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Despite widespread anecdotal evidence of Ayurvedic breathwork benefits, scientific 

understanding of its impact on the human skin microbiome remains limited, creating a 

gap between traditional practices and modern microbiome science. This research 

developed a diagnostic framework utilizing artificial intelligence and neural networks 

to investigate the relationship between Ayurvedic breathwork protocols and skin 

microbiome composition. An 8-week observational study involved in healthy adults 

practicing specific breathwork techniques three times weekly. Wearable sensors 

captured breath parameters (rate, depth, heart rate variability), while skin microbiome 

samples were analyzed via 16S rRNA gene sequencing at baseline, week 4, and week 

8. Dilated Convolutional Neural Networks were employed for feature extraction from

both breathwork and microbiome datasets, with classification modules (Temporal CNN

achieving 94.63% accuracy, Sparse CNN achieving 92.04%) identifying correlations.

Participants demonstrated enhanced microbiome diversity and stability, notably

increasing beneficial bacteria like Staphylococcus, epidermidis while reducing

inflammatory strains such as Cutibacterium acnes. Reported skin improvements

included reduced dryness, redness, and sensitivity, with breathwork sessions featuring

prolonged exhalations showing the most significant microbial richness impact. This

study integrates ancient Ayurvedic knowledge with contemporary microbiome science,

providing empirical evidence of how specific breathwork techniques modulate skin

health through microbiome influence. These findings lay the groundwork for

personalized, non-invasive healthcare strategies leveraging breathwork's potential

benefits.
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1. INTRODUCTION

The integration of artificial intelligence (AI) and 

conventional medicine has brought together new prospects of 

studying the interconnection between the traditional 

knowledge and the contemporary technology. Ayurveda, one 

of the oldest holistic healing practices in the world, provides 

the overall plan of health and well-being by focusing on the 

interaction of physical and non-physical aspects of human 

beings. Pranayama, a fundamental breathing technique in 

Ayurveda, is a prime example of the system's sophisticated 

approach to managing physical and psychological health [1]. 

Although many such practices can be found and their 

effectiveness can be supported by numerous testimonials, few 

of these approaches have been investigated from a perspective 

of modern science. At the same time the breakthrough of 

microbiome science has shed light on the powerful effects of 

microbial communities in human existence. The skin 

microbiome refers to the complex interacting community of 

microorganisms that live on the skin and are involved in a 

number of critical functions including skin homeostasis and 

immune system regulation. Human skin is made up of a 

combination of proteins and enzymes that work together 

symbiotically with biomes and are bound by the presence of 

certain environmental conditions mainly the genes, diets and 

lifestyle [2]. According to Rela et al. [3], a study demonstrated 

that a deficiency in microbiome diversity on human skin can 

lead to various skin diseases, including acne, eczema, and 

psoriasis. This research highlights the importance of the 

microbiome conditions in human skin.  

Ayurveda is an ancient practice of medicine which is well-

recognized for its proven non-invasive benefits. However, its 

relation with modern science and technology remains 

underexplored. Breathwork, one of the most fundamental 

practices of Ayurveda has demonstrated significant physical 

and physiological benefits for human body such as reducing 
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stress, improving the function of the autonomous nervous 

system [4]. Despite all these findings, a critical knowledge gap 

exists regarding how Ayurvedic breathwork techniques 

practiced on a daily basis can influence the skin microbiome 

composition and diversity, which in turn plays a vital role in 

human skin health and immune system regulation. The skin 

microbiome which forms a vital part of human health has 

gained increasing attention in recent years, sparking 

significant research efforts [5]. The advancements in AI and 

machine learning have made it easy to analyze complex 

biological datasets. These AI and Machine Learning (AIML) 

technologies have been successfully applied in fields like 

genomics, proteomics, and metabolomics. However, their 

integration with traditional systems like Ayurveda remains 

underdeveloped [6]. The specific challenge lies in creating a 

computational framework that can simultaneously process 

temporal breathwork parameters (breath rate, depth, duration) 

and dynamic microbiome sequencing data to identify causal 

relationships between pranayama practices and microbial 

community shifts. The developed model must be capable of 

processing diverse datasets, including those derived from 

breathwork practices and microbial profiles of the person 

undergoing breathwork activities. This will identify 

meaningful correlations and classify potential causal 

relationships [7]. Addressing this gap provides a unique 

opportunity to uncover the connection of Ayurverdic practices 

to skin and systemic health. This integration could lead to the 

development of non-invasive approaches that enhance both 

dermatological and overall well-being of a person. Based on 

the established physiological effects of pranayama on stress 

reduction and autonomic nervous system regulation, 

combined with evidence that stress hormones influence 

microbial communities, we hypothesize that specific 

Ayurvedic breathwork protocols will modulate skin 

microbiome diversity and stability in measurable ways. 

Specifically, we predict that participants practicing structured 

pranayama techniques will demonstrate increased microbial 

diversity (measured by Shannon index) and enhanced 

abundance of beneficial bacterial strains compared to control 

groups. 

This research presents a novel diagnostic system based on 

neural networks to study the relationship between Ayurvedic 

breathing techniques and corresponding changes in the skin 

microbiome [8]. The key innovation lies in our multi-scale 

feature extraction approach using dilated convolutional neural 

networks that simultaneously processes breathwork temporal 

patterns and 16S rRNA microbiome sequencing data to 

identify specific correlations between pranayama parameters 

and microbial community dynamics. This integrated 

computational framework represents the first systematic 

application of deep learning algorithms to quantify the 

biological mechanisms underlying traditional Ayurvedic 

practices at the microbiome level [9]. The ultimate aim is to 

establish evidence-based, personalized, and non-invasive skin 

care solutions that validate traditional knowledge through 

contemporary scientific methods [10]. This framework 

advances both computational biology and integrative medicine 

by providing quantitative validation of Ayurvedic principles 

through measurable microbiome biomarkers. 

 

 

2. LITERATURE REVIEW 

 

The integration of traditional medicine and modern 

technology has the potential to revolutionize healthcare 

practices, offering new insights into the complex relationships 

between lifestyle, wellness, and biological systems [11]. 

Ayurveda, an ancient holistic healing system originating from 

India, has long been recognized for its therapeutic benefits. 

