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Functionally graded materials (FGMs) are developed to meet the evolving demands of 

the advanced technology in several engineering applications. There are many numerical 

and experimental techniques in the literature to emulate the FGM. This paper introduces 

a novel experimental technique to fabricate functionally graded (FG) plate made from 

polyester resin and silica powder. The power law model is utilized to represent the 

material distribution along the thickness of the FG plate. The fundamental natural 

frequency of the FG plate for different material indices are measured experimentally 

using the novel experimental method. In addition, a finite element method is utilized to 

simulate the free vibration of the FG plate using ANSYS software. The numerical 

results of ANSYS program are compared with the experimental one and the results 

indicated a very good agreement. Furthermore, a comparison is made with the available 

literatures as verification. The effect of various parameters such as material index, 

modular ratio, length-to-thickness ratio and supporting type on the first five natural 

frequencies of the FG plate are investigated. The results indicated that the modular ratio 

has a great effect on the natural frequencies of FG plate for different supporting types. 

Also, the natural frequencies decrease as the ratio of (L/h) increase. 
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1. INTRODUCTION

The structural mechanics has seen a notable development 

in latest years, because of the increasing demand for high-

performance and lightweight materials in several application 

such as spacecraft, bio-mechanics, vehicles, nuclear, and 

civil engineering applications [1-3]. Functionally graded 

materials (FGMs) introduced as a promising solution to 

address the complex structural and thermal challenges 

encountered in various engineering systems. Nowadays, 

FGMs have become one of the intelligent materials as well 

as, from the structure's upper to lower surfaces, it offered a 

constant change in characteristics of material [3]. FGMs can 

be defined as “non-homogeneous composite materials in 

which the composition varies continuously and smoothly in 

a specific direction, such as along the length or thickness” 

[3]. FGMs are composed of two or more components and 

proven to be very effective in structural design, overcoming 

the performance of traditional homogenous and composite 

materials [3]. Because of its high applicability FGMs, several 

researches investigated the material properties and 

mechanical behavior of these materials depending on various 

theories [4-8]. 

On the other hand, the vibration of functionally graded 

(FG)-plate took a considerable area in the academic 

community for their wide applications. In aerospace usually 

used as barrier thermal isolation for parts with extreme 

temperature gradients. Also, they utilized in landing gears, 

engine mount, and suspension systems for their good 

vibration isolation. For example, using appropriate 

displacement functions for both forced and free vibrations, 

Vel and Batra [9] enhanced a 3-D precise solution behavior 

to employed simply supported (SS) for rectangular thin and 

thick FG-plate and boundary condition for appropriate 

displacement functions. The first, third, and classical theories 

of shear deformation were used to compute natural 

frequencies, displacements, and stresses. The effective 

properties were computed at all point along the plate's 

thickness using Mori-Tanaka or self-consistent techniques. 

Furthermore, they applied a power law model to represented 

the variation in material characteristics along the plate's 

thickness. Altenbach and Eremeyev [10], calculated natural 

oscillations of FGM-plates taking into consideration the 

effects of the rotatory inertia and the transverse shear 

stiffness. Natarajan et al. [11], utilized the extended finite 

element technique to analysis free transverse vibration 

behavior of cracked FG-plate. The impact of material index 

and fracture dimensions (location, length, and direction) 

were investigated using his model, thickness of plate and 

presence of multiple cracks on natural frequency and mode 

shape of rectangular and square FG-plate with the boundary 

condition of simply supported and clamped. Janghorban and 

Rostamsowlat [12], performed the free vibration behavior of 

FG-plate containing non-circular and multi circular 

interruptions employing finite element mechanism. 

