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Efficient and sustainable water distribution poses a significant challenge in urban 

environments due to increasing demand, infrastructure limitations, and budgetary 

constraints. This study presents a large-scale linear programming model to optimize the 

operational efficiency of urban water distribution networks, using a case study of 

PDAM Tirtanadi in Medan, Indonesia. The model incorporates critical system 

parameters, including supply capacity, zonal demand, hydraulic pressure constraints, 

and energy losses, to minimize total operational costs while ensuring equitable and 

reliable water allocation. A primal-dual interior point method is developed to solve the 

model efficiently, achieving convergence within 18 iterations. The results indicate a 

7.8% reduction in annual operating costs, a 14.3% decrease in water loss, and an 18.7% 

improvement in distribution efficiency. Sensitivity analyses confirm the model’s 

robustness under variations in supply and demand. The proposed framework offers a 

practical decision-support tool for utility operators and urban planners to enhance 

sustainability and performance in large-scale water distribution systems. 
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1. INTRODUCTION

Urban areas across the globe are experiencing rising 

pressures on clean water infrastructure due to rapid population 

growth, urban expansion, and aging distribution networks. In 

Indonesia, the city of Medan home to over 2.4 million 

residents rely heavily on PDAM Tirtanadi to meet its clean 

water needs across 21 service zones. Despite a nominal 

production capacity of 8,200 liters per second, the utility 

reports an average non-revenue water (NRW) loss of 26.5% 

annually, primarily due to inefficient distribution, suboptimal 

pressure management, and infrastructure leakages. These 

inefficiencies translate into multi-billion rupiah in annual 

economic losses and limit equitable water access for residents 

in elevated or high-demand areas. The scale of the problem 

demands a rigorous mathematical approach to optimize water 

allocation, reduce operational costs, and enhance network 

efficiency without requiring full-scale infrastructure 

overhauls.  

Numerous studies have explored optimization techniques 

for water distribution networks, ranging from classical linear 

programming to heuristic-based methods. Traditional 

approaches such as the simplex method have been widely 

employed due to their interpretability and ease of 

implementation in small to medium-scale systems. However, 

as water distribution problems grow in complexity with 

thousands of variables and nonlinear hydraulic constraints 

these techniques often become computationally infeasible or 

converge to suboptimal solutions. Metaheuristic algorithms 

such as genetic algorithms, simulated annealing, and particle 

swarm optimization have also been introduced to address 

nonlinearities and system irregularities. While flexible, these 

methods generally lack guarantees of global optimality and 

demand significant computational resources, limiting their use 

in real-time applications. Recent advancements in 

mathematical programming have highlighted the potential of 

interior point methods (IPM) for solving large-scale linear and 

nonlinear optimization problems efficiently. With proven 

polynomial-time complexity and robust convergence 

behavior, IPMs are particularly suited for urban water systems 

where high dimensionality and strict constraints are prevalent. 

Urban water distribution networks (WDNs) have been the 

focus of extensive research, with various optimization 

techniques applied to enhance efficiency and sustainability. 

Linear programming (LP) and mixed-integer linear 

programming (MILP) have been utilized to determine optimal 

resource allocation, aiming to minimize operational costs 

while satisfying demand constraints. However, these methods 
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often encounter scalability issues when applied to large-scale 

networks with complex constraints. To address nonlinearity 

and system complexity, metaheuristic algorithms such as 

genetic algorithms, particle swarm optimization, and 

simulated annealing have been employed, offering flexibility 

in handling diverse optimization scenarios. Despite their 

adaptability, these approaches may lack guarantees of global 

optimality and can be computationally intensive. IPMs have 

emerged as a promising alternative, demonstrating robust 

performance in solving large-scale linear and nonlinear 

programming problems with polynomial-time convergence. 

Nevertheless, the application of IPMs in WDN optimization 

remains limited, often confined to specific components or 

small-scale systems. This research addresses this gap by 

developing a comprehensive large-scale LP model for urban 

water distribution, solved using a primal-dual path-following 

IPM. The model integrates hydraulic, pressure, and cost 

constraints into a unified framework and is validated using 

real-world data from PDAM Tirtanadi in Medan, Indonesia. 

By benchmarking the IPM approach against traditional 

methods, the study demonstrates enhanced computational 

efficiency and solution quality, offering a practical tool for 

utility managers and urban planners. 

This study proposes a comprehensive optimization 

framework for urban water distribution using a large-scale 

linear programming model solved via a primal-dual path-

following interior point method [1, 2]. Focusing on PDAM 

Tirtanadi in Medan, Indonesia, the research formulates a 

detailed mathematical model that captures operational 

constraints, including supply capacities, zonal demand 

requirements, hydraulic pressure thresholds, and transmission 

energy losses. By converting the system into standard linear 

programming form and applying interior point techniques, the 

model efficiently determines optimal water allocations from 

multiple treatment facilities to various service zones [3-5]. The 

methodology emphasizes computational scalability, accuracy, 

and practical implement ability for utility providers operating 

in rapidly urbanizing regions. Beyond theoretical formulation, 

this study evaluates real operational data, benchmarks 

computational performance against the simplex method, and 

assesses the robustness of solutions through sensitivity 

analyses [6, 7]. The resulting decision-support framework 

offers actionable insights for enhancing distribution 

efficiency, reducing operational costs, and achieving more 

sustainable and equitable water management in metropolitan 

contexts [8, 9]. 
 

 

2. METHODS 
 

The objective of this study is to optimize the allocation of 

clean water from multiple water treatment plants to various 

demand zones across Medan city. The problem is modeled as 

a large-scale linear program that considers production 

capacities, consumer demands, operational costs, hydraulic 

pressure constraints, and transmission losses. The distribution 

network includes 6 major water treatment plants (IPA) and 21 

distribution zones served by PDAM Tirtanadi. Key 

operational challenges include excessive NRW, inefficient 

routing, and pressure disparities across different elevation 

zones. 

 

2.1 Problem description 

 

PDAM Tirtanadi is the regional water utility responsible for 

supplying clean water to over 2.4 million residents in the city 

of Medan, Indonesia. The distribution system spans 21 service 

zones and is supported by multiple IPAs, including major 

facilities in Sunggal, Deli Tua, Martubung, Denai, and others. 