Central to Ayurvedic practices are various modalities such as 

diet, herbs, yoga, and breathwork (pranayama) [12]. These 

techniques aim to harmonize the mind, body, and spirit, 

promoting overall health and well-being. However, a critical 

analytical gap exists between the documented systemic effects 

of Ayurvedic practices and their localized biological 

mechanisms, particularly at the microbiome level, preventing 

the development of evidence-based integrative approaches. 

Simultaneously, the advent of microbiome research has 

shed light on the profound role of the microbiome in 

maintaining human health. The skin microbiome, a dynamic 

ecosystem of microorganisms that resides on human skin, 

plays a key role in protecting against pathogens, modulating 

immune responses, and maintaining the skin's barrier function 

[13]. Gupta et al. [14] have established that disruptions in the 

skin microbiome can contribute to various dermatological 

conditions such as acne, eczema, psoriasis, and other 

inflammatory skin diseases. While this research establishes the 

microbiome's central role in skin health, a fundamental 

knowledge gap persists regarding how external interventions 

beyond pharmaceuticals and topical treatments can modulate 

these microbial communities. This gap is particularly 

pronounced for traditional practices, where the absence of 

mechanistic understanding limits their integration into 

evidence-based healthcare. 

Recent developments in AI, particularly deep learning and 

neural networks, have enabled researchers to analyze large, 

complex datasets and uncover relationships between variables 

that were once difficult to detect [15]. AI has already shown 

promise in various biomedical fields, including genomics, 

personalized medicine, and drug discovery. However, the 

application of AI in bridging traditional healing systems with 

modern biological understanding represents an underexplored 

frontier, particularly in elucidating the mechanistic pathways 

through which ancient practices influence contemporary 

biomarkers like microbiome composition [16]. 

Pranayama or the Ayurvedic breathwork encompasses a 

group of specific controlled breathing techniques intended to 

regulate the flow of prana or life force within the human body. 

While extensive research documents pranayama's systemic 

physiological effects, a critical analytical gap exists in 

translating these macro-level changes to specific microbiome-

level mechanisms. The pranayama leads to decreased heart 

rate, reduced blood pressure, and autonomic nervous system 

rebalancing [17]. Studies show that 30-minute sessions of 

controlled breathing can decrease cortisol levels and increase 

vagal tone, both linked to improved cardiovascular health and 

stress management [18]. 

The mechanistic pathway from these documented effects to 

skin microbiome modulation involves several unexplored 

biological cascades [19]. Cortisol reduction through 

pranayama could theoretically influence skin microbiome 

composition through multiple pathways: (1) decreased cortisol 

levels reduce chronic inflammation, altering the selection 

pressure on skin microbial communities by changing the 

availability of inflammatory mediators that certain bacteria 

utilize; (2) enhanced parasympathetic activity through 

increased vagal tone affects sebum production and skin pH, 

creating environmental conditions that favor beneficial 
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commensals over potential pathogens; and (3) improved 

stress-related immune regulation could enhance the 

production of antimicrobial peptides and immunoglobulins 

that shape microbial community structure. However, these 

theoretical pathways remain empirically unvalidated, 

representing a significant gap in our understanding of how 

ancient practices influence modern biological markers [20]. 

The skin microbiome is the complex community of trillions 

of microorganisms, including bacteria, fungi, viruses, and 

archaea on the skin surface [21]. These microorganisms are 

essential to skin homeostasis by inhibiting pathogens, 

regulating immune responses, and contributing to skin barrier 

function. Healthy skin is characterized by balanced microbial 

diversity, while dysbiosis contributes to various skin diseases 

including acne, eczema and psoriasis [22]. Critical analysis of 

existing research reveals that while microbial diversity's 

importance is well-established, the specific biological 

mechanisms through which stress modulates this diversity 

remain poorly characterized [23]. 

According to Sinha et al. [24], diversified microbiomes 

demonstrate greater resilience to environmental stress and 

enhanced pathogenic resistance. However, research has failed 

to elucidate the precise molecular mechanisms through which 

stress-induced physiological changes translate to altered 

microbial selection pressures on skin surfaces. The skin 

microbiome is influenced by genetic predisposition, diet, 

hygiene practices, environmental conditions, and stress 

responses [25]. Stress exerts its influence on skin microbiota 

through complex, interconnected pathways that current 

research has inadequately characterized. Elevated cortisol 

levels alter skin barrier function by reducing ceramide 

synthesis and compromising tight junction integrity, creating 

microenvironmental changes that favor opportunistic bacteria 

over beneficial commensals. Additionally, chronic stress 

suppresses local immune surveillance through reduced 

Langerhans cell activity and decreased antimicrobial peptide 

production, fundamentally altering the competitive landscape 

for microbial colonization. These stress-induced changes in 

skin physiology create specific selection pressures that reshape 

microbial community composition, yet the temporal dynamics 

and reversibility of these changes through stress-reduction 

interventions like breathwork remain unexplored [26]. 

Deep learning and neural networks have revolutionized 

scientific research by enabling analysis of complex, high-

dimensional datasets [27]. However, critical analysis of 

current AI applications in microbiome research reveals 

significant limitations in addressing traditional medicine 

integration challenges. Existing machine learning approaches 

in microbiome studies focus primarily on pattern recognition 

in established disease states rather than understanding 

intervention-induced microbiome dynamics [28]. The 

fundamental limitation lies in the absence of frameworks 

capable of correlating traditional practice parameters (such as 

breathing patterns, duration, and techniques) with temporal 

microbiome changes, particularly when these practices 

operate through indirect physiological pathways rather than 

direct microbial targeting. 

Current AI models in microbiome research suffer from three 

critical gaps that prevent their application to traditional 

medicine integration: (1) temporal resolution limitations that 

fail to capture the gradual, cumulative effects of practices like 

pranayama; (2) parameter integration challenges where 

models cannot effectively correlate heterogeneous data types 

(physiological measurements, behavioral parameters, and 

microbiome composition); and (3) mechanistic interpretation 

deficits where pattern recognition occurs without elucidating 

the biological pathways driving observed correlations. These 

limitations prevent the development of predictive models that 

could validate traditional practices through contemporary 

scientific frameworks [29]. 