Considered the effects of (a) number, size, and location of 
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cutouts, (b) supporting types, and (c) shape of FG-plate 

(rectangular, skew, trapezoidal, and circular) on the FG-plate 

natural frequency. Lei et al. [13] examined the vibration 

behavior of FG-plate reinforced by the carbon nanotubes 

with a single wall with various distribution patterns of 

uniaxial aligned single wall carbon nano-tubes (SWCNTs) 

using the kp-Ritz method. Linear volume fraction utilized 

several distributions of carbon nanotubes, employing 

functionally graded-carbon nanotubes reinforced composites 

(FG-CNTRCs) to modify the characteristics throughout the 

thickness. The study investigated how natural frequencies 

and mode shapes were affected by factors such as 

temperature changes, boundary conditions. Sharma et al. [14] 

applied the finite element technique to analyze the free 

vibration behavior of FG-plate with multiple circular cutouts 

describing the material's properties using power law model 

characteristics along the thickness of the plate. Due to 

material index, thickness ratio and supporting types were 

studied the variation of natural frequency. 

Gupta et al. [15] examined the free vibration behavior of 

FG-plates which has been used, the theory of higher-order 

shear deformation in the type of simply supported was 

applied to an elastic base. Pasternak model utilized to 

simulate the foundation with power law approach to model 

the characteristics of the material throughout its thickness of 

FG-plate. The study examined how the distribution index, 

FG-plate dimensions, and two Pasternak elastic foundation 

parameters affected the natural frequency variation. Also, 

Song et al. [16] applied 1st-order theory of shear deformation 

and modified Halpin-Tsai model to examine the FG-plate 

vibration behavior, both forced and free made by multilayer 

graphene nano-platelet (GPL) polymer composite. Simply 

supported FG-plates and natural frequency and reactivity 

under dynamic loads were determined using the Navier 

solution method. Conversely, Ghasabí [17] investigated how 

the length of the dimensionless plate, the material index, and 

the nonlocal parameter ratio affected the natural frequency 

by using a nonlocal elasticity-based technique to analyze the 

free vibration behavior of a nano-plate created via FGM. 

Using the variational approach and Hamilton's principle to 

obtain the equations and boundary conditions, then applied 

the extended strategy of differential quadrature to solve the 

resulting governing equations. Akbas [18] derived the static 

and free vibration equations of a porous FG-plat using the 

concepts of Hamilton's principle and shear deformation 

plates of the first order. Furthermore, the plate situation was 

applied simply supported in both ends of a plate and solved 

by the Navier method. 

Hien and Lam [19] used a power-law model to describe 

the change in material characteristics over the thickness of 

the FG-plate and examined the dynamical response of a 

rectangular FG-plate lying on a viscoelastic foundation under 

changing loads. The transient responses of simply supported 

FG-plates were used to computed state-space techniques, 

higher-order shear deformation, and Hamilton's principle. 

Also, Sharma et al. [20] used 4-nodes shell element and 

power law equation to simulate the vibration and harmonic 

behaviors of FG-plates made by (Aluminum-Alumina, Ti–

6Al–4V-Aluminum oxide, Aluminum-Zirconia, and 

SUS304/Si3N4). The study focuses on verifying influence of 

material types, damping on natural frequency, supporting 

types, distribution index and harmonic response of FG-

plates. Nguyen et al. [21], using the analysis of extended 

isogeometric (XIGA) to characterize the displacement field 

of the FG-plate and the approach of simplified strain 

gradient. The vibration behavior of cracked FG-microplates 

was examined using the refined plate theory, which 

comprises four unknowns. 

In order to examine the nonlinear dynamic response of FG-

plate under external dynamic loads while taking into account 

the third order shear deformation plate kinematics (TSDT), 

Bourihane et al. [22], used a Methodology of high-order 

implicit based on the asymptotic numerical method (ANM) 

techniques. To develop a finite element model applied a four-

node quadrilateral element (7 degrees of freedom) without 

used homogenization techniques. Hadji and Avcar [23] 

applied hyperbolic shear displacement theory along with 

Hamilton's principle to explore the free vibration of a square 

porous FG sandwich plate featuring an isotropic 

homogeneous core, while examining various support 

configurations. Their investigated how factors such as the 

porosity index, porosity distribution function, layer 

arrangement, side thickness ratio, and support types 

influenced the vibrational behavior of the sandwich porous 

FG plate. Permoon and Farsadi [24] employed fractional 

theory to model and investigate the free vibration and 

damping behavior of a three-layer sandwich plate with a 

viscoelastic core. The Rayleigh-Ritz approach used to solve 

the governing equation of vibration after applying Lagrange's 

method to derive it. 