Each plant has a fixed daily production capacity and serves a 

subset of demand zones, often located at varying elevations. 

The network is challenged by operational inefficiencies, 

including NRW losses of up to 26.5%, underutilized capacity 

in certain plants, overburdened transmission routes, and 

significant pressure drops in elevated zones. Additionally, 

infrastructure age and physical topography contribute to 

unequal service reliability across zones. 

Recent advancements in infrastructure modeling 

increasingly rely on hybrid optimization and intelligent 

systems to address uncertainty, sustainability, and 

performance trade-offs. Roushan et al. [10] utilized 

neutrosophic programming with blockchain-based smart 

contracts to optimize disaster relief supply chains under 

uncertainty, offering a transparent and adaptive framework. 

Salamian et al. [11] introduced a robust multi-product 

bioenergy supply chain model, addressing uncertainty using 

fuzzy torrefaction parameters. Al Momin et al. [12] applied 

fuzzy AHP and geospatial modeling to optimally site electric 

vehicle charging stations, exemplifying hybrid spatial 

decision-making. Dorahaki et al. [13] proposed a robust 

optimization model to manage energy flexibility and 

environmental sustainability in local energy communities. 

Albahri et al. [14] provided a taxonomy of trustworthy AI 

applications in natural disaster response, integrating fuzzy 

logic, explainable AI, and multi-criteria decision-making. 

Hafeznia and Stojadinović [15] developed the ResQ-IOS 

framework, using iterative simulation-optimization for 

interdependent infrastructure resilience. Chen et al. [16] 

systematically reviewed multi-objective models in energy 

system planning, linking long-term sustainability with social 

and economic criteria. Abualigah et al. [17] examined 

metaheuristics for sustainable supply chains, highlighting 

optimization’s role in balancing environmental impact and 

efficiency. Kakamoukas et al. [18] proposed a fuzzy-logic-

driven UAV routing protocol for smart agriculture, enhancing 

mission efficiency in uncertain environments. Lastly, Zangato 

et al. [19] introduced an RL-based energy management system 

integrating clustering and constrained learning to improve 

adaptability in smart buildings. These studies demonstrate the 

power of hybrid mathematical tools to manage uncertainty 

across sectors. Building on this foundation, our work 

contributes a fuzzy-stochastic-robust LP framework to urban 

water networks, bridging mathematical theory and operational 

impact [20, 21]. 

From an economic perspective, each treatment plant has its 

own cost structure based on water treatment methods 

(conventional or membrane-based), energy consumption for 

pumping, and pipeline maintenance. These costs vary from Rp 

2.8 to Rp 3.6 per cubic meter. Transporting water over longer 

distances or to higher elevation zones incurs additional energy 

losses, which are typically modeled using head-loss equations. 

Because operational costs and hydraulic losses are location-

specific and interdependent, suboptimal routing can result in 

disproportionately high costs or service disruptions in 

peripheral zones. 

This study formulates the problem as a large-scale linear 

optimization model aimed at minimizing the total operational 

cost while ensuring full demand coverage, respecting supply 

limitations, and maintaining minimum hydraulic pressure 
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requirements throughout the network [22, 23]. The resulting 

model reflects the core trade-offs faced by PDAM Tirtanadi: 

how to allocate limited resources efficiently across a 

geographically diverse urban service area under both physical 

and economic constraints. 

 

2.2 Mathematical model formulation 

 

This section formulates the urban water distribution 

optimization problem as a large-scale LP model [24, 25]. The 

objective is to minimize the total operational cost of 

distributing clean water from multiple IPAs to various demand 

zones, subject to capacity, demand, and hydraulic constraints. 

To represent the system mathematically, we define a set of 

decision variables that determine the optimal water flow from 

each source to each destination. Parameters include water 

production capacities, zonal demand volumes, cost 

coefficients, and elevation-based pressure requirements. The 

constraints in the model ensure that the total water allocated 

from each IPA does not exceed its capacity, that every demand 

zone receives at least its required volume, and that minimum 

hydraulic pressure levels are maintained. Additionally, the 

model incorporates head loss across pipelines using a 

linearized approximation of the Hazen-Williams equation, 

allowing the optimization to remain in LP form. This 

formulation results in a sparse, high-dimensional optimization 

problem well-suited for interior point solution techniques. 

 

Objective function 

 

Minimize total operational cost 

 

min .ij ij

i I j J

Z C x
 

=  (1) 

 

subject to, 

1. Supply capacity constraint (per plant): 

 

,ij i

j J

x S i I


    
(2) 

 

2. Demand fulfillment constraint (per zone): 

 

ij j

i I

x D j J


    (3) 

 

3. Hydraulic pressure constraint (linearized): 

 

. ,i ij ij jH K x h i I j J−      (4) 

 

4. Non-negativity constraint:  

 

0 ,ijx i I j J     (5) 

 

The proposed mathematical model is formulated as a large-

scale linear programming problem designed to optimize the 

operational efficiency of an urban water distribution network. 

The objective function minimizes the total cost of transporting 

water from multiple treatment plants to various demand zones, 

where the unit cost 𝐶𝑖𝑗  includes treatment, pumping, and 

maintenance expenses. The model includes four main 

constraint groups:  

(1) The supply capacity constraint ensures that the total 

volume of water distributed from each plant does not exceed 

its production capacity 𝑆𝑖 .  
(2) The demand fulfillment constraint guarantees that each 

zone receives at least its required daily demand 𝐷𝑗 .  

(3) The hydraulic pressure constraint, represented in 

linearized form as 𝐻𝑖 − 𝐾𝑖𝑗 . 𝑥𝑖𝑗 ≥ ℎ𝑗 , ensures sufficient 

pressure at the consumer end to maintain service quality. 

(4) The non-negativity constraint enforces that all water 

flow variables remain physically meaningful. Together, these 

components produce a high-dimensional sparse LP model that 

captures the critical engineering, economic, and hydraulic 

aspects of water distribution planning, while remaining 

solvable using efficient interior point algorithms. 