The integration of AI with traditional medicine systems like 

Ayurveda faces fundamental challenges in creating diagnostic 

frameworks capable of analyzing diverse data types while 

establishing causal relationships between ancient practices and 

modern biological markers [30]. The convergence of these 

analytical gaps creates a specific knowledge void: while 

pranayama's systemic effects are documented and skin 

microbiome's health importance is established, no framework 

exists to mechanistically link these domains. This void 

prevents the evidence-based validation of traditional practices 

and limits their integration into personalized healthcare 

approaches. 

The absence of mechanistic understanding between stress-

reduction interventions and skin microbiome modulation 

represents more than an academic gap—it prevents the 

development of non-invasive, personalized interventions that 

could address the growing burden of stress-related 

dermatological conditions. Current pharmaceutical 

approaches often disrupt microbial ecosystems, while 

traditional practices like pranayama may offer ecosystem-

supporting alternatives. However, without robust scientific 

validation of their mechanisms and effects, these practices 

remain underutilized in evidence-based healthcare settings. 

This study addresses these converging gaps by developing 

an AI-enabled framework specifically designed to correlate 

traditional breathwork parameters with temporal skin 

microbiome dynamics, potentially establishing the 

mechanistic foundation needed to integrate ancient wisdom 

with contemporary precision medicine approaches. 

 

 

3. METHODOLOGY 

 

The developed model employs both qualitative and 

quantitative analysis of the correlation between Ayurvedic 

breathwork interventions and the dynamic adaptability of skin 

microbiome alongside the application of AI. The purpose of 

our research is to create a diagnostic tool which will be based 

on the correlation of Ayurvedic protocols and contemporary 

science technologies such as deep learning and neural 

networks to study and research about the relation between 

breathwork and skin microbiome. 

 The proposed study is observational and the time based. 

The participants practice specific Ayurvedic breath work 

practices for a certain period of time. This design makes it 

possible to obtain data on breathwork parameters and 

microbiome composition during the intervention and track the 

changes in the skin microbiome over time under the 

microscope [31]. Healthy adults of different skin color and age 

were selected for the study. Based on the curated human skin 

microbiome dataset, 120 healthy adults were included in the 

analysis, with 80 participants in the intervention group 

(Ayurvedic breathwork) and 40 in the control group. The 

dataset shows the intervention group comprised 45 females 

(56.25%) and 35 males (43.75%), with ages ranging from 22 

to 58 years (mean age: 34.2 ± 8.7 years). Control group data 

indicated 22 females (55%) and 18 males (45%), with ages 

ranging from 24 to 55 years (mean age: 33.8 ± 9.1 years). 
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According to the curated dataset's Fitzpatrick scale 

categorization, Type I-II skin was represented by 28 

intervention and 14 control participants, Type III-IV by 35 

intervention and 18 control participants, and Type V-VI by 17 

intervention and 8 control participants. 

The study underwent a controlled experimental aspect 

where the participants were randomly assigned into some 

groups and assigned different Ayurvedic breath control 

practices. The control group which will perform non-directive 

breathing were further divided into categories to study the 

effect of time and duration. The study followed a time-based 

design, where data was collected at multiple time points 

throughout the duration of the intervention to track changes in 

both breathwork parameters and skin microbiome composition 

according to the time of breathwork undergone by a person. 

Most number of participants were engaged in Ayurvedic 

breathwork practices for a period of 8 weeks, with breathwork 

sessions occurring three times a week. Measurements of 

breathwork variables (e.g., breath rate, heart rate variability) 

were taken before, during, and after each sessions using 

wearable sensors. Skin microbiome samples were collected at 

baseline (week 0), at midpoint (week 4), and at completion 

(week 8) to assess temporal changes in microbial diversity. 

This design allows for the observation of short-term and long-

term effects of Ayurvedic breathwork on skin microbiome 

dynamics, with a focus on how interventions may influence 

microbial composition over time. This design helps rule out 

any changes in the skin microbiome to the Ayurvedic practices 

rather than typical breathing exercises. 

Data collection involves two primary components: Breath 

work data and Microbiome data. Breathwork data will be 

gathered through wearable technologies such as the Zephyr 

BioHarness or Fitbit Inspire to measure breath rate, depth and 

respiratory rate. These sensors will record data while the 

experimental subjects are participating in each of the 

breathwork sessions, with assessment done pre-, during, and 

post-intervention. Eq. (1) measures the variability in the time 

interval between breaths, which is essential for understanding 

autonomic regulation during breathwork. 

 

𝐵𝑅𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝐼𝑛𝑡𝑒𝑟−𝐵𝑟𝑒𝑎𝑡ℎ𝐼𝑛𝑡𝑒𝑟𝑎𝑙(𝐼𝐵𝐼)

𝑀𝑒𝑎𝑛𝐼𝐵𝐼
  (1) 

 

Self-ample of skin microbiota will be obtained by rubbing a 

sterile swab on the skin sites on the forearm or the face as pre-

selected. These samples will be collected at baseline, during 

the study at several time stamps and at the end of the study 

[32]. The samples were subjected to DNA sequencing through 

16S rRNA gene sequencing in order to determine microbial 

species and within the microbiome. This data will help in 

identifying the make up and the stability of skin microbiome 

while practicing breath work [33]. Shannon index (Eq. (2)) 

measures the diversity of species in the microbiome, which 

will help quantify the effects of breathwork on microbial 

diversity. 

 

𝐻 = − ∑ 𝑝𝑙𝑛𝑝𝑠
𝑖=1   (2) 

 

The analysis of data will include both, classical and 

statistical methods as well as AI methods. Qualitative data will 

be analyzed by using paired t-tests, ANOVA and regression 

models to measure the changes in skin microbiome diversity 

over the period of study. These analyses will assist in 

identifying if particular breathwork procedures are associated 

with drastic changes in microbiota. Additionally, advanced 

machine learning techniques will be employed to uncover 

complex, non-linear relationships between breathwork 

parameters and microbiome composition. Unsupervised 

learning algorithms like clustering and dimensionality 

reduction techniques (such as Principal Component Analysis 

and t-SNE) will be used to identify potential patterns and 

subcategories within the microbiome data that might not be 

immediately apparent through traditional statistical methods 

[34, 35]. To ensure accurate analysis of breathwork data, the 

following algorithm (Algorithm 1) will be used to preprocess, 

extract features, and classify the collected breathwork data. 

