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Vegetables are one of the most daily consumable crops, and mass produced in 

greenhouses. Several previous experimental scientific studies have reported on the main 

chemical elements that speed the growth rate and crop amount. While experimental 

studies are taking a long time to investigate the effect of these chemical elements on the 

plant and harvest growth. Biophysical modelling which relies on biochemical and 

biophysical mechanisms can reduce the time and chemical waste, in addition it offers 

insights to scientists, engineers and farmers at the same time. Moreover, recent 

advances in Internet of Things (IoT) help to control growth factors such as irrigation, 

temperature, light intensity, and humidity etc. IoT provides practical solutions to 

simultaneous measurements of ionic concentration in soil and plants. In this research 

paper, we have developed a model that consists of a few differential equations that 

model biochemical and biophysical mechanisms. These equations are significant to 

predict and to supervise tomato plant’s growth to increase crop production. The model 

offers experimentally validated predictions, and extrapolates the effect of three main 

chemical nutrients; Nitrogen, Potassium, and Phosphorus on the life cycle of tomato. 

The model has the advantage over previous modelling attempts; it uses less number of 

parameters that are involved directly to plant growth and production. Moreover, it 

incorporates time explicitly. The model has low dimensionality compared to existing 

models, yet it reproduces the experimentally observed effects on tomato growth and 

crop amount. 
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1. INTRODUCTION

Using IoT for modeling Nitrogen (N), Phosphorous (P), and 

Potassium (K) (NPK) nutrition in planting vegetables can be a 

beneficial approach. By incorporating IoT devices and sensors 

into smart green houses, you can collect real-time data on 

various environmental factors, such as soil moisture, 

temperature, and light levels [1, 2]. To model NPK nutrition, 

you can deploy IoT sensors that measure the nutrient levels in 

the soil. These sensors can provide data on the current nutrient 

status and help you monitor and optimize the NPK levels for 

optimal vegetable growth. By connecting these sensors to a 

central system or platform, you can collect and analyze the 

data to gain insights into the nutrient levels and make informed 

decisions about fertilizer application. Additionally, IoT 

devices can assist in automating the irrigation process based 

on the measured soil moisture levels. This ensures that plants 

receive adequate water while avoiding overwatering or under 

watering, which can impact nutrient availability and uptake. 

Furthermore, by integrating weather data into your modeling 

system, you can account for external factors that influence 

nutrient absorption, such as rainfall patterns and temperature 

changes. This holistic approach can help you develop a 

comprehensive model for NPK nutrition in your vegetable 

garden. Overall, utilizing IoT for modeling NPK nutrition in 

planting vegetables enables precision agriculture, optimizing 

nutrient management, and promoting healthier and more 

productive crops. In previous paper [3], we have seen in 

practice through data collection the importance of calibrating 

the amount of nutrients that are important for the plants. This 

calibration is fully depending on plant’s several growth levels, 

from plant nursing stage until fruit harvesting stage. 

NPK refers to the three major nutrients that are essential for 

plant’s growth: Nitrogen (N), Phosphorous (P), and Potassium 

(K). These fertilizers are mostly found in nutrients and soil and 

used to improve plant growth and crop production. 

In the past three decades, nutrient balances from a historical 

perspective have gained momentum as a way to reach best 

conclusions about the history and functioning of agro-

ecosystems. It combines past information on weather and 

soils, crop and yield patterns, and key management practices, 

among other data, with current predictive models of soil 

nutrient cycling. However, most of the applied models lack 

one or more important processes, for example, nitrogen 

leaching or soil weathering, and most efforts have focused on 

nitrogen homeostasis, ignoring the importance of P and K. 

Recently, NPK analysis has become the basis of many studies 

of historical nutrient balances involving most input-output 
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processes. In general, the agro-ecosystem is analyzed as a 

whole, which includes all land uses in a given area, but some 

studies have focused on crop yield [4]. 

Each of the nutrients considered has its own natural and 

synthetic history, as well as soil-specific soil chemistry. N has 

a long recent history. The interest devoted to P at present, 

results largely from its limited global reserves and because it 

continues to provide key missing links in agricultural history. 

K has become a “forgotten nutrient” and is not considered as 

important as N and P, although it plays a major role in plant 

physiology. Potassium reserves appear to be sufficient for 

hundreds of years but profitability in marginal soils will 

increasingly depend on its efficient use [5]. 