To formalize the optimization problem of urban water 

distribution, a mathematical model was constructed using 

linear programming principles. The model integrates key 

system components, including supply sources, demand zones, 

cost structures, and hydraulic constraints, into a unified 

decision framework. Each element of the system is translated 

into mathematical terms sets, parameters, variables, objective 

function, and constraints to ensure both operational feasibility 

and cost efficiency. The overall structure of this mathematical 

approach is illustrated in Figure 1, which outlines the core 

components of the model and their interrelationships within 

the optimization process. 

 

 
 

Figure 1. Mathematical approach 

 

As shown in Figure 1, the model formulation begins by 

defining the system structure through sets and indices that 

distinguish water treatment plants and demand zones. 

Parameters such as production capacities, daily demands, unit 

costs, and elevation-related pressure requirements are 

embedded to capture the physical and economic dynamics of 

the distribution network. The decision variable represents the 

volume of water transported from each plant to each zone, 

while the objective function seeks to minimize total 

operational costs. The constraints ensure that supply limits are 

not exceeded, demand requirements are satisfied, minimum 

hydraulic head is maintained, and all variable values remain 

non-negative. This structured representation enables the 

model to be solved efficiently using interior point algorithms, 

which are well-suited for handling the large number of 

decision variables and sparse constraint matrices typical of 

real-world urban utility systems. 

To model the distribution system accurately, it is essential 

to understand the structural characteristics and operational 
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capacity of the major water treatment plants managed by 

PDAM Tirtanadi. Each plant differs in its daily production 

capacity, the number of zones it serves, the average elevation 

of those zones, and its associated production costs. These 

variations significantly impact the optimization model, as they 

influence both the feasibility of meeting demand and the cost-

effectiveness of supply routes. The production cost values 

shown in Table 1 were sourced from PDAM Tirtanadi’s 

internal operational records and engineering reports covering 

the 2023–2024 fiscal period. These figures include unit energy 

consumption, chemical treatment expenses, and staff 

overhead, as confirmed by an internal energy audit conducted 

in June 2023. 

 

Table 1. Capacities and zones 

 
Water 

Treatment 

Plant 

Capacity 

(L/d) 

Number of 

Zones Served 

Avg Elevation 

of Zones (m) 

Production 

Cost (Rp/m³) 

Sunggal 2400 6 17.5 2.8 

Deli Tua 1800 4 26.3 3.1 

Martubung 700 3 14.5 3.55 

Denai 1350 3 18.9 3.45 

Pulo 

Brayan 
500 3 15.2 3.2 

Limau 

Manis 
1050 3 19.1 3.35 

 

Estimated unit production costs (Rp/m³) by treatment plant. 

Data sourced from PDAM Tirtanadi operational reports and 

energy audits (2023–2024) (Table 1). 

As shown in Table 1, each water treatment plant differs in 

its production capacity, zone coverage, and operational costs. 

Notably, plants with higher capacities such as Sunggal and 

Deli Tua exhibit lower unit costs per cubic meter due to 

economies of scale. Conversely, smaller plants such as 

Martubung and Limau Manis face higher per-unit costs, which 

may be attributed to shorter pipeline networks or higher energy 

requirements for localized pumping.  

 

2.3 Linearization techniques 

 

In real-world water distribution systems, head loss due to 

friction in pipelines is a nonlinear function typically governed 

by empirical formulas such as the Hazen-Williams or Darcy-

Weisbach equations. The Hazen-Williams formula defines 

head loss as: 

 

1.85

1.85 4.87
10.67

.
L

L
h Q

C d
=    (6) 

 

where, L is the pipe length (m), C is the Hazen-Williams 

roughness coefficient, d is the pipe diameter (m), Q is the 

discharge (flow rate in m³/s). However, this model is nonlinear 

and non-convex, making it incompatible with linear 

programming (LP) solvers. To preserve computational 

efficiency and maintain compatibility with interior point 

methods, the nonlinear head-loss term is approximated 

linearly as, 

 

ℎ𝐿 ≈ 𝐾𝑖𝑗 . 𝑥𝑖𝑗  

 

where, 𝐾𝑖𝑗  is a linearized head loss coefficient between water 

treatment plant i and demand zone j, empirically estimated 

based on pipe length, elevation, material, and average 

operating conditions. This simplification allows the pressure 

constraint: 

 

𝐻𝑖 − 𝐾𝑖𝑗 . 𝑥𝑖𝑗 ≥ ℎ𝑗 

 

This simplification maintains model solvability while 

reflecting realistic behavior. To validate this linearization, we 

compared it against the nonlinear Hazen-Williams formulation 

using operational data from PDAM Tirtanadi. Over 120 

pipeline segments, the linear model yielded an RMSE of 0.73 

meters and a MAPE of 5.8%, confirming its appropriateness 

for strategic-level planning. The resulting LP problem is 

formulated as: 

 

min subject to , 0T  c x Ax b x  (7) 

 

where, x is the vector of flow decisions 𝑥𝑖𝑗 , c is the cost vector 

composed of 𝐶𝑖𝑗 , A is the constraint matrix representing 

supply, demand, and pressure limits, and b is the vector of 

upper/lower bounds (capacities, demands, minimum 

pressures). This transformation ensures the problem is 

solvable using primal-dual interior point methods, which are 

particularly effective for large-scale sparse LPs such as those 

encountered in water distribution optimization. Although the 

actual behavior of urban water networks is governed by 

unsteady hydraulics and spatial variability (e.g., changes in 

pipe diameter and valve dynamics), this model is designed for 

long-term strategic planning, where the assumption of steady-

state flow and static geometry is considered appropriate. 

Transient conditions and local pipe heterogeneity are typically 

handled in real-time supervisory control systems, not in high-

level optimization. The use of averaged diameter classes and 

nominal operating flow conditions allows the model to remain 

computationally tractable while still producing meaningful 

and implementable policy recommendations. Similar 

simplifications have been adopted in urban infrastructure 

planning models using linearized hydraulics. 
 

2.4 Linearization techniques 
 

To solve the formulated LP problem: 
 

min Tc x  subject to Ax = b 0x  (8) 

 

We employ the primal-dual path-following interior point 

method, which iteratively solves a sequence of perturbed KKT 

(Karush-Kuhn-Tucker) systems while maintaining the 

solution in the interior of the feasible region. The dual problem 

of the LP is given by: 

 

,
max T

y z
b y  subject to T +A y z = c  0z  (9) 

 

The central path condition adds a barrier term: 

 
XZ = e  (10) 

 

where, 𝑋 = diag(𝒙) , 𝑍 = diag(𝒛) , and μ is the barrier 

parameter (reduced each iteration).  

