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Among cancers, breast cancer continues to be a leading cause of mortality. Early 

detection is crucial for improving the chances of remission, but interpreting medical 

imaging, such as mammograms and ultrasounds, remains challenging due to factors like 

tissue density and human error. Artificial intelligence (AI), particularly machine 

learning (ML) and deep learning (DL), holds the potential to refine the accuracy of 

diagnoses. This study implements and compares the performance of nine classic ML 

algorithms (Random Forest, XGBoost, LightGBM, Support Vector Machine (SVM), 

AdaBoost, K-Nearest Neighbors (KNN), Naïve Bayes, Logistic Regression, and 

Decision Tree) and pre-trained Convolutional Neural Networks (CNNs), specifically 

ResNet50, DenseNet121, InceptionV3, EfficientNetB0, and VGG19, customized for 

this application along with CNN’s trained from scratch for ultrasound and mammogram 

images with accuracy 86% and 97% respectively. These models were assessed using 

accuracy, precision, recall, and F1-score as performance metrics, with the deep learning 

models showing significant improvement over the traditional ML models. The study 

used three datasets for breast cancer detection: CBIS-DDSM (mammograms), MIAS 

(mammograms), and a breast ultrasound dataset. The results give a deep analysis of 

model performance, offering an analysis of the advantages and limitations of each 

method throughout the datasets. The major contribution of this study paper lies its 

coverage of performance of both ML and DL models on multiple datasets covering 

different types of scans (ultrasound and mammogram) along with a density-based 

implementation of models to address challenges due to breast tissue density. This paper 

aims to identify the best-performing models and explore factors influencing their 

efficacy in clinical applications, contributing to the future of AI-driven breast cancer 

diagnostics. 

Keywords: 

artificial intelligence (AI), machine learning 

(ML), breast cancer, deep learning (DL), 

Convolutional Neural Networks (CNNs) 

1. INTRODUCTION

Breast cancer is the most prevalent and deadly cancer 

among women, despite the abundance of research done on it. 

In 2022 alone, over 2 million cases of this fast-spreading, 

deadly cancer were detected, with over 600,000 of them 

resulting in death. While there are a multitude of risk factors 

contributing to the development of cancer, including 

hereditary, hormonal, and lifestyle factors, it is estimated that 

nearly half the cases that occur have no traceable risk factors 

[1-5]. Due to this, early detection is critical in order to improve 

chances of remission. 

The advances made in medical imaging, such as 

mammography and ultrasound, are pivotal to early diagnosis. 

But interpreting these images remains challenging due to a 

variety of factors, ranging from density of breast tissue to 

simple human error. Artificial Intelligence provides a possible 

solution for this. The application of machine learning (ML) 

and deep learning (DL) models has exhibited significant 

potential in improving detection of breast cancer. 

This paper focuses on implementing and analyzing the 

performance of classic ML algorithms and DL models for 

detection of breast cancer using mammograms and ultrasound 

images. Each model was implemented on three distinct 

datasets, each offering unique characteristics, to ensure a 

thorough analysis of the models. A total of nine ML algorithms 

(Random Forest, XGBoost, KNN, LightGBM, SVM, 

AdaBoost, Naïve Bayes, Logistic Regression, and Decision 

Tree) and four deep learning architectures (InceptionV3, 

ResNet50, EfficientNetB0, and DenseNet121) were employed 

to cover a wide spectrum of approaches. 

The key contribution of this paper resides in its comparative 

evaluation of these models across the datasets. By evaluating 

the robustness and shortcomings of each approach, this study 

focuses on providing understanding of their effectiveness for 

breast cancer detection and identifying the best-performing 

models. This study highlights the positive effect of 

preprocessing on fatty tissue mammogram images. It 
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systematically compares traditional ML and CNNs across 

three different imaging datasets, in contrast to earlier efforts 

which are usually focused on a single dataset. It also highlights 

how transfer learning and data augmentation can improve the 

efficiency and generalization of models. Furthermore, we 

explore the underlying factors contributing to the observed 

performance differences and discuss their implications for 

clinical applications. 