 

 
 

Figure 1. Growing stages of tomato plant last about 100 days 

[3] 

 

 
 

Figure 2. Arduino, NPK sensor and LCD display system to 

read nutrition in soil [3] 

 

In this study, Figure 1 is defining the growing stages of 

vegetable plant. Figure 2 is defining the measuring developed 

tool to read the concentration of NPK in the soil. We examined 

the soil fertility of agricultural lands using a nutrient balance 

approach that seeks to cover all NPK inputs and outputs from 

the topsoil. In the past, where lack of data to determine how 

much soil needs of NPK nutrition. The agriculture engineers 

in Palestine were improvising in the most cases, as they do not 

have a precise measurement tool to determine the 

concentration of nutrition’s in any area of land, so they had 

and depend on some common sense of the kind of soil 

according to the color the soil (e.g., Black Soil, Red Soil, White 

Soil) [6] and then advise farmers to use fertilizers according 

this common sense with no precise figures of concentration of 

each nutrition’s. In Figure 2, we have developed a simple 

measurement tool that consists of NPK sensor that enables us 

to determine how much NPK elements in soil with precise 

figures, then we can determine how much to add of each 

nutrient concentration. This addition will be added as a 

solution in the irrigation water. In particular, we found from 

previous work [3] that N element is mostly needed in first three 

stages as given in Figure 1, and P element is mostly needed in 

flowering stage and finally K elements is mostly needed in the 

last two stages of plant production.  

We have defined the three variables as nutrition for a plant, 

these variables can be gauged by sensors, all of these variables 

are running by time (100 days) which defined as plant growing 

and producing stages depicted in Figure 1. Moreover, we can 

send these readings to be stored as blue-tooth adapter to big 

data repository [7]. 

Calibrating NPK levels in soil offers several benefits:  

Optimized Nutrient Application: Calibration ensures that 

you provide the right amount of nutrients, avoiding over-

fertilization or under-fertilization, which can negatively 

impact plant growth and yield.  

Cost Savings: Precise nutrient application reduces the 

wastage of fertilizers, saving you money on unnecessary 

inputs.  

Improved Crop Yield: Properly calibrated NPK levels 

promote healthy plant growth, leading to increased crop yields 

and better-quality produce.  

Environmental Protection: Accurate nutrient application 

minimizes nutrient runoff, decreasing the risk of water 

pollution and environmental harm.  

Sustainability: By matching nutrient supply to plant needs, 

calibration contributes to sustainable agricultural practices and 

reduces the environmental footprint of farming.  

Reduced Nutrient Imbalance: Calibration helps prevent 

nutrient imbalances that can result in nutrient deficiencies or 

toxicities, ensuring plants receive a balanced diet for optimal 

development.  

Data-Driven Decisions: Calibration provides data that 

supports informed decision-making, allowing farmers to 

adjust nutrient management strategies based on real-time soil 

and plant conditions.  

Enhanced Soil Health: Balancing nutrient levels contributes 

to soil health, fostering microbial activity and nutrient cycling, 

which further supports plant growth.  

Adaptation to Variability: Different crops and soil types 

have varying nutrient requirements. Calibration enables 

tailoring nutrient application to suit the specific needs of each 

crop and soil type.  

Long-Term Productivity: Consistently calibrated NPK 

levels help maintain soil fertility over time, supporting 

sustained productivity for future growing seasons. 

The main purposes of this study are to develop an integrated 

nutrient balance model, and to provide a comprehensive 

assessment of nutrient functions and cycling of past 

agroecosystems. The proposed model is a build-up and 

refinement to previous modelling studies [9-12]. In this 

research article we introduce a model composed of few 

differential equations as compared to previous studies, albeit 

it relies on previous modelling and regression models to 

estimate and simulate some of the needed rates and 

parameters. Moreover, in contrast to previous models, the 

modelling methodology here is incorporating the growth time 

explicitly in the equations which make it easier for 

implementing it easier parallel to the experiment and by 

farmers too. 

Overall, calibrating NPK levels in soil is a crucial practice 

that promotes efficient resource utilization, healthier crops, 

and sustainable agriculture. The research paper is arranged in 

the following manner: Model description section present 

model assumption, equations and parameter estimation. Then, 
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in model validation section, we show explain how numerical 

methodology used to solve the set of differential equations and 

compare the model output against experimental data provided 

in reference [3]. Finally, the conclusion and outlook section 

shed the light on potential future use of the model and how 

This study would help farmers, researchers and practitioners 

to have systematic methods based on equations that define the 

interdependency between NPK as parameters, and the amount 

to be added to the soil from each N-P-K substance.  