To find a search direction (𝛥𝒙, 𝛥𝒚, 𝛥𝒛) , the algorithm 

solves the Newton system derived from the perturbed KKT 

conditions,
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 (11) 

 

where, 𝑟𝑝 = 𝒃 − 𝑨𝒙 is the primal residual, 𝑟𝑑 = 𝒄 − 𝑨𝑇𝒚 − 𝒛 

is the dual residual, 𝑟𝑐 = 𝜇𝒆 − 𝑋𝑍  is the centering residual 

(complementarity gap). After solving for the direction, the 

algorithm updates the variables with step size 𝛼 ∈ 0,1.  

 
( ) ( )

( ) ( )

( ) ( )

1

1

1

k k

k k

k k







+

+

+

= + 

= + 

= + 

x x x

y y y

z z z

 (12) 

 

The parameter μ is updated as, 

 
T

n
 =

x z
 (13) 

 

And the algorithm proceeds until 𝜇 < 𝜀 , where, ε is the 

convergence tolerance. 

 

2.4 Algorithm implementation in MATLAB 

 

To operationalize the mathematical model, a primal-dual 

interior point algorithm is employed due to its superior 

performance in solving large-scale linear programming 

problems with sparse constraint matrices. Unlike the simplex 

method, which traverses the edges of the feasible polyhedron, 

the interior point method follows a trajectory through the 

interior, guided by the central path defined by a logarithmic 

barrier function. This approach allows for faster convergence 

and better numerical stability, particularly in high-dimensional 

systems such as urban water distribution networks. The 

algorithm is implemented in MATLAB and structured into 

three key phases: initialization, iterative update steps based on 

Newton's method, and solution extraction. The step-by-step 

procedure is outlined in the interior point algorithm. 

The interior point algorithm provides a numerically 

efficient mechanism to solve the high-dimensional 

optimization problem underlying the urban water distribution 

system. By maintaining feasibility at every iteration and 

simultaneously updating both primal and dual variables, the 

method guarantees rapid convergence to the global optimum. 

The use of sparse matrix techniques and Newton-based 

updates ensures that the algorithm remains scalable even when 

applied to real-world systems involving dozens of supply 

sources and distribution zones. The output includes not only 

the optimal flow values that minimize cost, but also insightful 

economic indicators such as shadow prices and marginal costs, 

which can inform strategic decisions in network expansion, 

tariff setting, and infrastructure prioritization. This algorithmic 

framework forms the computational core of the water 

distribution optimization model presented in this study.  

 

Algorithm 1: Interior point algorithm 

Step 1:  

Initialization 

1. 𝒙(0) = 𝟏, 𝒛(0) = 𝟏, 𝜇0 = 0.1 

2. 𝜀 = 10−6, maximum iterations = 100 
Step 2: 

Core Steps 

1. Construct A, b, c matrices from the model 

2. Build the Newton system for residuals 𝑟𝑝, 𝑟𝑑 , 𝑟𝑐  

3. Use sparse LU decomposition for solving the KKT 

system 
4. Update primal-dual variables using backtracking line 

search 

5. Check convergence on ‖𝑟𝑝‖, ‖𝑟𝑑‖, and 𝜇 

Step 3: 

Outputs 

1. Optimal solution 𝒙∗: flow allocations between plants 

and zones 
2. Optimal cost 𝑍∗ 

3. Dual variables 𝒚∗: shadow prices 

4. Slack variables 𝒛∗: marginal cost 
 

To capture the spatial and operational dynamics of the urban 

water distribution network, a connection matrix was 

developed to map the relationships between water treatment 

plants and their corresponding service zones. This matrix 

reflects actual infrastructure linkages, based on pipeline 

connectivity, elevation alignment, and operational routing 

from PDAM Tirtanadi. Each entry indicates whether a 

treatment plant directly serves a particular service region. In 

addition to network structure, the table includes critical 

demand-side attributes such as total population, number of 

customers, and average water supply (in liters per second) for 

each zone. These values provide a comprehensive basis for 

formulating demand constraints and validating flow 

allocations in the optimization model. The detailed plant-to-

zone connections and demand characteristics are summarized 

in Table 2. 

 

Table 2. Plant-to-zone connection matrix 

 

No. Service Region  Sung-Gal Deli Tua Sibolangit 
Limau 

Manis 
Hamparan Perak Martu-Bung 

1 Medan Sunggal 1      

2 Medan Helvetia 1      

3 Medan Petisah 1      

4 Medan Barat 1      

5 Medan Timur 1      

6 Medan Perjuangan 1      

7 Medan Johor  1 1 1   

8 Medan Tuntungan  1 1 1   

9 Medan Selayang  1  1   

10 Medan Polonia  1     

11 Medan Labuhan     1 1 

12 Medan Marelan     1 1 
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13 Medan Deli     1 1 

14 Medan Amplas       

15 Medan Denai       

16 Medan Area       

17 Medan Tembung       

18 Simalingkar       

19 Pancur Batu       

20 Medan Maimun       

21 Medan Baru       

22 Binjai       

23 Deli Serdang       

24 Medan Kota        

25 Medan Belawan       

26 Sibolangit       

27 Hamparan Perak       

28 Delitua       

29 Martubung       

30 Limau Manis       

Capacity (l/d) 2.4 1.2 400 400 200 200 

Production cost (Rp/m³) 2.8 3.1 3.4 3.35 3.6 3.55 

Distribution cost (Rp/m³) 0.68 0.72 780 765 820 810 

Earnings (Rp/m³) 5.3 5.2 5.1 5.15 4.8 4.85 

Profit (Rp/m³) 1.82 1.38 920 1.035 380 490 

Operational cost in month 

(Million Rp) 
5.806 3.11 1.175 1.16 623 615 

Earning in month (Million Rp) 8.064 4.437 1.62 1.598 855 850 

No. Service Region Belu-Mai Denai Pulo Brayan 
Medan 

Johor 
SPAM 

Sum of 

Population  

(× 1000) 

Sum of 

Customer 

Water Supply 

(L/s) 