 

 

2. LITERATURE REVIEW 

 

AI is becoming a crucial tool for physicians and radiologists 

in the identification of breast cancer since it improves speed 

and accuracy while lowering human error [6, 7]. By increasing 

precision, cutting down on pointless procedures, and assisting 

radiologists in classifying tumours as benign or malignant, 

artificial intelligence refines and optimizes the diagnosis of 

breast cancer [8, 9]. Research indicates that the diagnostic 

accuracy of AI plus pathologists is 99.5%, which is higher than 

that of AI (92%) and pathologists alone (96%). For gene 

expression and imaging analysis, models such as K-Nearest 

Neighbors (KNN) and Support Vector Machine (SVM), 

Recursive Feature Elimination (RFE) achieve 97.5% on 

WBCD [10-12]. AI models such as Discrete Wavelet 

Transform-based Markov Random Field (DWT-based MRF) 

improve the quality of mammograms, and multilayer 

perceptron (MLP) and KNN increase the identification of 

breast cancer, enabling a more accurate diagnosis in the early 

stages [13-15]. 

Breast cancer affected 2.23 million women and became the 

most malignant tumour in women [16], Since tumours under 

10 mm have an 85% remission rate, early diagnosis is 

essential. However, many go unnoticed until they are over 20 

mm. Early detection, accuracy, and speed of diagnosis are 

improved by machine learning and deep learning [17, 18]. 

Malignant tumours created by aberrant cell proliferation are 

the precursors of breast cancer. To stop the spread of cancer 

and increase the likelihood of remission, early detection is 

essential [19]. Understanding the hereditary, hormonal, 

environmental, and lifestyle factors driving breast cancer 

growth is crucial as research progresses [20]. 

Various researchers have extensively adopted deep learning 

methods, leading to exceptional accuracy scores [21]. Deep 

learning outperforms conventional techniques in medical 

imaging and pathology to improve breast cancer detection by 

increasing accuracy and facilitating early diagnosis [22, 23]. 

By analyzing medical pictures, increasing accessibility, 

decreasing expenses, and improving accuracy, CNNs have 

completely changed the detection of breast cancer. AI provides 

quicker, more accurate, and less expensive diagnoses despite 

obstacles [22, 23]. Accurate diagnosis, particularly in dense 

tissue, is made more difficult by deep learning in medical 

diagnostics due to issues including the requirement for sizable 

labelled datasets and the unpredictability of medical pictures 

[6, 13, 24]. Medical picture variability makes generalization 

difficult, however, methods like preprocessing, transfer 

learning, and data augmentation improve model performance 

and adaptability over a range of datasets [22, 25]. 

Recent developments in AI for breast cancer detection 

highlight the effectiveness of deep learning models such as 

CNNs, MLPs, and DWT-based MRFs in improving early 

diagnosis by enhancing image clarity and classification 

precision. Methods like transfer learning, data augmentation, 

and feature selection techniques (like SVM-RFE) have 

significantly enhanced model accuracy across various 

datasets. Nonetheless, key challenges persist, including the 

scarcity of large, well-labelled datasets, inconsistency in 

medical imaging, and the lack of interpretability in deep 

learning model outputs. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Dataset 

 

The datasets- CBIS-DDSM mammography dataset, MIAS 

mammography dataset, and ultrasound breast cancer image 

dataset were used for this study. The CBIS-DDSM, MIAS, and 

ultrasound datasets were chosen because they are publicly 

available, offer sufficient sample sizes, and offer broader 

scope for evaluation of model performance across different 

types of breast cancer imaging data [26, 27]. All three datasets 

are publicly available on Kaggle. Figure 1 shows a few sample 

images from each of these datasets. 

 

 
 

Figure 1. Sample images 
Note: a) Benign tumour – CBIS-DDSM dataset, b) Malignant tumour – 
CBIS-DDSM dataset, c) Benign tumour – MIAS dataset, d) Malignant 

tumour – MIAS dataset, e) Benign tumour – Ultrasound dataset, f) 

Malignant tumour – Ultrasound dataset and g) Normal image – Ultrasound 
dataset 

 

Table 1 gives a concise overview of the datasets considered 

for this study, including the name of the dataset, size, total 

image count, their format, and the number of classes 

considered for the classification task. 