2. MODEL DESCRIPTION

Calibrating an NPK equation for soil and vegetables 

involves determining the appropriate nutrient levels for 

optimal plant growth. To calibrate, one collects soil samples 

from the vegetable growing area, conducts nutrient tests, and 

analyzes the data to establish the relationship between soil 

nutrient levels (NPK) and plant growth. This helps customize 

fertilization practices to match the specific nutrient needs of 

your chosen vegetables.  

Several scientific studies have reported on the modelling of 

vegetable and fruit crops [8-10], such models were also made 

as available software like Vegsyst, Vegsyst V2 [11], or 

growth, etc. In These models, a set of differential equations 

was developed to describe the growth of different organs of 

the plant. The total growth is the sum of net individual rates of 

growth in these organs. Other models are dependent on 

regression analysis which require a pre-knowledge of specific 

dry matter percentage in each organ [12]. Recent studies have 

focused on the dynamics of the main ionic concentration in 

each organ using photo-thermal index [13]. In a less detailed 

ion uptake studies which was concerned with ion 

concentration in each organ disregarding the biophysical 

mechanisms lead to those concentrations, these studies used 

regression models to estimate the internal ionic concentration, 

which later used as variables in the dynamical model [9], or in 

Vegsyst model [10] to estimate the dry matter content of each 

organ. The studies considered multiple ionic concentrations 

such as nitrogen, phosphorous, potassium, calcium, 

magnesium or sulfur. Here, we managed to find a minimal set 

of equations that take into account regression and dynamical 

approach to estimate dry and fresh matter based on 

experimental data provided by Juneidi [3], who has proctored 

the concentration of three main ionic concentrations, N, P and 

K, using Internet of Things techniques measured in units of 

mg. 

We used kinetic rates for photosynthesis of these three main 

ions in leaves. Starting with base growth rates (Rio, i=N, P, or 

K) that are calculated using the formula:

Rio=Ro*SLA*Mi 

where, Ro is the photosynthesis rate and is dependent on 

Photosynthesis photon flux density (PPFD). In this model we 

assume a constant value corresponding to average PPFD level 

of 𝑅𝑜 ≅ 14 𝜇mol.m-2.s-1 [14]. Mi is the molar mass of each ion 

individually in kg units.  

Specific leaf area (SLA) was estimated using an 

exponentially decaying function fitted (R2=0.9) to data in 

reference [15]. 

SLA=24.5*(e(-t/330)), with t is simulated in days, SLA has the 

units of m2/kg.
In general, enzyme activity and hence growth rates are time 

and temperature dependent [16]. In our model growth rates are 

assumed to depend on SLA, temperature and internal ionic 

concentration [17]. Internal ionic concentration is shown to 

rise monotonically and for simplicity we modelled it logistic 

growth function [18] a function used widely in modelling plant 

growth. We model growth rates in the following form with 

tio=34 days, chosen to be by the end of the germination 

(nursing and early growth stages) [19]. 𝜏𝑖=1 day represents the

response time for internal ionic concentrations to equilibrate 

with the external changes in ionic concentrations. lowering 𝜏𝑖

didn’t affect our results while raising it would make the 

vegetation process earlier. 0.02 is chosen to reflect basal 

growth or developmental activity in the germination stage and 

necessary to reflect non-zero growth. 

𝑅𝑁 = 𝑅𝑁𝑜  
[𝑁]𝑖𝑛

1𝑋10−6
𝑄𝑡 ∗ (0.02 +

1

1 + 𝑒
−(

(𝑡−𝑡𝑁0)
𝜏𝑁

)
2) 

𝑅𝑃 = 𝑅𝑃𝑜  
[𝑃]𝑖𝑛

1𝑋10−6
𝑄𝑡 ∗ (0.02 +

1

1 + 𝑒
−(𝑡−𝑡𝑃0)

𝜏𝑃

) 

𝑅𝐾 = 𝑅𝐾𝑜

[𝐾]𝑖𝑛

1𝑋10−6
 𝑄𝑡 ∗ (0.02 +

1

1 + 𝑒
−(𝑡−𝑡𝐾0)

𝜏𝐾

) 

𝑄𝑡 is the changes in growth rates in response to changes in

temperature (T) and is given in terms of the Q10 factor by  

𝑄𝑡 = 𝑄10

𝑇−𝑇0
10

where, Q10 show variations with temperatures, hence we use a 

regression model in reference [20] for the variations, 𝑄10 =
3.22 − 0.046 ∗ 𝑇 , where T is measured in ℃. [. ]𝑖𝑛  are the

internal ion concentrations and calculated using regression 

models shown below fitted for data in Figure 3 [9] with 

R2=0.995, given a specific external concentration of the ion 
[. ]𝑒𝑥𝑡.