1 Medan Sunggal      116.83 17.25 275 

2 Medan Helvetia     1 153.42 20.35 325 

3 Medan Petisah      64.75 11.35 170 

4 Medan Barat   1   87.43 12.8 220 

5 Medan Timur   1   112.56 16.35 265 

6 Medan Perjuangan   1   96.58 14.15 230 

7 Medan Johor    1  134.52 18.75 290 

8 Medan Tuntungan      88.75 13.95 220 

9 Medan Selayang    1 1 108.25 16.75 260 

10 Medan Polonia     1 56.42 9.85 155 

11 Medan Labuhan      124.55 15.85 280 

12 Medan Marelan      175.28 19.45 355 

13 Medan Deli      185.34 22.15 370 

14 Medan Amplas 1     123.85 16.5 285 

15 Medan Denai 1 1    152.63 19.85 320 

16 Medan Area 1 1    98.25 14.3 235 

17 Medan Tembung  1    139.45 18.95 305 

18 Simalingkar    1     

19 Pancur Batu    1     

20 Medan Maimun     1 42.68 7.95 135 

21 Medan Baru     1 45.32 8.75 145 

22 Binjai     1    

23 Deli Serdang     1    

24 Medan Kota      76.34 12.25 185 

25 Medan Belawan      103.72 12.45 255 

26 Sibolangit      172.80 34.600 300 

27 Hamparan Perak      161.28 32.300 280 

28 Delitua      432.00 86.400 750 

29 Martubung      374.40 74.900 650 

30 Limau Manis      230.40 46.100 400 

Capacity (l/d) 200 240 500 400 1.1    

Production cost (Rp/m³) 3.5 3.45 3.2 3.25 3    

Distribution cost (Rp/m³) 800 790 740 750 700    

Earnings (Rp/m³) 4.9 4.95 5.4 5.05 4.75    

Profit (Rp/m³) 600 710 1.46 1.05 1.05    

Operational cost in month 

(Million Rp) 
606 716 1.382 1.123 2.851    

Earning in month (Million 

Rp) 
835 985 1.901 1.549 3.942    

 

As shown in Table 2, the distribution of service coverage 

across plants is heterogeneous. High-capacity plants such as 

Sunggal and Deli Tua are linked to multiple service regions, 

including densely populated areas such as Medan Helvetia and 
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Medan Johor. On the other hand, smaller plants like Limau 

Manis, Martubung, and Pulo Brayan provide localized support 

to peripheral zones or elevated regions that require additional 

pumping effort. The variation in population, customer base, 

and water supply across zones illustrates the underlying 

complexity of demand allocation. For instance, Medan 

Helvetia receives 325 L/s with a population base exceeding 

150,000, while Medan Petisah is supplied with just 170 L/s for 

a smaller yet strategically critical zone. These disparities must 

be carefully addressed within the optimization framework to 

ensure equitable, cost-effective, and hydraulically feasible 

water distribution throughout the city. The connection matrix 

also forms the structural basis for the constraint system used 

in the linear programming model. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Optimization results with iterative simulation process  
 

The large-scale linear programming model was solved 

using a primal-dual path-following IPM, tailored for sparse 

constraint matrices as typical in urban utility systems. The 

iterative process of the simulation is governed by solving the 

Karush-Kuhn-Tucker (KKT) conditions, which ensure primal 

feasibility, dual feasibility, and complementarity at each 

iteration. 

 

Mathematical formulation 

1. Primal problem 

 

min subject to, , 0T 
x

c x Ax = b x  (14) 

 

2. Dual problem 

 

max subject to, , 0T T + 
y,z

b y A y z = c z  (15) 

 

3. Central path condition 

 

,
T

XZ
n

 = =
x z

e  (16) 

 

(1) Initialization 

 
( ) ( )0 0

0, 0, x z  (17) 

 

(2) At each iteration k 

Compute residuals: 

 
( ) ( ) ( )

( ) ( ) ( )

, ,
k k kT

p d

k k k

c

r A r A

r X Z 

= − = + −

= −

x b y z c

e

 (18) 

 

Solve the Newton system: 

 

( ) ( )

( )

( )

( )

0

0 0
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A I r

A r

rZ X
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    
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Update variables: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

k k k

k k k

k k k







+

+

+

= + 

= + 

= + 

x x x

y y y

z z z

 (19) 

 

Update barrier parameter: 

 

( )
( ) ( )1 1

1
k T k

k

n


+ +
+

=
x z

 

 

(3) Convergence check: 

 

if , ,  stopp dr r       (20) 

 

Algorithm 2: Primal-dual interior point method for linear 

programming 

1. Initialize: 

Set iteration count k=0 

Compute initial complementarity measure: 

𝜇(𝑘) =
𝑥(𝑘)𝑇𝑠(𝑘)

𝑛
 

2. Repeat until 𝜇(𝑘) < 𝜀 

a) Compute Residuals: 

𝑟𝑝 = 𝐴𝑥(𝑘) − 𝑏(primal residual) 

𝑟𝑑 = 𝐴𝑇𝜆(𝑘) + 𝑠(𝑘) − 𝑐(dual residual) 

𝑟𝑐 = 𝑋(𝑘)𝑆(𝑘)1(centering residual) 

b) Compute Affine-Scaling Directions: 

Solve the KKT system for 

𝛥𝑥aff, 𝛥𝜆aff, 𝛥𝑠aff 

c) Compute Step Size: 

Determine maximum allowable step size 𝛼aff 

so that: 

𝑥(𝑘) + 𝛼𝑎𝑓𝑓𝛥𝑥𝑎𝑓𝑓 > 0, 𝑠(𝑘) +𝛼𝑎𝑓𝑓𝛥𝑠𝑎𝑓𝑓 > 0 

d) Predictor-Corrector Centering: 

Compute 

𝜇𝑎𝑓𝑓 =
(𝑥(𝑘) + 𝛼𝑎𝑓𝑓𝛥𝑥𝑎𝑓𝑓)

𝑇
(𝑠(𝑘) + 𝛼𝑎𝑓𝑓𝛥𝑠𝑎𝑓𝑓)

𝑛
 

            Set centering parameter: 

𝜎 = (
𝜇𝑎𝑓𝑓

𝜇(𝑘)
)

3

 

e) Corrector Step: 

Modify RHS of centering equation with: 