 

Table 1. Information about the datasets considered for this study 

 
Sr. No. Dataset Size No. of Images Image Format Number of Classes 

1 CBIS DDSM breast cancer image dataset 6 GB 10239 .jpg 2 (Benign and Malignant) 
2 MIAS Dataset 322 MB 330 .pgm 2 (Normal and Abnormal) 
3 Ultrasound 256 MB 780 .png 3 (Normal, Benign, and Malignant) 
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3.2 Implementation 

 

This work was implemented in 3 parts. In the 1st part, the 

work explored the performance of classic ML algorithms on 

all three datasets. The second part concentrated on analyzing 

the execution of established DL models, again on all three 

datasets. Finally, the 3rd part included the development and 

evaluation of a custom CNN architecture. This proposed CNN 

was developed incrementally, adding layers with varying filter 

sizes and depths. By observing the change in accuracy with 

each added layer, we were able to rate the effect of different 

architectural choices on the model's performance in breast 

cancer detection. The aim behind this was to thoroughly 

evaluate different models’ performance on different datasets, 

to gather a detailed assessment of their performance across 

datasets. 

 
3.2.1 Data preprocessing 

Image preprocessing was tailored to each dataset. For 

CBIS-DDSM, missing image paths were addressed, 

pathological classifications were mapped to binary 

(benign/malignant) labels, and images were resized to 

224×224 pixels before flattening. MIAS images (.pgm format) 

were read in grayscale, resized to 64×64, and subsequently 

flattened. Ultrasound images, classified into benign, 

malignant, or normal, were converted to grayscale, resized to 

128×128, and flattened. Contrast enhancement was tested on 

the ultrasound dataset but showed minimal impact. Given the 

limited size of the ultrasound and MIAS dataset, the 

ImageDataGenerator function was employed during neural 

network training to augment the data. 

Experimentation discovered that the density of the 

surrounding tissue affects how well breast cancer is detected. 

Images having a density categorization of F tended to exhibit 

lesser accuracy than those with D (dense glandular) or G 

(glandular): according to our examination of the MIAS 

dataset. A specialized preprocessing pipeline was developed 

to address this issue for density F images. A tailored image 

preparation routine was developed to tackle the difficulties 

inherent in density F (fatty) images. This involved boosting the 

difference between light and dark areas, reducing distracting 

background elements, and highlighting the finer points within 

the fatty tissue. Contrast and brightness adjustments were also 

performed using linear intensity transformation as shown in 

Eq. (1): 

 
𝐼𝑛𝑒𝑤(𝑥, 𝑦) =∝∙ 𝐼𝑜𝑙𝑑(𝑥, 𝑦) + 𝛽 (1) 

 
where,  

𝐼𝑛𝑒𝑤  and 𝐼𝑜𝑙𝑑  are the pixel intensities before and after 

enhancement, 

∝ controls contrast, 

𝛽 adjusts brightness. 

By making those crucial details more distinct, the technique 

substantially increased how accurately models could 

categorize density F images. 

 
3.2.2 ML models 

Various ML models were examined after image 

preprocessing. Random Forest, LightGBM, and XGBoost 

were selected for their effectiveness with high-dimensional 

data and complex relationships. Logistic Regression gave a 

simpler, interpretable approach. AdaBoost, using HOG 

features for images and encoded features for tabular data, 

showed robustness, particularly with datasets which are not 

balanced. Naive Bayes, using different encoding techniques, 

offered efficient and consistent accuracy. Also, kernel-based 

models, SVM (RBF kernel) and KNN, were explored to 

address non-linear separability. 

Table 2 gives highlights about the selected hyperparameters 

for the ML models considered in this study. The 

hyperparameters were chosen based on common best practices 

as well as the previous studies to balance performance and 

computational efficiency.  

 

Table 2. Hyperparameters chosen for ML models considered 

in the study 

 
Model Selected Hyperparameters 

Random 

Forest 
n_estimators = 100, random_state = 42 

Logistic 

Regression 
max_iter = 1000 

Decision Tree random_state = 42 

XGBoost 
objective = 'multi:softmax', num_class = 3, 

random_state = 42 

LightGBM 
objective = 'multiclass', num_class = 3, 

random_state = 42 

SVM kernel = 'rbf', C = 1, gamma = 'scale' 

KNN 
n_neighbors = 5, weights = 'uniform', metric = 

'minkowski' 

AdaBoost 
n_estimators = 50, learning_rate = 1.0, 

base_estimator = DecisionTree(max_depth=1) 

Naive Bayes var_smoothing = 1e-9 

 

3.2.3 DL models 

The DL algorithms- ResNet50, DenseNet121, 

EfficientNetB0, InceptionV3 and VGG19 were implemented. 