[𝑁]𝑖𝑛 = [𝑁]𝑒𝑥𝑡𝑒−𝑡/130

[𝑃]𝑖𝑛 =
[𝑃]𝑒𝑥𝑡

3.5

[𝐾]𝑖𝑛 =
[𝐾]𝑒𝑥𝑡

2.8

Figure 3. Growth rate functions for three main nutrients used 

in the simulation 
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We used a system of two differential equations to describe 

the leaf (WL), fruit (WF) dry matter accumulation, with 

photosynthesis was done in leaves, the rates in leaves have 

temperature dependence in addition to concentration and 

evolution time dependence. We note here, the details of the 

biophysical mechanisms behind the time evolution of the rates 

are lumped in sigmoidal like shape (represented by the last 

terms in parentheses on the right in the RN, RP, and RK 

formulae) for P, K and Gaussian for N nutrient. The sigmoidal 

and the gaussian trends are realized from a general growth. 

 

𝑑𝑤𝐿

𝑑𝑡
= ∑ 𝐵(𝑖) ∗ 𝑅𝑖

𝑛

𝑖=1

 (1) 

 

𝑑𝑤𝐹

𝑑𝑡
= ∑(1 − 𝐵(𝑖)) ∗ 𝑅𝑖

𝑛

𝑖=1

 (2) 

 

where, the nutrition partitioning function 𝐵(𝑖) = 𝑒−(𝑡+1.5)/25 

having a value between 0 and 1 over growth time course, and 

accounts for the decline in leaf growth and the rise in the fruit 

crop. It basically distributes the nutrition material between 

leaves and fruit. This form of the partitioning function ensures 

a constant delivery combined percentage of nearly 0.2 (the y-

intercept in Figure 4) to the roots and stem as shown in Figure 

4 [21]. Moreover, the soaking period of the seeds takes about 

1.5 days. The function reasoned to be decreasing at slow rate 

rather than a sharp decrease to ensure a gradual decrease of the 

mass allocated to the leaves as compared to the fruit weight 

which logically should increase with time.  

 

 
 

Figure 4. Assumed shape of the nutrition partitioning 

function as a function of time 

 

To account for harvested mature fruit, we assumed an 

increasing daily removal rate with a maximal value of 0.135 

kg starting from the mature fruit stage which occur around the 

day 85. Hence, the removed mass (𝑤ℎ) can be modelled as  

 
𝑑𝑤ℎ

𝑑𝑡
= 0.135/ (1 + 𝑒

−(𝑡−89)
0.01 ) (3) 

 

Eq. (1) describes the accumulation of dry matter in leaves, 

thus we used this to estimate dry matter in different parts of 

the plant. For the mass percentage (%N, %P, and %K) of each 

nutrient in the leaves and fruit respectively, we used 

percentages provided in reference [21]. 

Thus, the fresh weight of the leaves, taking into account that 

most of the fresh mass is water, can be given as 

wL,fresh= wL/(%N + %P + %K) *1/WpL (4) 

 

wF,fresh= wF/(%N + %P + %K) *1/WpF (5) 

 

Such that, WpL= 1- (%N + %P + %K - % of other dry 

content in the leaf) is the water percentage in the leaves, and 

WpF= 1- (%N + %P + %K - % of other dry content in the fruit) 

is water percentage in fruit. The percentage of other dry 

content in the leaf and fruit are estimated from reference [21] 

to be nearly 6% and 2% respectively.  

The mass of the stem and root is estimated from fresh mass 

of the leaves by Eq. (8) and Eq. (9) in reference [9].  

 

WS=0.3391*wL,fresh-0.53771× 10-3 (6) 

 

 

WR=0.6*wL, fresh (7) 

 

Finally, the total mass (Wtot) of the plant is the sum of all 

the masses carried by each organ of the plant. 