𝑟𝑐
′ = 𝑋(𝑘)𝑆(𝑘)1 + 𝛥𝑥𝑎𝑓𝑓 . 𝛥𝑠𝑎𝑓𝑓 − 𝜎𝜇(𝑘)1 

Solve for 

𝛥𝑥, 𝛥𝜆, 𝛥𝑠 

f) Update Primal and Dual Variables: 

Choose step length 𝛼 ∈ 0,1 

𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝛥𝒙(𝑘)

𝒚(𝑘+1) = 𝒚(𝑘) + 𝛼𝛥𝒚(𝑘)

𝒛(𝑘+1) = 𝒛(𝑘) + 𝛼𝛥𝒛(𝑘)

 

g) Update Complementarity: 

𝜇(𝑘+1) =
𝑥(𝑘+1)𝑇𝑠(𝑠+1)

𝑛
 

3. Return: 

Optimal values 𝑥∗ = 𝑥(𝑘), 𝜆∗ = 𝜆(𝑘) 

 

The optimization model converged within 18 iterations 

using the primal-dual interior point method. At termination, 

the final complementarity gap μ was 4.2×10-7, indicating 

strong duality and optimality of the solution. This value is well 
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below the common tolerance threshold of 10-6 used in large-

scale LP solvers, confirming the numerical robustness and 

precision of the algorithm. Both primal feasibility and dual 

feasibility were satisfied to machine precision. 

 

1. Optimal allocation and flow patterns 

The optimization model produced a highly structured and 

economically efficient flow distribution across PDAM 

Tirtanadi’s 21 demand zones. The allocation strategy 

prioritized cost-effective and high-capacity plants, particularly 

Sunggal and Deli Tua, which collectively supplied over 60% 

of the total optimized volume. These plants operate at 

relatively low unit costs Rp 2,800/m³ and Rp 3,100/m³ 

respectively making them ideal for base load distribution 

across central zones. 

In contrast, treatment plants such as Martubung, Denai, and 

Limau Manis were selectively activated, primarily to serve 

zones with higher elevation or hydraulic complexity. These 

plants incur higher production and pumping costs but are 

essential for maintaining system-wide pressure balance, 

especially in elevated areas like Medan Johor and Medan 

Tuntungan. The optimal flow matrix confirmed that all zones 

received adequate water volumes to meet demand, while 

simultaneously respecting capacity constraints and pressure 

head requirements. Moreover, dual variable analysis revealed 

high marginal costs in specific zones, identifying localized 

pressure bottlenecks and guiding potential sites for future 

reinforcement or targeted investment. Beyond flow allocation, 

the dual variables offer operational insights. In particular, the 

shadow prices 𝜆𝑗 linked to the demand satisfaction constraints 

reveal the marginal cost of serving each zone. For instance, 

Zones 7 and 15 displayed the highest λ values in the system 

Rp 2.15/m³ and Rp 2.31/m³, respectively indicating these areas 

impose higher supply costs due to either elevation or 

topographical challenges. These results suggest targeted 

infrastructure investments such as pressure booster pumps or 

reinforced trunk mains to relieve bottlenecks and lower future 

operating costs. On the supply side, the slack variables 𝑠𝑖 

indicated that the Denai plant was operating at near-capacity, 

while Limau Manis and Martubung showed underutilized 

capacity. These insights inform strategic maintenance 

scheduling, energy management, and capacity expansion 

planning. 

 

2. Utilization rates of each water treatment plant 

The model’s output also detailed the percentage utilization 

of each treatment plant. Sunggal operated at nearly 98% 

capacity, while Deli Tua reached 94% utilization, reflecting 

their central role in the cost-optimal configuration. On the 

other hand, Martubung and Pulo Brayan operated at less than 

40% capacity, signaling their use as supporting plants for 

pressure-sensitive zones or secondary routes. These utilization 

rates not only validate the optimization’s economic rationale 

but also inform operational decisions regarding energy 

management, maintenance prioritization, and future plant 

expansion planning. 

The 14.3% reduction in water loss observed in the 

optimized scenario is not solely due to flow re-routing but is 

primarily driven by improvements in pressure zone balancing. 

The model explicitly enforces minimum head constraints 

𝐻𝐽
𝑚𝑖𝑛  across all demand zones, ensuring service reliability 

without inducing over-pressurization. In legacy 

configurations, elevated zones often experienced excessive 

head from distant high-capacity plants, increasing leakage 

rates through pipe joints and microfractures. By assigning flow 

from geographically or topographically aligned treatment 

plants with closer elevation profiles, the model reduces 

unnecessary head pressure. This adjustment directly 

minimizes pressure-driven leakage, consistent with empirical 

leakage laws such as the Torricelli-based square-root model. 

The hydraulic benefit, therefore, reinforces the cost efficiency 

gained through routing. 

 

3.2 Performance comparison 

 

1. IPM vs. Simplex: iteration count, speed, memory usage, 

objective value 

To evaluate the efficiency of the computational method, the 

IPM was benchmarked against the classical simplex method. 

Both methods converged to the same optimal cost of Rp 8.63 

billion/month, but their performance metrics diverged 

significantly: 

Table 3 shows that interior point method achieved 61.7% 

fewer iterations and was 73.4% faster in computation time, 

confirming its suitability for large-scale, sparse linear 

programming problems such as water distribution systems. It 

also consumed less memory, which is advantageous in real-

time optimization contexts or embedded control systems. To 

validate the claimed efficiency gain, we compared the 

optimized operational cost generated by our model against 

actual PDAM financial records from 2023–2024. Table 4 

presents this comparison. The historical average monthly cost 

was Rp 9.35 billion, while the model yields Rp 8.63 billion, 

resulting in a cost reduction of approximately 7.8%. This 

confirms the real-world impact of the proposed optimization 

approach. 

These findings support the operational feasibility and 

economic justification for implementing the optimized routing 

and allocation strategies presented in this study. The savings, 

though conservative, represent a recurring benefit that can be 

reinvested into system maintenance and pressure zone 

reinforcement.  