The model ResNet50, based on ImageNet pre-trained weights, 

was used to distribute the images into either benign or 

malignant classes. Another transfer learning algorithm applied 

in this paper was VGG19 due to its ability to extract 

hierarchical features and efficiency for image-based tasks. The 

next model we explored was DenseNet121, which has been 

trained on a large dataset of diverse images. This model has 

learned rich visual features that can be transferred to our breast 

cancer classification task. EfficientNetB0 was another neural 

network applied due to its high performance, time efficiency, 

and scalable architecture that makes it capable to handle 

medical imaging datasets with large resolutions and diverse 

patterns. A previously trained InceptionV3 model was utilized 

for breast cancer image classification, using its deep feature 

extraction capabilities while adding custom layers for task-

specific learning.  

 

3.2.4 Custom CNN models/proposed model 

(1) Ultrasound 

By gradually improving its architecture, this study created a 

customized CNN for ultrasound and mammography datasets. 

Additional convolutional layers (64, 128, 256, and 512 filters) 

with max-pooling, dropout, and data augmentation gradually 

enhanced feature extraction and generalization after a basic 

model with an accuracy of 0.68 was used as a starting point. 

With 512 filters and data augmentation, the final model's 

accuracy of 0.86 showed how well it handled variances in the 

real world. The accuracy improvement can be represented as: 

 

𝐹𝑖𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + ∑∆𝐴𝑖 (2) 

 

where, ∆𝐴𝑖  represents the accuracy gain from each 
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enhancement step, such as additional layers or data 

augmentation. 

 

(2) Mammogram 

Starting with a 32-filter convolutional layer (3×3 kernel, 

stride 1, ‘valid’ padding) and ReLU activation to extract low-

level features, we present a bespoke CNN for medical image 

categorization. After reducing spatial dimensions and 

complexity with MaxPooling (2×2), further convolutional 

layers (64 filters, 3×3, ’same’ padding) are used to extract 

high-level features (see Figure 2). Overfitting is avoided by a 

Dropout layer (0.2), and feature maps are transformed for 

completely connected layers by a Flatten layer. Binary 

categorization is made possible by the last Dense layer with a 

sigmoid activation. The model’s efficacy for medical image 

analysis was demonstrated by its iterative revisions, which 

increased accuracy from 62% to 97%. The iterative 

improvements in the model can be expressed as Eq. (3): 

 

𝐴𝑛 = 𝐴0 + ∑ 𝑓(𝑇𝑖 , 𝐷𝑖 , 𝑃𝑖)

𝑛

𝑖=1

 (3) 

 

where, 𝐴𝑛 is the final accuracy, 𝐴0 is the initial accuracy, and 

𝑓(𝑇𝑖 , 𝐷𝑖 , 𝑃𝑖) represents the contribution of transformations 𝑇𝑖 , 

dropout 𝐷𝑖 , and pooling 𝑃𝑖 , at each step i. 

 

 
 

Figure 2. Design of the suggested CNN model for mammograms 

 

 

4. RESULTS AND DISCUSSION 

 

This section gives an overview of the findings of this study 

in terms of performance metrics- Precision, recall, and F1-

score. Precision measures the accuracy of positive predictions 

(True Positives / (True Positives + False Positives)): Recall 

quantifies the ability to identify all positive instances (True 

Positives / (True Positives + False Negatives)): and F1-score 

is the harmonic mean of precision and recall, providing a 

balanced measure (2 * (Precision * Recall) / (Precision + 

Recall)). These metrics help in evaluating the performance, 

especially in imbalanced datasets.  