An accurate high-order shear deformation theory issue of 

sandwich FG-plate resting on a viscoelastic foundation under 

a hygrothermal environment load was used by Zaitoun et al. 

[25], to investigate the free vibration utilizing Hamilton's 

principle. sandwich FG-plate density, thickness, damping 

constant, aspect ratio, temperature, and moisture were 

studied. The finite element approach was used by Narayanan 

et al. [26] to study the vibration responses in both forced and 

free vibration of the FG-plate using Abaqus CAE (S8R5 shell 

elements). The FG-plate's center receives a harmonic force 

with a sine function, while the top and center get impulse 

forces in a rectangle, triangle, and half-cycle sine 

configuration. The suggested method developed a good 

acceptance with the existing literature. Cho [7] carried out 

multiple levels’ models developed from the 3D elasticity and 

the 2-D natural element approach to numerically study the 

free vibration problem of the sandwich FG plate of a 

homogenous center. It was discovered that the kind of 

material that made up the center, the index of volume 

fraction, the relative thickness and location of the center 

layer, and the plate aspect ratio all had a substantial impact 

on the calibrated fundamental frequency. Moreover, Kumar 

et al. [8] used a non-polynomial hyperbolic based theory that 

assumed an exponential function for changing material 

characteristics throughout the plate's thickness to study the 

free vibration issue of a rectangular tapered FG-plate sitting 

on an elastic basis. The model was constructed and solved 

using the variational principle and Galerkin's approach, 

yielding the impacts of foundation stiffness, span ratio, width 

to height ratio, and taper ratio supporting types on the 

frequency of rectangular tapered FG-plate. Li et al. [27] gave 

a mathematical solution for the sandwich FG-plate free 

vibration problem by applied a theory of equivalent-single-

layer plate and accounting of the effect of thermal 

environment. Equations of motion for two distinct kinds of 

sandwich FG-plates were developed by Hamilton's principle 

and subsequently solved using the Navier theory. 

Vu and Tran [28] investigated the effects of sandwich plate 
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auxetic core and FGM piezoelectric face sheet on free 

vibration. Refined plate approach of four-variable shear 

deformation used improved a unique model, and the pb2-Ritz 

technique. Geometric characteristics, electrical boundary 

conditions, volume fraction indices, and reinforcing 

stiffeners are also examined in relation to the vibration 

response. Hadji et al. [29] carried out the buckling test 

assumed two sandwich types: FG skins with hard and soft 

cores, and examined the free vibration of sandwich FG-plate 

with various supporting types. To construct the current 

model, Hamilton's principal equations and refined plate 

models were used. 

In this work, a new experimental technique is used to 

fabricate FG-plate using polyester resin and silica powder 

(SiO2). The new technique is to acquire the experimental 

results of tensile test for seven specimens of polyester-silica 

composite materials with volume fraction of silica varying 

from (0-0.3). The power law equation is adopted to fabricate 

and simulate the FG-plates. Three specimens of FG-plate are 

fabricated assuming three material indices m=1/2, 1 and 5. 

An appropriate rig and instruments were used to test the 

fundamental natural frequency of fabricated FG-plates under 

clamped-free-free-free conditions (CFFF) experimentally. 

Three material indices (m=1/2, 1, and 5) were used to build 

the FE model, and the FE findings were compared with the 

experimental results of CFFF FG-plates. The ANSYS results 

were compared with previously published research as a 

verification of the finite element model. Finally, a numerical 

investigation is conducted to further study the effects of the 

following factors: modular ratio, material index, (L/h) ratio, 

mode number, and supporting type on the natural frequencies 

of FG-plates. 

 

 

2. MATERIALS AND METHOD 
 

 
(a) Resin of polyester (Fiber risen) 

 
(b) Powder of silica (SiO2) 

 

Figure 1. Elements used to manufacture FG-plate in this 

work 

Table 1. Properties of polyester resin and silica powder [30] 

 

No. Materials 
Young's 

Modulus (Pa.) 