 

Table 3. Performance comparison 

 

Metric 
Interior Point 

Method 

Simplex 

Method 

Iterations to 

Convergence 
18 47 

Time to Solve 

(seconds) 
2.74 10.32 

Memory Used (MB) 82.3 120.6 

Optimal Cost (Rp 

Billion) 
8.63 8.63 

 

Table 4. Performance comparison 

 

Metric 
Historical  

(2023–2024) 

Optimized 

Model 

Average Monthly Cost 

(Rp) 
9.35 billion 8.63 billion 

Annualized Total Cost 

(Rp) 
112.2 billion 103.6 billion 

Relative Savings (%) — 7.8% 

Data Source 
PDAM Tirtanadi 

reports 

Optimization 

results 
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Table 5. Sensitivity and robustness analysis 

 
Metric Value 

Number of scenarios 500 

Demand variation model Gaussian, σ = 15% 

Feasible solution rate 97.8% 

Cost range (min–max) ±6.2% from baseline 

Avg. computation time/run 2.95 s 

 

3.3. Sensitivity analysis 

 

1. Impact of varying demand and supply capacity 

To assess model robustness, sensitivity tests were 

conducted by adjusting both demand and supply capacity 

values by ±5% and ±10%. When demand was increased by 

10%, the model maintained full feasibility with a total cost 

increase to Rp 9.45 billion/month and a slight decline in 

efficiency. Conversely, a 10% reduction in demand lowered 

cost to Rp 8.12 billion, but also resulted in underutilization of 

certain plants, particularly those with higher operating costs. 

For supply variation, a 10% increase in capacity allowed 

greater optimization flexibility, reducing total cost to Rp 8.36 

billion, while a 10% supply reduction caused a cost rise to Rp 

9.38 billion due to increased reliance on costlier plants to meet 

zone demands. In addition to deterministic perturbation of 

±10%, we performed a stochastic robustness analysis using 

Monte Carlo simulation. A total of 500 demand scenarios were 

generated assuming normally distributed random variation 

around baseline demands (μ = Table 2 values, σ = 15% of μ). 

The optimization model-maintained feasibility in 97.8% of the 

simulations, with objective function values ranging within 

±6.2% of the baseline optimum. This confirms that the 

proposed model exhibits strong robustness even under 

uncertain demand fluctuations and real-world variability. To 

evaluate the model’s robustness under uncertainty, a Monte 

Carlo simulation was conducted using 500 randomly 

generated demand scenarios. Each scenario applied Gaussian 

noise to the baseline demand values from Table 2, with a 

standard deviation of 15%. This approach reflects realistic 

fluctuations that may arise due to seasonal variability, 

unexpected consumption spikes, or forecasting inaccuracies. 

The model was solved for each scenario to assess feasibility 

and cost variability. Table 5 summarizes the key statistics from 

this analysis. 

As shown in Table 5, the model-maintained feasibility in 

97.8% of all simulated scenarios, with solution costs varying 

within ±6.2% of the optimal baseline. The average 

computation time per scenario was approximately 2.95 

seconds, confirming the model's scalability even under 

extensive simulation. These results demonstrate that the 

optimization framework is not only accurate under 

deterministic assumptions but also resilient under stochastic 

conditions, making it suitable for real-world planning where 

input uncertainties are unavoidable. 

 

2. Robustness of optimization results 

The model demonstrated strong structural robustness, 

retaining feasibility and near-optimal performance under 

moderate deviations in both supply and demand. The system 

was able to reconfigure allocations dynamically to ensure full 

coverage without violating pressure or capacity constraints. 

However, performance degradation became evident beyond 

±10% perturbations, indicating practical operational 

thresholds for system stress tolerance. This robustness 

reinforces the model’s applicability in real-world planning 

scenarios where exact parameter values may be subject to 

variation due to seasonal, economic, or technical uncertainties. 

To validate the computational efficiency of the proposed 

solution approach, we conducted a benchmarking analysis 

between the IPM and the classical Simplex Method. Both 

algorithms were applied to the same linear programming 

model and produced identical optimal cost values. However, 

their performance varied significantly across key 

computational metrics, including number of iterations, time to 

convergence, and memory usage. 

 

 
 

Figure 2. Comparison between interior point method to simplex method 
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As illustrated in Figure 2, the IPM required only 18 

iterations, compared to 47 for the Simplex Method. This 

efficiency translated into a faster solve time (2.74 vs 10.32 

seconds) and lower memory consumption (82.3 MB vs 120.6 

MB). These findings reinforce the IPM’s suitability for large-

scale, sparse linear programming problems, such as those 

found in water distribution optimization. The reduced 

computational burden is particularly advantageous for real-

time applications and integration with smart utility platforms. 

 

3.4 Implementation strategy 

 

To ensure the optimization model’s impact extends beyond 

simulation and into operational practice, a structured 

implementation strategy is proposed. This strategy comprises 

both short-term adjustments and long-term transformation 

initiatives, ensuring a phased and feasible adoption by PDAM 

Tirtanadi. 

 

1. Short-term and long-term application roadmap 

To operationalize the optimization model and ensure that it 

delivers measurable impact, a structured roadmap has been 

developed. This roadmap spans short-term, mid-term, and 

long-term phases, each addressing different layers of system 

improvement from immediate operational reconfiguration to 

long-range strategic transformation. Importantly, the roadmap 

is paired with a cost-benefit perspective, incorporating 

estimated returns on investment (ROI) for each phase. These 

ROI projections are based on the monetary value of 

operational cost reductions, energy savings, leak mitigation, 

and tariff realignment derived from the model's outputs and 

zone-level dual values. 
 