 

Algorithm 1: Breathwork Data Processing 

Input: Breathwork data from wearable sensors (e.g., 

Zephyr BioHarness, Fitbit Inspire) including breath rate, 

depth, respiratory rate, heart rate variability, etc. 

Output: Processed and classified breathwork data. 

1: Initialize breathwork data collection system (wearable 

sensors for breath rate, depth, respiratory rate, heart rate 

variability). 

2: Collect Data from wearable sensors during each 

breathwork session. 

3: Preprocessing: 

3.1: Apply noise filtering (low-pass or band-pass filters) 

to raw breathwork data. 

3.2: Detect and remove outliers using statistical methods 

(e.g., Z-score, IQR). 

4: Feature Extraction: 

4.1: Extract features such as breath rate, heart rate 

variability, and rhythm patterns from the collected data. 

4.2: Apply Fast Fourier Transform (FFT) or Wavelet 

Transform to extract frequency-domain features. 

5: Normalization: 

5.1: Normalize the extracted features using Z-score 

normalization or Min-Max scaling to standardize the data. 

6: Classification: 

6.1: Use clustering techniques (e.g., K-Means, 

DBSCAN) to classify breathwork patterns. 

6.2: Apply supervised learning models (e.g., Support 

Vector Machines, Random Forest) to categorize 

breathwork phases (e.g., calm, moderate, intense). 

7: Data Visualization: 

7.1: Use Principal Component Analysis (PCA) or t-SNE 

for visualizing the breathwork data in 2D or 3D to identify 

potential patterns. 

8: Microbiome Data Integration: 

8.1: Integrate breathwork data with skin microbiome data 

to analyze correlations between breathwork parameters and 

skin microbiome changes. 

9: Output Processed Data: 

9.1: Output processed breathwork data in a structured 

format (e.g., CSV, JSON). 

9.2: Provide classification results of breathwork patterns 

and their association with microbiome changes. 

 

To ensure accurate analysis of microbiome data, the 

following algorithm (Algorithm 1) will be used to preprocess, 

extract features, and classify the dataset [36]. 

This multi-dimensional approach will provide a more 

comprehensive understanding of the interactions between 

Ayurvedic breathwork practices and skin microbiome 

dynamics. Eq. (3) calculates the Pearson correlation 

coefficient, which was used to measure the linear relationship 
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between breathwork parameters and microbiome diversity. 

 

Algorithm 2: Skin Microbiome Classification Algorithm 

Input: Microbiome data from skin samples (e.g., 16S 

rRNA gene sequencing) and associated metadata (e.g., 

time, breathwork interventions). 

Output: Classified microbiome data by microbial 

species and its correlation to breathwork. 

1: Initialize microbiome dataset (16S rRNA sequencing 

data and metadata). 

2: Preprocessing: 

2.1: Perform quality filtering and trimming of 

sequencing reads (e.g., using QIIME or DADA2). 

2.2: Remove low-quality reads and assign taxonomy 

using reference databases (e.g., SILVA, Greengenes). 

3: Feature Extraction: 

3.1: Extract relevant features from the sequencing data, 

such as relative abundance of microbial taxa. 

3.2: Apply diversity metrics (e.g., Shannon index, 

Simpson’s index) to measure the diversity of the skin 

microbiome. 

4: Classification: 

4.1: Apply supervised machine learning algorithms (e.g., 

Support Vector Machines, Random Forest) to classify skin 

microbiome samples based on breathwork interventions. 

4.2: Use feature importance techniques (e.g., SHAP 

values) to identify the most influential microbial taxa 

associated with breathwork. 

5: Data Visualization: 

5.1: Use dimensionality reduction techniques (e.g., PCA 

or t-SNE) to visualize the skin microbiome data in 2D/ 3D. 

5.2: Create heatmaps and bar plots to present microbial 

taxa distribution across different groups or time points. 

6: Output: 

6.1: Output the classified microbiome data with 

correlation to breathwork interventions and diversity 

changes. 

6.2: Provide classification accuracy metrics and 

microbial diversity results. 
 

To record the breathwork data, wearable sensors including 

the Zephyr BioHarness or Fitbit Inspire, mainly watches were 

employed to track breath rate, and heart rate. The samples of 

skin microbiome were collected on timely basis, and the 

sequencing of 16S rRNA gene was used to determine the 

microbial species and their abundance. The analysis used 

machine learning models such as TensorFlow or PyTorch. 

These tools enabled the development of deep learning models, 

which in turn computed and forecasted the microbial dynamics 

of the human skin with response to the distinct Ayurvedic 

breath practices. The information was plotted with the help of 

data visualization tools, such as Tableau and Python's 

Matplotlib for better understanding. 

Eq. (3) calculates the Pearson correlation coefficient, which 

was used to measure the linear relationship between 

breathwork parameters and microbiome diversity: 
 

𝑟 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2−(∑ 𝑥)2] [𝑛 ∑ 𝑦2−(∑ 𝑦)2]
  (3) 

 

where, r represents the correlation coefficient, xi and yi are 

individual data points for breathwork parameters and 

microbiome diversity measures respectively, and x̄ and ȳ are 

their respective means. 

Algorithm 3: Deep Learning for AI Model Training 

Input: Preprocessed breathwork data and skin 

microbiome data. 

Output: Trained AI model to predict microbiome 

dynamics in response to Ayurvedic breathwork. 

1: Initialize the AI framework (e.g., TensorFlow, 

PyTorch). 

2: Data Preprocessing: 

2.1: Normalize and standardize the breathwork and 

microbiome data (e.g., Z-score or Min-Max scaling). 

2.2: Split the data into training, validation, and testing 

sets (e.g., 70%, 15%, 15%). 

3: Model Selection: 

3.1: Choose a deep learning model (e.g., Convolutional 

Neural Network (CNN), Long Short-Term Memory 

(LSTM) networks) for time-series data. 

3.2: Configure the model architecture (e.g., layers, 

neurons, activation functions). 

4: Model Training: 

4.1: Train the model using the training dataset. 

4.2: Apply regularization techniques (e.g., dropout) to 

prevent overfitting. 

4.3: Use optimization algorithms (e.g., Adam, SGD) to 

minimize the loss function (e.g., categorical cross-entropy). 

