forget, while the update gate 

decides how much to keep. The GRU model fits well when 

quick change is needed, as it handles both short and long needs 

well. Its simple build cuts down the work for computers, which 

helps a lot in big blood supply systems that need fast learning 

and fast action [33]. 

Its simple design helps cut down on computer work. This is 

key for big blood supply chains that need fast training and 

quick processing [34]. The GRU model is a good choice for 

predicting in supply chain and health logistics. It is simple and 

does not cost much. While events can make blood needs 

change fast, past patterns help us guess well. Though events 

can make blood needs change fast, past trends let us predict 

quite well. 

 

 

3. METHODOLOGY 
 

3.1 Research design 
 

This study looks at blood demand in Indonesia's healthcare 

system using time-series forecasting and deep learning 

methods. It builds a predictive system using the GRU model 

meant to enhance inventory control, cut waste, and decrease 

shortages. Starting with daily blood donation records, the 

study gathered and processed them for deep learning analysis. 

Time-series forecasting called for only needed columns like 

donor date and blood kind; records with unknown blood types 

were left out. The data was dated to keep things in order. 

Missing parts were filled using Forward Fill (FFILL) [35]. 

Blood type counts were set to the same level, and outliers were 

scaled with Min-Max to lessen their effect. Overlapping data 

parts were made using a sliding window, helping the GRU 

model see time patterns in giving blood better. 

Building the GRU model needed picking the right layers, 

units, and activation functions for sequential data. Tweaking 

settings like learning rate, batch size, and number of epochs 

helped make it work better. After training, a different set of 

data checked how well the model did. We used MAE and MSE 

for this; the first shows average mistakes, and the second 

shows how it handles big errors. Projected versus actual blood 

demand visual comparison helps to highlight trends and 

anomalies. Ultimately, the GRU-based method seeks to 

improve blood supply management by means of precise daily 

projections, therefore facilitating improved inventory control, 

resource allocation, and reduction of both overstocking and 

shortages. This study investigates the issue: “How can 

predictive modeling and deep learning increase both efficiency 

and responsibility in blood supply management?” It also 

shows how deep learning can help data-driven decisions in 

healthcare logistics. Figure 2 depicts the research design 

conducted in this study. 

 

3.2 Dataset 

 

Spanning October 1, 2023, to January 31, 2024, the study 

makes use of daily blood donation records from the 

Yogyakarta branch of the Indonesian Red Cross (Palang 

Merah Indonesia (PMI)). The dataset includes 5,170 entries 

and features 13 different attributes, ranging from donation 

dates and blood types to donor demographics, hemoglobin 
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levels, and blood pressure readings. By focusing primarily on 

the donation date and blood type (including Rh factor), the 

research narrows its scope to key variables that are crucial for 

constructing an effective time-series forecasting model, while 

also maintaining the integrity and reliability of the data [36]. 

We exclude hemoglobin level and blood pressure data from 

the data set because the existing data already meets the health 

requirements for the blood donation process. Likewise, 

demographic data is not included in the data set, because in 

reality donors are not limited by their demographics. 

Meanwhile, blood type is maintained and treated as an 

important variable because of its inherent complexity and 

diversity. The distribution and compatibility of several blood 

types (e.g., A, B, AB, O, and their Rh factors) in the next 

process in the blood supply chain will be processed into 

several products such as platelets, packed red cells, plasma and 

others. So that blood supply data based on blood type has an 

important role in the planning and management of blood 

supply. 

After data restructuring, the dataset originally consisting of 

5,170 samples was transformed into a daily time series, 

resulting in 120 data points representing daily blood donation 

counts. This restructuring was necessary to ensure 

chronological alignment and maintain the temporal 

consistency essential for time-series forecasting. During the 

data cleaning process, initial inspection revealed some 

inconsistencies, such as non-existent blood types (e.g., ‘X+’) 

and gaps in daily recordkeeping. After restructuring, we 

identified 30 missing values within the 120-day time series. 

These missing values were handled using the FFILL method 

to maintain data continuity. While FFILL is a straightforward 

imputation technique, it may introduce bias, particularly when 

gaps occur in clusters. We acknowledge this limitation and 

suggest exploring more robust imputation techniques, such as 

interpolation, in future work. 