Table 6. Optimization roadmap with ROI assessment 
 

Phase Key Focus Actions Estimated ROI 

Short-Term (0–6 

Months) 

Operational reconfiguration 

without infrastructure 

changes 

1. Reprogram pumping schedules 

2. Recalibrate valves and zone controls 

3. Deploy flow and pressure sensors 

4. Develop operational dashboard 

Rp 2.1 billion/year from 

energy and operational 

efficiency 

Mid-Term (6–18 

Months) 

Infrastructure calibration 

and system integration 

1. Install pressure-reducing valves (PRVs) 

2. Integrate SCADA with optimization model 

3. Begin pipeline rehabilitation 

Rp 3.5 billion/year from 

leakage reduction and 

hydraulic control 

Long-Term (18–

36 Months) 

Strategic scaling and digital 

transformation 

1. Expand capacity in key plants (Sunggal, Deli Tua) 

2. Implement tariff reform using shadow prices 

3. Deploy digital twin of water network 

Rp 3.2 billion/year from 

system optimization and 

improved revenue 

recovery 

As shown in Table 6, the short-term actions focus on 

adjusting pumping schedules, valve calibrations, and sensor 

deployment all of which can be executed without major 

infrastructure investment, yet yield immediate savings 

estimated at Rp 2.1 billion/year. Mid-term activities involve 

infrastructure calibration, such as the installation of pressure-

reducing valves and integration of SCADA systems, projected 

to deliver Rp 3.5 billion/year in leakage and pressure-related 

savings. In the long term, strategic actions such as digital twin 

deployment, tariff reforms based on shadow pricing, and 

expansion of cost-efficient plants are expected to contribute an 

additional Rp 3.2 billion/year through enhanced system 

optimization and revenue recovery. This phased strategy not 

only supports technical feasibility but also presents a 

financially sound justification for adoption, ensuring that 

optimization-driven decisions align with institutional capacity 

and investment cycles. To complement the economic 

evaluation, a sustainability-oriented roadmap was developed 

by quantifying the environmental and energy impacts of the 

optimization. This assessment focuses on monthly electricity 

consumption for pumping and its corresponding carbon 

emissions, using Indonesia’s national average grid emission 

factor. Table 7 summarizes the key performance indicators 

before and after optimization, highlighting potential 

operational savings and environmental co-benefits. 

 

Table 7. Optimization roadmap with ROI assessment 

 

Metric 
Pre-

Optimization 

Post-

Optimization 

Reduction 

(%) 

Monthly Pumping Energy 

(kWh) 
5,060,000 4,750,000 6.1% 

Estimated CO₂ Emissions 

(tons) 
4,149 3,895 6.1% 

While the primary objective of the model is cost 

minimization, the optimized solution also contributes 

positively to energy efficiency and environmental 

sustainability. Based on energy audit data from PDAM 

Tirtanadi, the average pumping energy required per cubic 

meter of water is 0.51 kWh. Applying this figure to pre-

optimization and post-optimization flow patterns reveals a 

total monthly energy saving of approximately 310,000 kWh, 

or a 6.1% reduction in energy use. Using Indonesia’s average 

grid emission factor of 0.82 kg CO₂/kWh, this corresponds to 

an estimated monthly reduction of 254 metric tons of CO₂ 

emissions. These environmental co-benefits align the model’s 

operational outcomes with national sustainability targets under 

the Rencana Umum Energi Nasional (RUEN) and global SDG 

6 (clean water) and SDG 13 (climate action). 

 

3.5 Model limitations and future improvements 

 

Despite its effectiveness, the current optimization model is 

subject to several structural limitations that warrant attention 

for future refinement and scalability. These limitations do not 

invalidate the findings but rather define the scope within which 

the model can be interpreted and applied. 

 

(1) Deterministic assumptions 

The existing model is built on a deterministic framework, 

where all input parameters including demand, supply capacity, 

cost coefficients, and head-loss relationships are assumed to 

be known and static. In reality, urban water systems are 

exposed to dynamic conditions such as: 

1. Seasonal and hourly demand fluctuations 

2. Unexpected equipment failures or maintenance 

outages 
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3. Variable energy tariffs 

4. Pipe bursts or pressure shocks due to external 

disruptions 

These factors introduce uncertainty that is not captured in 

the current formulation. As a result, while the model is suitable 

for planning and average-condition operations, it may not fully 

reflect real-time adaptability or emergency responsiveness. 

 

(2) Potential for dynamic, stochastic, and multi-objective 

extensions 

To enhance robustness and applicability, the model can be 

extended along several dimensions: 

1. Dynamic Optimization: Introducing a time-based 

dimension (e.g., hourly scheduling, daily demand 

forecasting) would allow integration with pump 

operations, energy tariffs, and SCADA feedback loops. 

This would transition the model from static allocation to 

real-time operational control. 

2. Stochastic Programming: Incorporating probabilistic 

demand distributions and failure scenarios would allow 

the system to operate under uncertainty and risk, 

producing solutions that are resilient rather than just 

optimal under perfect information. 

3. Multi-Objective Optimization: While the current model 

focuses on cost minimization, future versions could 

simultaneously optimize for other objectives such as: 

a. Energy consumption 

b. Service equity across zones 

c. Environmental sustainability 

d. Pressure uniformity or NRW reduction 

Using Pareto efficiency analysis or weighted goal 

programming, the model could provide decision-makers with 

trade-off visualizations, making it more aligned with holistic 

utility management. 

 

 

4. CONCLUSIONS 

 

This study developed and implemented a large-scale linear 

programming model for optimizing urban water distribution, 

with a focus on operational efficiency, hydraulic feasibility, 

and cost minimization. Using real data from PDAM Tirtanadi 

in Medan, Indonesia, the model incorporated supply 

constraints, demand requirements, and pressure limitations 

through a linearized formulation. The solution was obtained 

using a custom primal-dual interior point algorithm, which 

demonstrated superior computational performance compared 

to the simplex method, reducing iteration count by over 60% 

and computation time by over 70%. The optimized flow 

allocation resulted in a 7.8% reduction in monthly operational 

costs, with a 14.3% reduction in water loss and 18.7% 

improvement in distribution efficiency. Sensitivity analysis 

confirmed the model’s robustness under moderate fluctuations 

in demand and supply capacity, and dual variable analysis 

provided valuable economic signals for prioritizing 

infrastructure investments. 

The model provides a rigorous decision-support tool for 

utility operators, engineers, and policy planners in the water 

sector. Its application to PDAM Tirtanadi shows that cost-

efficient and hydraulically compliant flow patterns can be 

achieved without requiring new infrastructure merely by 

reconfiguring existing supply routes and operational 

schedules. Furthermore, the dual values derived from the 

optimization serve as actionable indicators for tariff 

restructuring, emergency planning, and zone prioritization. 

The roadmap proposed in this study offers a realistic, phased 

strategy for implementation, aligning technical feasibility with 

financial and institutional capacities. This makes the approach 

highly relevant not only for PDAM Tirtanadi but for other 

urban water utilities in developing economies facing similar 

operational constraints. 
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