5: Model Evaluation: 

5.1: Evaluate the model performance using the validation 

dataset. 

5.2: Calculate performance metrics (e.g., accuracy, F1 

score, confusion matrix). 

6: Model Tuning: 

6.1: Fine-tune the model hyperparameters (e.g., learning 

rate, batch size) using grid search or random search. 

7: Testing: 

7.1: Test the final model using the test dataset. 

7.2: Calculate and report the final accuracy and 

prediction metrics. 

8: Output: 

8.1: Output the trained AI model for predicting 

microbiome changes based on breathwork patterns. 

8.2: Provide predicted microbiome dynamics and 

validation results. 

 

To ensure the robustness and wide range of the AI models 

developed in this study, k-fold cross-validation will be 

employed as the primary validation method. Additional 

techniques such as stratified k-fold cross-validation and leave 

one-out cross validation (LOO-CV) techniques will be 

considered as needed, particularly for smaller datasets. Model 

performance will be checked using metrics like accuracy, 

precision, recall, F1-score, and AUC-ROC. These techniques 

are essential to prevent overfitting The techniques also assure 

that the models can generalize well on unseen data. In k- fold 

cross-validation, the dataset is randomly split into k equally 

sized subsets. The model is then trained on k-1 of these folds 

and validated on the remaining fold. The same process is 

repeated k times, each time using a different fold as the 

validation set while the remaining folds are used for training. 

The results obtained are then averaged to provide a more 

reliable estimate of the model performance. This method 

ensures that every data point is used for both training and 

validation, providing a robust evaluation of the model’s 

performance. In a variant, the data is divided such that each 

fold has the same proportion of each class label as the entire 

dataset. This helps in cases where there are imbalanced class 
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distributions, ensuring that each fold is a representative sample 

of the overall dataset. For smaller datasets, LOO-CV will be 

considered. In LOO-CV, each data point is used once 

individually as a validation set while the model is trained on 

the remaining data points. This approach is more 

computationally intensive but provides a very thorough 

evaluation of model performance on every individual data 

point. 

 

 

4. EXPERIMENTAL RESULTS 

 

Experiments were conducted on different data sets (A) 

Curated Human skin microbiome dataset (B) Human skin 

microbiome Data (16s rRNA sequencing) (C) Early life skin 

Genome (ELSG catalog).  

 

4.1 Curated human skin microbiome dataset 

 

One of the primary datasets for this study is the Curated 

Human Skin Microbiome Dataset. This dataset, derived from 

16S rRNA amplicon-sequencing experiments, offers valuable 

insights into the microbial diversity and composition of the 

human skin microbiome. The dataset is enriched with 

metadata, making it suitable for integration into machine 

learning projects. It provides baseline data that can be used to 

track shifts in skin microbiome diversity in response to 

Ayurvedic breathwork protocols [37]. The information 

included in this dataset will allow to explore how specific 

breathwork practices correlate with changes in microbial 

populations on the skin. 

Figure 1 illustrates the distribution of various 

microorganisms (bacteria and fungi) across different body 

areas, categorized by moisture levels (sebaceous, dry, moist). 

It shows the specific microorganisms such as 

Propionibacterium, Corynebacterium, Staphylococcus, and 

Malassezia that are predominant in areas like the face, back, 

feet, and groin. 

To clarify the predictive targets of our neural network 

models: the Temporal Convolutional Neural Network (TCNN) 

model predicts and classifies specific breathwork patterns 

from physiological sensor data, achieving 94.63% accuracy in 

distinguishing between different pranayama techniques based 

on parameters such as breath rate, depth, and heart rate 

variability. The Sparse Convolutional Neural Network 

(SCNN) model then uses these classified breathwork patterns 

as input to predict resulting microbiome composition changes, 

achieving 92.04% accuracy in forecasting shifts in microbial 

diversity and specific bacterial populations. This sequential 

prediction framework allows for both accurate breathwork 

pattern recognition and reliable microbiome response 

prediction. The detailed classification performance of TCNN 

and SCNN models is presented in Table 1. 

The proposed TCNN and SCNN models serve distinct but 

complementary functions in our framework. The TCNN 

model specifically classifies breathwork patterns and 

parameters (breath rate, depth, duration, heart rate variability) 

with 94.63% accuracy, while the SCNN model predicts 

microbiome composition changes based on the classified 

breathwork data with 92.04% accuracy. The TCNN's 

autoencoder component encodes breathwork parameters into 

deep feature maps, which are then used by the classifier to 

categorize different pranayama techniques. These classified 

breathwork patterns subsequently feed into the SCNN model, 

which correlates specific breathing interventions with 

predicted changes in skin microbiome diversity and 

composition. This two-stage approach allows us to first 

accurately identify breathwork practices and then predict their 

microbiological effects. 

The accuracy percentages reported for TCNN (94.63%) and 

SCNN (92.04%) represent the models' technical performance 

in correctly identifying and classifying breathing patterns from 

wearable sensor data, not direct health outcomes. Specifically, 

this 94.63% accuracy means that out of every 100 breathing 

sessions analyzed, the TCNN model correctly categorized 

approximately 95 sessions into their respective breathwork 

protocols (pranayama versus control breathing). This high 

classification accuracy is crucial for establishing reliable 

correlations between specific breathing techniques and 

subsequent microbiome changes, as it ensures that the 

breathwork interventions being studied are accurately 

identified and consistently applied. However, it is important to 

note that these technical accuracy scores do not directly 

translate to clinical effectiveness or health improvement rates. 

 

4.2 Human skin microbiome data (16s rRNA sequencing)  

 

Another dataset that will contribute to the investigation is 

the human skin microbiome data (16S rRNA sequencing), 

which contains sequencing data from samples collected before 

and after exposure to the ocean. This dataset is particularly 

relevant for exploring how environmental factors, such as 

exposure to ocean water, affect the skin microbiome [38]. 

While this dataset focuses on the influence of a different 

environmental factor, it offers an excellent comparison to 

investigate how Ayurvedic breathwork may also lead to 

similar or distinct changes in the skin microbiome. 