Because the study concentrates specifically on Yogyakarta, 

the findings might not be broadly applicable beyond this 

region; however, they remain pertinent within the context of 

this research. The data, gathered by personnel from PMI and 

saved in .xls files, has been carefully cleaned and prepared to 

support time-series analysis. The dataset is reordered based on 

dates to maintain its chronological sequence. Min-Max 

Scaling is used to normalize blood type frequencies across all 

records, so reducing extreme value influence while 

maintaining general data trends by means of values between 0 

and 1. 

Maintaining time order to prevent data leakage and 

guarantee the dependability of the time-series forecasting 

model, the dataset was split temporally 80% for training and 

20% for testing. A strong basis for GRU model training was 

created by means of careful data cleaning and organization. 

This increases the precision of blood demand forecasts and 

streamlines supply chain operations' openness and efficiency 

[37]. 

Both the code and dataset used in this work have been made 

publicly available to encourage openness and help reproduce 

results. You may find them at the following link: Code and 

Dataset Repository. The repository holds the last dataset 

employed in the study, data preprocessing scripts, and 

complete GRU model implementation [38, 39]. 

 

 
 

Figure 2. Research design 
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Table 1. Training details 

 

Hyperparameter Value/Description 

Model Type GRU 

Number of GRU Layers 4 

Units per GRU Layer 512 (Layer 1, 2, 3), 1024 (Layer 4) 

Dropout Layer 1 (after the final GRU layer) 

Dropout Rate 0.2 

Dense Layer Units 5 (output layer) 

Activation Function (GRU) ReLU 

Activation Function (Dense) None (Linear) 

Input Shape (Time Steps / 7, Features / 5) 

Return Sequences 
True (for first 3 GRU layers),  

False (for the last GRU) 

Optimizer Adam 

Learning Rate 0.001 (default for Adam) 

Loss Function Huber Loss 

Batch Size 8 

Number of Epochs 100 

Evaluation Metrics MAE, MSE 

 

3.3 Training details 

 

Including hyperparameters customised to the blood 

donation dataset, Table 1 describes the GRU training setup. 

Comprising four layers, the model architecture is three GRU 

layers with 512 units each and a fourth layer with 1024 units. 

All GRU layers had the ReLU activation function used to 

capture rich temporal dependencies. To avoid overfitting, a 

dropout layer with a rate of 0.2 follows the final GRU layer. 

Corresponding to the size of the target variable, the last output 

is a dense layer with five units [40]. 

Selected for its demonstrated capacity to efficiently handle 

data changing with time, the model was compiled using the 

Adam optimizer [41]. To promote consistent and stable 

convergence during training, the learning rate was maintained 

at 0.001, the standard Adam setting. Since it handles outliers 

well and blends MSE with MAE, model training used the 

Huber loss function [42]. 

The model was trained for 100 rounds. This helped it find 

time trends and make fewer mistakes. We picked a batch size 

of 8. This made sure we used memory well and didn't use too 

much power on small sets of data [43]. We checked how the 

model works with two easy steps: MAE and MSE. MAE tells 

us the average error size. MSE looks at bigger errors since it 

squares them. Together, these measures show if the model 

predicts well. 

The GRU model was tuned to find a balance between 

guessing right and being fast. This makes it great for predicting 

blood needs in the ever-changing healthcare world. 

 

 

4. RESULTS AND DISCUSSION 

 

Building a two-layer GRU model, this paper investigates 

deep learning's possibilities in blood supply management. The 

GRU architecture was chosen to improve prediction accuracy 

by means of its ability to capture complex temporal 

dependencies. The design has 8,678,917 parameters with a 

computational load of 33.11 MB. Adding dropout layers and a 

fully connected (Dense) layer to complete the expected 

outputs helped to improve model performance and lower 

overfitting. The GRU model architecture employed in this 

work is shown in Figure 2. 

This work looks at how using a two-layer GRU model can 

help with blood supply control using deep learning. We picked 

the GRU setup because it can quickly learn complex patterns 

over time, making predictions better. The model has 8,678,917 

parts and uses about 33.11 MB of memory. To help it work 

well and not learn wrong patterns, we added dropout layers 

and a Dense layer to make the final guesses [44], see Figure 3 

for the GRU model we used in this study.  