Poisson’s 

Ratio 

Density 

(kg/m3) 

1 
Polyester 

Resin 
2.5*109 0.3 1023 

2 
Silica 

Powder 
66.3*109 0.15 2330 

 

2.1 Material 

 

In this paper, two materials types are used to manufacture 

composite specimens; Polyester resin serves as a matrix 

material and silica (SiO2) as a reinforcing material. As a 

liquid matrix, fiber risen, a well-known polyester resin is 

used as shown in Figure 1(a). It can be solidified by adding a 

hardener at a ratio 1:100, and has a lower viscosity than other 

thermosets. Among the most complicated and intricate 

material kinds are silicon dioxide (SiO2), sometimes referred 

to as silica. It can be appearing naturally in variety of 

minerals and manufactured synthetically. To prepare 

polymer composite materials, SiO2 is highly utilized as fillers 

because of its fracture toughness, high strength, wear 

resistance, and high specific surface area. Additionally, it is 

excellent thermal isolator. Also, it can be a very good 

electrical insulator, which makes it ideal for isolating the 

transistors as well as the integrated circuits. Figure 1(b) 

illustrates the silica particles. The material properties of silica 

and polyester are listed in Table 1. 

 

2.2 Dies tensile test specimens’ preparation 

 

Each of the dies used to create the specimens has three 

layers and is composed of acrylic. With dimensions of 0.6 m 

width, 0.22 m length, and 0.01 m thickness, the first layer 

serves as a cover for the second layer, while the second layer 

features grooves of the specimen shape used for testing on 

the third layer, which was utilized as a base to seal mixture 

leakage (see Figure 2). In order to produce composite 

samples that meet the international standard specimens (ISS), 

the die was made using a CNC laser cut machine and roots. 

 

 
 

Figure 2. Tensile test die 

 

2.3 Fabrication of tensile test specimens 

 

In order to investigate how the volume percentage of silica 

affects the composite material of Young's modulus, 

homogeneous tensile specimens are made using seven 

different silica volume fractions. Once the acrylic dies for the 
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tensile test specimens have been prepared using the volume 

fractions listed in Table 2, the polyester resin and silica 

powder are thoroughly mixed using a mechanical mixer, 

taking ample time for each mixing. Then the mixture is 

poured into the molds and the hardener is added (see Figure 

3). 

 

Table 2. Volume fractions of silica and polyester resin used 

to manufacture tensile test specimens 

 

No. 
Silica Volume 

Fraction 

Polyester Resin 

Volume Fraction 

No. of 

Specimens 

1 0 1 3 

2 0.05 0.95 3 

3 0.1 0.9 3 

4 0.15 0.85 3 

5 0.2 0.8 3 

6 0.25 0.75 3 

7 0.3 0.7 3 

 

   
   

VSilica=0.05 VSilica=0.1 VSilica=0.15 

 

Figure 3. Homogenous tensile test specimens 

 

2.4 Tensile test experiments 

 

The Young's modulus of the twenty-one homogeneous 

composite materials samples with ASTM D638 

specifications is determined by testing. Table 3 lists the tested 

specimens' Young's modulus. Figure 4 plots the results to 

determine an equation that describes how the Young's 

modulus varies with regard to the volume fraction of silica 

powder (see Eq. (1)). 

 

E(Vf) = 1066 ∗ (Vf)
4 − 904.88 ∗ (Vf)

3 

+208.09 (Vf)
2 + 2.944 ∗ Vf + 2.5032 

(1) 

 

Table 3. Experimental results of Young's modulus of 

polyester- silica powder composite materials vs. Vf of silica 

powder 

 

No. 