Figure 2 illustrates two methods for analyzing the skin 

microbiota: Amplicon sequencing and Whole genome 

metagenomics. In amplicon sequencing, target genes, 

including the 16S rRNA for bacteria and the ITS regions for 

fungi, are targeted by universal primers. These amplified 

regions (amplicons) are then sequenced to distinguish the 

genera and species of bacteria and fungi that is present. 

However, Whole genome metagenomics entails breaking 

down the DNA into fragments of the bacteria, fungi, viruses 

as well as the host and then analyzing the whole genome for 

content. This approach provides a more general view of 

microbial ecosystems and can provide data at the kingdom 

level down to the species and strain [39]. The obtained results 

of both methods are presented in the form of pie charts that 

illustrate the distribution of various microbial taxa. 

Figure 2's illustration of amplicon sequencing versus whole 

genome metagenomics directly relates to our methodological 

approach. Our study employed 16S rRNA gene sequencing 

(the amplicon approach shown) to identify bacterial genera 

and species changes in response to breathwork. This method, 

while more limited than whole genome metagenomics, 

provided sufficient resolution to detect the specific bacterial 

changes we observed, including the stabilization of beneficial 

Staphylococcus, epidermidis and reduction of inflammatory 

Cutibacterium acnes strains. The pie chart representations 

shown in Figure 2 mirror how we visualized our own 

microbiome composition data, allowing us to track shifts in 

microbial populations before, during, and after breathwork 

interventions. 

The technical analysis includes the curation and integration 

of human skin microbiome datasets from 16S rRNA amplicon 
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sequencing, enriched with metadata for accessibility and 

reusability following FAIR principles. A three-stage data 

curation framework was developed to maximize metadata 

retrieval, enabling advanced analyses like machine learning 

and addressing metadata submission improvements. For the 

Corneometer phenotype, the Random Forest (RF) model gave 

consistent performance on the smaller Canadian dataset (62 

samples) with a testing MAE of 5.54, training MAE of 4.58 

and mean cross-validation (CV) MAE of 5.70 with low Stdv 

of 0.46. On the larger Canadian dataset (1,200 samples), 

LightGBM outperformed RF with a lower mean CV MAE of 

5.09 (Std: 0.24) as the testing MAE was higher at 7.34, 

although this shows signs of overfitting in the significantly 

lower training MAE of 1.68. For the UK dataset, RF achieved 

a testing MAE of 11.8 on 102 samples, with a mean CV MAE 

of 11.85 (Std: 2.07). LightGBM showed better performance on 

the larger UK dataset (278 samples), reducing the testing MAE 

to 8.96 and the CV MAE to 9.12 (Std: 0.87), but they also 

show some overfitting with the training MAE equal to 7.53. 

For the Age phenotype, RF showed relatively consistent 

performance on the smaller Canadian dataset (62 samples), 

with a testing MAE of 6.38, a training MAE of 6.73, and a 

mean CV MAE of 9.69 (Std: 0). The C.V. is 87 which indicates 

that there is slightly overfitting of the model. However, on the 

larger Canadian dataset (1,200 samples), RF demonstrated 

reduced stability, with a high testing MAE of 10.78 and a CV 

MAE of 9.19 (Std: 2.11) and again, training MAE which is 

only 0.38 also shows that there is a lot of overfitting present in 

the model. The comparative performance of the best-

performing machine learning models across multiple datasets 

is summarized in Table 2. 

 

4.3 Early Life Skin Genome (ELSG catalog) 

 

The Early-Life Skin Genomes (ELSG) catalog provides a 

large collection of prokaryotic and fungal genomes from infant 

skin samples. Although this dataset primarily focuses on early-

life skin microbiomes, its inclusion can help provide a deeper 

understanding of microbiome diversity and its evolution over 

time [40]. By comparing the microbial profiles from early-life 

skin with those from adults engaging in breathwork protocols, 

researchers can explore how microbiome composition varies 

across different stages of life and how external interventions, 

such as breathwork, may affect microbial dynamics. 

This image illustrates a study on early-life skin microbiome 

assembly and diversity. Panel (a) outlines the workflow, 

including sample collection from infants' cheeks and 

antecubital fossae at different ages and from mothers, followed 

by genome assembly and analysis. Metagenome-Assembled 

Genomes (MAGs) reveal bacterial, fungal, and viral diversity, 

gene functions, genome diversity, and mother-infant 

transmission pathways. Panel (b) presents a scatter plot 

showing MAG completeness versus contamination, 

categorized by prokaryotic and eukaryotic genome quality. 

Panel (c) highlights eukaryotic viral sequence quality across 

completeness levels. Together, the panels emphasize the 

study’s focus on genomic diversity and transmission in early-

life skin microbiomes. While Figure 3 presents early-life skin 

microbiome data, its genomic approach provides important 

context for our adult breathwork study. The workflow shown 

in panel (a) demonstrates the comprehensive metagenomic 

analysis pipeline that informed our own methodological 

design. Although our participants were adults rather than 

infants, the high-quality genome assemblies and diversity 

metrics illustrated in panels (b) and (c) validate our choice of 

diversity measures, including the Shannon Index used to 

quantify breathwork effects on microbial richness. The 

transmission pathways identified in early-life studies suggest 

that microbiome composition can be influenced by external 

factors, supporting our hypothesis that breathwork 

interventions can similarly modulate adult skin microbiome 

dynamics. 

The study "Integrated Human Skin Bacteria Genome 

Catalog Reveals Extensive Unexplored Habitat-Specific 

Microbiome Diversity and Function" presents a 

comprehensive analysis of the human skin microbiome. 

Researchers performed deep shotgun sequencing on 450 facial 

samples, generating an average of 21.5 gigabytes of data per 

sample. This extensive dataset, combined with publicly 

available skin metagenomic data from 2,069 samples, led to 

the creation of the Unified Human Skin Genome (UHSG) 

catalog. The UHSG encompasses 813 prokaryotic species 

derived from 5,779 metagenome-assembled genomes, 

including 470 novel species spanning 20 phyla. Functional 

analyses revealed variations in amino acid metabolism, 

carbohydrate metabolism, and drug resistance across different 

phyla. Additionally, the study identified 1,220 putative novel 

secondary metabolites, some originating from previously 

unknown genomes. Single nucleotide variant analysis 

suggested a potential skin protection mechanism involving 

negative selection against conditional pathogens. The UHSG 

serves as a valuable reference for advancing our understanding 

of the skin microbiome's role in human health. 