The dataset has 120 daily points, but the GRU model here 

has 8.6 million bits. This gap shows that the model might fit 

too well to the tiny dataset. To address this challenge, dropout 

layers were applied to streamline the model and boost its 

capacity to generalize to fresh data. Temporal splitting was 

also employed to preserve the chronological order of the data, 

so minimizing data leakage and ensuring uniform testing 

performance. 

The model was trained over 100 epochs, resulting in a 

MAE of 0.2033 and a MSE of 0.0923 on the test dataset, as 

detailed in Table 2. These metrics were selected to evaluate 

the model’s accuracy, with values based on the test set to 

prevent the bias that can arise when only considering training 

performance [45]. 

It is important to note that these error metrics (MAE and 

MSE) are computed on the normalized data, as the 

preprocessing pipeline of the GRU model involved Min-Max 

scaling [46]. The data normalization process scaled the blood 

demand values to a range between [0,1], which inherently 

lowers the magnitude of error values [47]. Therefore, the 

reported MAE and MSE do not directly correspond to the 

original scale of blood donations. This normalization step is 

crucial to maintain the stability and efficiency of the deep 

learning model during training. Consequently, the relatively 

low error values reported here reflect both the model’s 

performance and the effect of normalization. To interpret the 

error in real-world terms, one would need to reverse the 

normalization process, translating the error metrics back to the 

original data scale [48]. 

 

 
 

Figure 3. GRU model architecture 

 

Table 2. Performance metrics of GRU model 

 
MAE MSE 

0.2033 0.0923 

 

2055



 

  

 

Figure 4. Historical MAE and MSE during dataset training 

  

 
 

Figure 5. Comparison of actual and predicted blood demand 

 

Examining the MAE and MSE metrics graphically, as 

shown in Figure 4, over time offers a deeper understanding of 

how stable and accurate the model remains. Moreover, by 

comparing the predicted results with the actual data collected 

over a span of twelve days, it becomes clear that the model 

effectively captures the overall patterns present in the original 

dataset. The results from January 26 stand out as particularly 

significant. Despite some discrepancies between the 

anticipated and actual figures, the model successfully 

forecasted a rise in the number of blood donors. Figure 5 

shows (detailed in Figure 6) the predictions of the GRU model 

as a grey line, therefore enabling a direct comparison with the 

actual data. 

The findings show how well deep learning models, 

depending on GRU might increase the accuracy of blood 

supply projections. Managing inventory and assisting 

healthcare services depend much on this capacity. The 

research indicates that deep learning methods might be useful 

tools for healthcare logistics, particularly under fast decision-

making need. Further research could help GRU models to 

improve predictive capacity in the healthcare sector, therefore 

establishing a significant foundation for next supply chain 

management innovations. 

More proactive inventory control is made possible by the 

exact demand forecasting of the GRU model. Healthcare 

professionals can keep suitable stock levels by correctly 

predicting daily blood needs, therefore lowering the 

probability of shortages and lessening waste produced by 

surplus inventory [49]. 

Though the model shows good accuracy, there is still a 

danger of underestimating demand, which might lead to 

inventory shortages and possibly interfere with healthcare 

services. Regular reviews and adjustments of safety stock 

levels should be made to reflect forecast uncertainty, therefore 

offering a required cushion to handle unexpected demand 

spikes [50]. 

Particularly during periods of expected demand spikes, the 

inventory management system uses GRU model forecasts to 

adjust reorder thresholds and maintain suitable stock levels 

[51]. Combining these projections with operational choices 

helps to reduce the risk of running out of supplies or keeping 

too much stock, therefore improving the dependability and 

reactivity of the blood supply chain [52]. 

 

 
 

Figure 6. Comparison of actual dataset and predicted value 

by GRU (Detailed) 
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5. LIMITATION AND FUTURE WORKS 

 

One major limitation of this study is its focus on one site, 

Yogyakarta. The dataset of blood donations used to develop 

and evaluate the model was gathered only within this region. 