 

4.1 Machine learning 

 

The performance of different models varied across the three 

datasets, as summarized in Table 3, where Decision Tree 

performed best on MIAS, AdaBoost on ultrasound, and 

Random Forest on CBIS-DDSM. Random Forest consistently 

achieved strong results, followed by XGBoost, LightGBM, 

and Decision Tree. Naive Bayes, KNN, and SVM generally 

showed lower accuracy. 

As observed in Table 3, models based on tree (RF, 

XGBoost, Decision Tree, LightGBM) generally outperformed 

others. This is likely because these models are good at 

capturing complex, non-linear relationships between features 

and are more tolerant of noise and missing data. In contrast, 

Naive Bayes showed poor performance, particularly on the 

MIAS dataset, likely due to its assumption that features are 

independent. Logistic Regression and SVM also struggled, 

probably because they are better suited for linear patterns and 

don’t handle non-linearity or complex interactions as 

effectively. 

 

Table 3. Accuracy attained by each of the implemented 

machine learning models for the considered datasets 

 

Dataset 
MIAS 

Mammography 
Ultrasound 

CBIS-DDSM 

Mammography 
Random 

Forest 
0.69 0.74 0.72 

Logistic 

Regression 
0.57 0.60 0.65 

XGBoost 0.7 0.71 0.60 

LightGBM 0.62 0.73 0.64 

Decision 

Tree 
0.75 0.58 0.57 

Naive Bayes 0.29 0.71 0.69 

AdaBoost 0.55 0.79 0.69 

SVM 0.58 0.70 0.61 

KNN 0.55 0.68 0.56 
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Figure 3. Performance of ML algorithms across datasets 

(Precision) 

 

 
 

 

Figure 4. Performance of ML algorithms across datasets 

(Recall) 

 

 
 

Figure 5. Performance of ML algorithms across datasets (F 

Score) 

 

The performance of models is significantly affected by the 

standard of the dataset. For example, MIAS suffers from label 

duplication and inconsistent entries, leading to redundant and 

noisy data. Although ultrasound images are generally of high 

quality, they tend to produce inconsistent results and are 

limited by a small sample size. CBIS-DDSM, while 

standardized, has issues with format conversion and lacks 

essential metadata. These challenges can hinder both the 

training procedure and the model’s potential to generalize, 

emphasizing need for clean, accurate, and well-labelled data. 

The bar graphs in Figure 3 and Figure 4 portray the 

performance of ML models based on weighted precision and 

weighted recall respectively. The bar graph depicted In Figure 

5 depicts the performance of all nine ML models for MIAS, 

ultrasound, and CBIS-DDSM datasets based on F Score. 

 

4.2 DL 
 

The performance of DL models was higher in comparison 

to machine learning models. It was noted that RestNet50 gave 

the best accuracy for the CBIS-DDSM dataset, while 

EfficientNetB0 performed better on the MIAS and ultrasound 

datasets, as observed in Table 4. 

From Table 4, ResNet50 and EfficientNetB0 performed 

well across all datasets. Their relatively simple and efficient 

architectures help reduce overfitting, making them better 

suited for smaller or less consistent datasets. In contrast, 

DenseNet121 and InceptionV3, which have more complex 

architectures, showed weaker performance on smaller datasets 

but performed better on CBIS-DDSM, likely due to its larger 

size and better standardization. These results suggest that 

simpler models tend to generalize better on limited data, while 

more complex models benefit from larger, high-quality 

datasets. 

The proposed CNN achieved remarkable accuracy, 

demonstrating its effectiveness in classifying medical images 

with minimal misclassifications. The iterative refinement of 

the architecture, from a basic model with a single 

convolutional layer to the final configuration, significantly 

improved performance. Key enhancements, including 

MaxPooling layers for feature extraction and noise reduction, 

additional convolutional layers for learning complex features, 

and Dropout for regularization, collectively boosted accuracy 

from 62% to 97% (see Table 5). These refinements enabled 

the model to generalize well across test data by mitigating 

overfitting and extracting deeper hierarchical features 

essential for classification. This progression validates the 

CNN’s reliability and robustness for medical imaging 

applications. 