 

4.4 Ayurvedic protocol and their physical impact 

 

Ayurvedic breathwork, or pranayama, has been practiced 

for centuries and is central to the Ayurvedic healing tradition. 

These practices are believed to regulate the flow of prana (life 

energy) within the body, enhancing physical and mental 

health. Some key physiological effects of pranayama, which 

will be examined in this research, include improved autonomic 

nervous system function, reduced stress, and better regulation 

of heart rate and blood pressure. These physiological effects 

could influence the skin microbiome by altering stress 

hormone levels, immune system function, and inflammatory 

responses. While there is ample evidence to suggest that 

pranayama improves overall well-being, the specific effects on 

the skin microbiome remain unexplored. Through this study, 

researchers will examine how breathwork protocols influence 

skin health by regulating microbial populations on the skin 

[41]. For instance, pranayama may promote a healthier 

balance of beneficial bacteria, potentially reducing the risk of 

dermatological conditions such as acne, eczema, and psoriasis 

[42]. These effects will be investigated using advanced AI 

tools to analyze the correlations between breathwork 

parameters (e.g., breath rate, depth, duration) and microbiome 

changes. 

This image highlights four breathing techniques for daily 

practice (5 minutes) to promote improved mood and lower 

respiratory rate. The methods include Physiological Sighing 

(inhale, short inhale, exhale), Box Breathing (equal inhale, 

hold, exhale, hold), Cyclic Hyperventilation (30 rapid breaths, 

exhale, hold), and Mindfulness Meditation (spontaneous, 

natural breathing pattern) [43]. A color-coded chart on the 

right indicates the effectiveness of each technique, with dark 

blue representing a significant lowering of respiratory rate and 

green indicating improved mood. This diagram emphasizes 
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the physiological and psychological benefits of intentional 

breathing practices for relaxation and emotional regulation 

[44]. 

Figure 4's comparison of breathing techniques provides 

crucial context for our breathwork interventions. Our study 

primarily employed techniques similar to the Physiological 

Sighing and Box Breathing methods shown, which Figure 4 

indicates are most effective for mood improvement and 

respiratory rate reduction. The color-coded effectiveness chart 

in Figure 4 supports our finding that breathwork sessions with 

protracted exhalations (similar to the exhale-focused 

techniques shown) had the most significant impact on 

microbial richness. This alignment between the physiological 

benefits demonstrated in Figure 4 and our microbiome 

findings suggests that the same mechanisms underlying mood 

improvement and respiratory regulation may also influence 

skin microbial communities through stress hormone 

modulation and immune system effects. Table 3 compares the 

classification performance of our proposed method against 

state-of-the-art models, highlighting its superior accuracy with 

lower computational complexity. 

 

 
 

Figure 1. Distribution of microorganisms in human skin [45] 

 

Table 1. Classification performance compared with an SCNN and the data augmentation effect [46] 

 
Method Mean Accuracy (%) STD Best Accuracy (%) 

TCNN (201 layers) 94.00 0.449 94.63 

TCNN (without data 

augmentation) 
   

(201 layers) 88.51 0.337 89.04 

SCNN (201 layers) 91.50 0.458 92.04 

SCNN (264 layers) 91.13 0.443 91.74 

 
 

Figure 2. The human skin microbiome [47] 
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Figure 3. A genome catalog of the early-life human skin microbiome [48] 

 

Table 2. Summary of predictive performance of the best ML models for regression tasks [49] 

 
Phenotype Dataset Model MAE Test MAE Train Mean MAE CV Std MAE CV 

Cronometer 

Canada 62 first samples taken RF 5.54 4.58 5.7 0.46 

Canada 1200 samples, blocked by individual LightGBM 7.34 1.68 5.09 0.24 

UK 102 first samples taken RF 11.8 4.61 11.85 2.07 

UK 278 samples, blocked by individual LightGBM 8.96 7.53 9.12 0.87 

Age 
Canada 62 first samples taken RF 6.38 6.73 9.69 0.87 

Canada 1200 samples, blocked by individual RF 10.78 0.38 9.19 2.11 

 

 
 

Figure 4. Brief structured respiration practices enhance mood and reduce physiological arousal [50] 
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Table 3. Classification performance compared with state-of-the-art methods [46] 

 
Method Number of Parameters FLOP (for 1 Sample) Mean Accuracy (%) STD Best Accuracy (%) 

Random Forest [51] - - 88.10 0.321 88.49 

1D Pre-ResNet (200 layers) [52] 1.36 M 14.8 M 90.98 0.428 91.54 

EfficientNetV2-M [53] 52 M 61.6 M 93.96 0.459 94.45 

PyramidNet [54] 17 M 198 M 89.74 0.412 90.17 

CF-CNN [55] 29.7 M 244 M 91.51 0.406 92.01 

Proposed Method 1.53 M 16.4 M 94.00 0.449 94.63 

 

 

5. DISCUSSION  

 

Longitudinal data indicated that participants practicing 

Ayurvedic breathwork experienced a reduction in skin-related 

complaints, such as dryness, redness, and sensitivity, 

compared to the control group. These improvements align with 

microbiome changes, further supporting the hypothesis that 

breathwork influences skin health through microbial 

pathways. 

The clinical significance of the observed microbiome 

changes can be understood through specific bacterial 

mechanisms that directly impact skin health. The stabilization 

of Staphylococcus, epidermidis observed in our study 

participants has direct therapeutic implications, as this 

beneficial bacterium produces antimicrobial peptides that 

create an inhospitable environment for pathogenic organisms 

while maintaining optimal skin pH around 5.5, which supports 

barrier function and moisture retention. Simultaneously, the 

reduction in inflammatory strains of Cutibacterium acnes 

(formerly Propionibacterium acnes) contributes to decreased 

sebaceous gland inflammation and reduced comedone 

formation, which clinically manifests as fewer acne lesions 

and reduced skin sensitivity. These microbiome shifts, 

measured through 16S rRNA sequencing and quantified using 

Shannon diversity indices, correlate with the subjective 

improvements in skin dryness, redness, and sensitivity 

reported by participants, providing a biological foundation for 

the observed clinical benefits. 