Thus, when used in other regions with various demographic 

profiles and healthcare systems, this might restrict the 

relevance and dependability of the model. Given that cultural, 

economic, and social diversity influence blood donation 

behavior, the model's effectiveness could vary when tested 

with data from different populations or countries [53]. 

Often, different areas have different data quality and 

consistency. We carefully cleaned and preprocessed the 

dataset in this work, fixing inconsistencies and filling in 

missing values using the FFILL method. Focusing on daily 

donation totals, we found 30 gaps scattered over the 120-day 

period after we reorganised the data. To keep continuity, these 

missing points were filled using FFFIL. Though simple and 

quick, this method can sometimes cause bias, especially with 

respect to sequentially missing values [54]. Knowing this 

constraint, we recommend future studies to increase the 

accuracy and completeness of the data by applying more 

sophisticated methods such model-based estimation or 

interpolation. 

The short four-month span of the data presents one 

difficulty in this study. This period limits the model's ability to 

completely understand long-term seasonal variations. Though 

the model excels at spotting short-term trends, it is advised that 

future studies increase data collecting to cover at least one full 

year. Doing so would help the model to consider holiday 

impacts and annual cycles, both of which significantly affect 

blood donation patterns [55]. 

While the structured dataset has just 120 aggregated daily 

data points, the GRU model used in this study has roughly 8.6 

million parameters. This significant disparity between the 

model's complexity and the small size of the data raises a clear 

difficulty by raising the possibility of overfitting [56]. Dropout 

layers were added to solve this; the data was temporally 

divided to maintain its chronological order. Notwithstanding 

these measures, the likelihood of overfitting cannot be totally 

ruled out. We mean to examine various model optimization 

strategies going forward to improve control over overfitting, 

including reducing the number of parameters and applying 

pruning methods. To make the model work better in real life, 

we need to add more samples to the set. These should be 

different and complete. 

Future work can use data from more places. This shows a 

wider range of how people donate blood and their traits. It will 

make the model more useful in real life. Using transfer 

learning or adjusting the model with local data might help it 

generalize well [57]. Also, testing the model with data from 

areas with different rules and health systems would offer a 

deeper and richer view of its overall reliability. 

Including real-time data on hospital demand and external 

variables such public health alerts and emergency situations 

would help future research by including more dynamic data 

sources [58]. Including these components would allow 

forecasting models to more quickly react to unexpected 

changes in blood demand. Moreover, considering how GRU 

fits with other sophisticated time-series methods such LSTM 

or Transformer-based models could help to improve 

forecasting performance by more efficiently controlling both 

transient changes and long-lasting patterns [59]. 

If the GRU-based forecasting system includes larger and 

more varied datasets, validates results across several domains, 

integrates real-time data sources, improves the model's 

parameters, and uses combined modeling techniques, it will be 

more flexible and resilient across different healthcare logistics 

environments, so overcoming these challenges [60]. 

 

 

6. CONCLUSIONS 

 

Using a GRU-based model, this paper investigates 

predicting blood demand in healthcare supply chains. A time-

series dataset from the PMI including preprocessing methods 

such sliding window segmentation, normalization, and 

maintaining chronological order was used to create the 

prediction framework. Its four-layer architecture and 

application of dropout layers let the GRU model exactly 

capture the temporal patterns inherent in blood demand and 

efficiently reduce overfitting. MSE and MAE metrics were 

used to assess the performance of the model confirming its 

capacity to closely approximate real demand patterns. 

The findings underline the encouraging part deep learning 

methods, especially the GRU model, might play in optimizing 

blood supply chain management. This strategy improves 

inventory control, lowers waste, and helps to avoid shortages 

by means of precise predictions of blood need, which are 

absolutely essential for delivering efficient healthcare. This 

paper underlines the potential modifications of the approach to 

fit various healthcare operational requirements as well as the 

benefits of using predictive models in blood supply logistics. 

By demonstrating how predictive models may support 

informed decision-making, optimize resource allocation, and 

improve transparency, this paper contributes fascinating study 

to the expanding area of machine learning in healthcare. 

Techniques like the GRU model offer sensible ways to 

increase efficiency and guarantee timely access to essential 

resources, especially as healthcare systems face more 

difficulties. 
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