 

Wtot = wL,fresh +wF,fresh +WR +WS - 𝑤ℎ 

 

 

3. MODEL VALIDATION 

 

With these equations in hand, we have used MATLAB 2015 

to integrate the set of three differential equations using Euler-

Maruyama integration scheme with time step 1 day. The 

dynamical model presented here was able to generate the 

reported experimental data provided in reference [3] as shown 

in Figure 5, in which instant measurements of nutrient 

concentration in the environment were done using IoT. Figure 

5 shows that simulation results coincide with experimental 

observations at most instants of time validating model 

underlying biophysical assumptions and parameter values. We 

also notice some near the ripening stage leaving room for 

future enhancements of the growth rates and the start of the 

crop cultivation stage. This similarity between the experiment 

and simulation is attributed to the chosen shape of the growth 

rates as well other underlying assumptions.  

 

 
 

Figure 5. Simulated results and experimental measurements. 

Simulated data are generated by integrating Eq. (1) using a 

code written in MATLAB 2015 
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Figure 6. Temperature variation over the 120 days period of 

planting as used in experiment [3] 

The growth rate functions used to generate these results are 

presented in Figure 3. It is evident that growth rates are 

strongly influenced by temperature as shown in Figures 3, 

abrupt changes in temperature are directly reflected in the 

growth rates (Figures 3 and 6). This observation is consistent 

with previous experimental findings related to tomato fruit 

ripening [22]. Growth rates are driven by enzyme activity 

which we haven’t modelled, rather, the model lump-sum their 

kinetics in the growth rates and are usually sensitive to abrupt 

temperature changes [16]. Growth rates are the main driving 

mechanism in mass production in tomato, hence small changes 

in their value will result in a direct change to the calculated 

fresh and dry matter in Eqs. (1) and (2).   

As we can see, the dynamical model, composed of few 

differential equations, is sufficient to generate the 

experimentally observed behavior, an advantage over other 

detailed models which vary in the level of complexity and 

number of equations. The toy model proposed here is a lump-

sum of other models which has many parameters, and uses a 

different set of regression equations for different tomato 

organs [9]. Here we see that crop mass can be estimated too, 

as shown in Figure 7. The simplicity of our model doesn't 

ignore the internal biophysical mechanisms related to enzyme 

activity and its time and temperature dependence, instead, we 

have used growth rate functions that agree with the general 

shape of them reported in the literature [16]. The exact shape 

of the growth rates was estimated by choosing physiologically 

meaningful values such as the approximate starting or ending 

time of the experimentally observed growth stages [3, 19]. 

Figure 7. Estimated crop production over time 

4. CONCLUSION

In this research article, we have developed a biophysical 

model that incorporate previously published data and models. 

In this paper we managed to reduce the burden of using many 

differential equations to estimate the crop mass production, 

shown in Figure 7. The model basically relies on previous 

studies on growing and modelling tomato crop in estimating 

model parameters, either by using average values, or 

regression curves. The model shows explicit dependence on 

time as compared to previous models, which account for time 

implicitly, allowing it to be modified easily for future 

experiments not only in tomato, but also used as prototype for 

other crops that have similar life course similar to other 

previous modelling attempts for cucumber [8] and other fruit-

producing greenhouse crops. Thus, our model can be applied 

to other vegetables albeit model parameters and time period 

for growth stages are adjusted to reflect the life cycle of the 

intended plant. The model is based on estimating the fresh 

mass of the plant as whole, using specific percentages from 

scientific literature for the abundance of the three main 

elements (N, P, and K) we are concerned about in this study. 

The model shows a very reliable way for calculating the total 

plant weight and crop mass production at any time over the 

lifespan of the tomato plant. Our results are shown per plant, 

and can be easily transformed to account for a field of such a 

plant. The model contains fewer parameters compared to 

previous attempts at modeling tomato growth. It enables the 

investigation of the effects of the three main nutrients on 

growth rate and crop mass production. We observe that 

nitrogen is essential for vegetative growth and remains a key 

component of the tomato fruit. Furthermore, the model 

suggests that after the germination period, the plant initiates a 

nutrient distribution mechanism, with a time-evolving 

allocation of the products of the growth process—from the 

nursing stage to the onset of fruit production. 

The model could be improved by incorporating different 

mass partitioning functions for each growth stage. 

Additionally, the nutrient percentages in the fruit and leaves 

are assumed to be constant throughout the model. Future work 

could explore how variations in these nutrient concentrations 

impact the total plant mass. 
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