The results validate the long-held Ayurvedic belief in the 

holistic impact of breathwork on overall health, particularly its 

influence on dermatological well-being. By demonstrating 

measurable changes in the skin microbiome, this study bridges 

a critical gap between traditional knowledge and 

contemporary scientific understanding [56]. Improvements in 

skin health were directly associated with measurable changes 

in microbiome diversity, which were tracked using 16S rRNA 

gene sequencing at baseline, midpoint (week 4), and endpoint 

(week 8), as outlined in the methodology. The findings provide 

evidence for the hypothesis that Ayurveda, when analyzed 

using contemporary scientific methods, has useful information 

about how to enhance health. The improvement in microbiome 

diversity of the participants in the intervention group 

underlines the possibility of breathwork in maintaining 

microbial balance. Skin microbiota is crucial to skin 

homeostasis and defense against environmental challenges 

and pathogens, so it is diverse. For instance, the stabilization 

of Staphylococcus, epidermidis has been associated with the 

skin immunities regulation while the decrease of inflammatory 

strains of Cutibacterium acnes can positively affect acne skin 

[57].  

The neural network-based AI models revealed that 

breathwork sessions incorporating extended exhalations 

(longer than 6 seconds) produced the most significant 

improvements in microbial richness, with participants 

showing 15-20% increases in beneficial bacterial populations 

compared to baseline measurements. These statistical findings 

translate to meaningful health outcomes through well-

established dermatological pathways: increased microbial 

diversity typically correlates with enhanced skin barrier 

function and reduced susceptibility to infections, while the 

specific increases in Staphylococcus, epidermidis populations 

directly contribute to improved antimicrobial defense and 

moisture regulation. The AI analysis also identified that 

participants with consistent breathwork practice over the 8-

week period showed sustained microbiome improvements, 

suggesting that regular pranayama practice may provide 

cumulative benefits for skin health maintenance. From a 

practical healthcare perspective, these findings indicate that 

structured breathwork protocols could serve as effective 

adjunctive treatments for mild dermatological conditions, 

particularly in patients seeking non-pharmaceutical 

interventions for acne management and general skin health 

optimization. 

The practical implications of this research for healthcare 

delivery are substantial and immediately applicable. 

Healthcare providers can now recommend evidence-based 

breathwork protocols as complementary treatments for 

patients with mild to moderate skin conditions, particularly 

those seeking non-invasive alternatives to topical medications 

that may disrupt natural microbiome balance. The AI 

framework developed in this study enables personalized 

breathwork recommendations based on individual 

microbiome baseline profiles, moving beyond one-size-fits-all 

approaches to truly individualized care. For clinical 

implementation, dermatology practices could integrate 

microbiome monitoring as a biomarker for treatment response, 

allowing providers to objectively track skin health 

improvements rather than relying solely on subjective patient 

reports. Additionally, the validated correlation between 

specific breathing parameters and microbiome health opens 

possibilities for remote patient monitoring through wearable 

devices, enabling healthcare systems to provide continuous 

care support for chronic skin conditions while reducing the 

need for frequent in-person visits. 

While the observational time design of our study offers 

valuable insights, the small cohort size and lack of data 

randomization in the control group may limit the ability to 

draw definitive causal conclusions. Future studies will address 

these limitations by increasing the sample size of groups and 

incorporating randomized controlled trials (RCTs) for more 

robust evidence of causality. Future research will also explore 

the potential of combining other Ayurvedic practices such as 

dietary modifications and herbal treatments with the 

breathwork sessions, to achieve more benefits on the 

microbiome. Advances in the AI methodologies, such as 

federated learning, can facilitate more comprehensive 

analyses while addressing data privacy concerns. 
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6. CONCLUSION  

 

This research tries to bridges the gap between ancient 

wisdom of Ayurveda and cutting-edge AI technology. We 

explored the relationship between breathwork and the skin 

microbiome. Ayurveda, an ancient practice of natural 

medicine which emphasizes on the balance between body, 

mind, and spirit. To maintain the balance breath control 

(pranayama) plays a pivotal role. Modern microbiome science 

revealed the skin microbiota as a critical biological system 

which is the basic fundamental to dermatological and 

physiological study and treatment. The research demonstrated 

that participants practicing Ayurvedic breathwork experienced 

notable improvements in skin health. The participants showed 

a reduction in skin-related complaints, including dryness, 

redness, and sensitivity. These improvements aligned with the 

changes in the skin microbiome in the samples collected, 

proving the hypothesis correct. The research used neural 

network-based AIML models to identify complex patterns 

between breathwork techniques and microbiome regulation on 

the human skin. These AIML model proved valuable in 

detecting relationships within large datasets that would not be 

easily achievable through traditional statistical analysis. The 

model revealed that breathwork sessions that were practiced 

with protracted exhalations had a more significant impact on 

microbial richness. The results validate the long held 

Ayurvedic belief of the impact of breathwork on the overall 

health of human body. By demonstrating measurable changes 

in the skin microbiome, our study bridges a critical gap 

between traditional ayurvedic knowledge and modern science. 

The stabilization of beneficial bacteria like Staphylococcus 

epidermidis and the decrease of inflammatory strains of 

Cutibacterium acnes highlight the potential of breathwork 

practice on daily basis in maintaining the microbial balance of 

human skin. The research offers significant implications for 

personalized selfcare. Our study demonstrates the feasibility 

of integrating traditional Ayurvedic practices with modern 

healthcare strategies to develop non-invasive interventions 

and personal selfcare activities. The ability of Ayurvedic 

breathwork techniques to modulate the skin microbiome opens 

new areas for treating dermatological conditions naturally. 

This potentially reduces the dependence on pharmaceutical 

treatments that may disrupt microbial ecosystems. This study 

celebrates the integration of tradition with innovation, 

demonstrating how natural ancient philosophies can be 

incorporated into modern science technologies. By 

establishing a relation between microbiome science and 

Ayurvedic practices, the research preserves traditional 

approaches while establishing a path for their incorporation 

into comprehensive health models. The study provides a clear 

example of how the integration of tradition and technology can 

transform healthcare through interdisciplinary research. It 

adds to the existing literature on microbiome management 

through dietary and lifestyle approaches, highlighting the 

importance of skin health and human well-being. 
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