 

Table 4. Accuracy attained by DL models for the datasets considered in the study 

 
Dataset Our CNN ResNet50 DenseNet121 InceptionV3 EfficientNetB0 VGG19 

Ultrasound 0.86 0.86 0.87 0.82 0.89 0.86 

CBIS-DDSM Mammography 0.80 0.93 0.88 0.90 0.84 0.88 

MIAS Dataset 0.97 0.91 0.88 0.83 0.89 0.86 

 

Table 5. Trends in the accuracy after addition of CNN layers for the proposed CNN for mammograms 

 
Model Version Layers Added Accuracy 

Basic Model 1 Convolutional Layer, Flatten, Dense 0.62 

Version 2 + MaxPooling Layer 0.75 

Version 3 + Additional Convolutional Layer 0.85 

Version 4 + Dropout Layer 0.91 

Final Model + Third Convolutional Layer 0.97 
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Figure 6. Performance of DL algorithms across datasets 

(Precision) 

 

 
 

Figure 7. Performance of DL algorithms across datasets 

(Recall) 

 

 
 

Figure 8. Performance of DL algorithms across datasets (F-

Score) 

 

The bar graphs in Figure 6 and Figure 7 portray the 

performance of DL models based on weighted precision and 

weighted recall, respectively. 

The bar graph depicted in Figure 8 represents the results of 

all five DL models and our own CNN’s for MIAS, ultrasound, 

and CBIS-DDSM datasets. 

The performance of DL models on different datasets can 

vary due to data quality, size, and consistency. For example, 

the MIAS mammography dataset and CBIS-DDSM yield 

good results because they are curated, annotated, and large-

scale datasets with standardized formats, which help models 

learn effectively. However, limitations like duplicated labels 

in MIAS and missing age information in CBIS-DDSM can 

impact the robustness of results. In contrast, the ultrasound 

dataset has inconsistencies, such as smaller sample size (780 

images), potential class imbalance, and lower resolution, 

leading to varying accuracy. Such issues emphasize the 

importance of dataset quality, proper preprocessing (e.g., 

handling DICOM to JPEG conversion): and addressing flaws 

like labelling errors to ensure reliable model performance. 

Figure 9 shows one of the images wrongly classified as benign. 

 

 
 

Figure 9. Wrongly classified image 

 

During our experiments with models on mammography, 

datasets revealed that denser tissue images were more prone to 

misclassification. Breast tissue density can hide underlying 

lesions, making them hard to get detected by the naked eye as 

well as models. Traditional feature extraction techniques may 

not be enough to detect these complex patterns in dense breast 

tissue leading to incorrect classification. We applied each DL 

model density wise to MIAS dataset images and observed a 

significantly lower accuracy for images with density F(fatty) 

than images of density G(glandular) and density D(dense 

glandular). While this problem persists, we were able to 

notably improve the accuracy of the classification of Fatty 

tissue images in the MIAS dataset through the additional 

image preprocessing we applied to them. The increase in 

accuracy can be observed below in Table 6. 

 

Table 6. Performance on fatty tissue images 

 
Image Type ResNet50 EfficientNetB0 DenseNet121 InceptionV3 VGG19 

Density F 0.89 0.82 0.86 0.75 0.78 

Density F with preprocessing 0.94 0.88 0.92 0.83 0.82 

 

 

5. CONCLUSIONS 

 

This study provides a detailed evaluation of both traditional 

ML and DL models for breast cancer detection using 

mammographic and ultrasound images. While DL models 

such as EfficientNetB0, DenseNet121 and our CNN 

demonstrated consistently good results in terms of accuracy it 

was observed that decision tree-based ML models like 

Random Forest and XGBoost performed better on the smaller 

datasets where DL models lagged due to insufficient training 

data till image generation was used to rectify the issue. DL 

models also require substantial computational resources and 

large datasets for training, which is not always feasible. 

The implementation of DL models density wise on MIAS 
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dataset also revealed significantly lower accuracy for images 

with fatty breast tissue density. While this limitation was 

rectified to a certain extent by utilizing additional image 

processing techniques as observed in this study the accuracy 

of fatty density still remained lower than that of other 

densities. 

Despite promising advancements significant challenges 

such as public availablity of large, annotated datasets with 

images of good quality as well as high computational power 

requirements stand in the way of integrating AI in cancer 

detection. Moreover, the lack of interpretability in model 

decisions makes it hard for clinicians to fully trust and adopt 

these systems. 
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