Polyester Resin 

Volume Fraction 

(Vm) 

Vf of 

Silica Powder 

(Vf) 

E of Composite 

(GPa) 

1 1 0 2.5 

2 0.95 0.05 3.08 

3 0.9 0.1 4.0478 

3 0.85 0.15 5.1392 

4 0.8 0.2 5.8671 

5 0.75 0.25 6.2725 

6 0.7 0.3 6.9592 

 
 

Figure 4. E of composite materials vs. Vf of (SiO2) particles 

 

2.5 Fabrication of FG-plate for vibration test 

 

The FG-plate's upper material is a composite with a 

volume proportion of silica powder equal to 0.3, while the 

bottom material is made of pure polyester according to the 

power law approximation that describes the properties of 

material along the plate's thickness. The sample's thickness is 

divided into five layers in the FGM experimental model, and 

each layer has consistent properties of material (Vf fraction 

of silica powder). The Young's modulus of every layer is 

computed to make use of the following formula to get the 

necessary Vf of silica powder: 

 

𝐸(𝑧) = (𝐸2 − 𝐸1) (
𝑧

ℎ
+ 0.5)

𝑚

+ 𝐸1 (2) 

 

where, E(z) represents the Young’s modulus at any given 

location along the FG-plate's thickness (h). The Young's 

modulus at the FG-plate's top and bottom surfaces is denoted 

by E1 and E2, respectively. The power law or distribution 

index is denoted by m. 

To fabricate the FG-plate with power law indices of 1/2, 1, 

and 5, the following steps were followed: 

(a) The bottom material of the FG-plate is the pure 

polyester while the top material of the FG-plate 

is the composite material when the volume 

fraction of silica powder is 0.3. These materials 

are used in Eq. (2) to calculate the Young's 

modulus of six points along the thickness of FG-

plate (upper, lower and 4 internal points) (see 

Figure 5). 

(b) The following formula is used to determine a 

layer's Young's modulus: 
 

𝐸𝑙𝑎𝑦𝑒𝑟 𝑖 =
(𝐸𝑝𝑜𝑖𝑛𝑡 𝑖+1 − 𝐸𝑝𝑜𝑖𝑛𝑡 𝑖)

2
 (3) 

 

(c) Using Eq. (1) to calculate the volume fraction of 

silica powder at each layer for any power law 

index. Tables 4-6 list the volume fraction of silica 

powder in each layer where the power law index 

is 1/2, 1, and 5, respectively. 
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Figure 5. Number of layers and points along thickness of 

FG-plate 

 

Table 4. Silica powder volume fraction and Young's 

modulus for the 5 layers (index of power law (m)=1/2) 

 
No. Ec=Etop Em=Ebottom Calculated Vf Elayer 

1 6.9588 2.5 0.07 3.497 

2 6.9588 2.5 0.12 4.907 

3 6.9588 2.5 0.15 5.637 

4 6.9588 2.5 0.18 6.221 

5 6.9588 2.5 0.22 6.7238 

 

Table 5. Silica powder volume fraction and Young's 

modulus for the 5 layers (index of power law (m)=1) 

 
No. Ec=Etop Em=Ebottom Calculated Vf Elayer 

1 6.9588 2.5 0.05 2.9428 

2 6.9588 2.5 0.092 3.8579 

3 6.9588 2.5 0.13 4.7387 

4 6.9588 2.5 0.18 5.6294 

5 6.9588 2.5 0.275 6.5203 

 

Table 6. Silica powder volume fraction and Young's 

modulus for the 5 layers (index of power law (m)=5) 

 
No. Ec=Etop Em=Ebottom Calculated Vf Elayer 

1 6.9588 2.5 0 2.5 

2 6.9588 2.5 0.001 2.51 

3 6.9588 2.5 0.03 2.6407 

4 6.9588 2.5 0.065 3.2404 

5 6.9588 2.5 0.145 5.0484 

 

2.6 Vibration of FG-plate 

 

Examining the plate's fundamental natural frequency using 

the signal data collected is compromised by the vibration test. 

This test uses FG-plates with the following dimensions: 

L=50 cm, W=13 cm, and Thickness=2 cm. The boundary 

condition is cantilevering supported (CFFF). 

The flowchart for the vibration structure rig test is 

displayed in Figure 6. The plate sample that was analyzed to 

determine the fundamental natural frequency is shown in 

Figure 7. 

The rig contains the following parts: 

1). The Rig structure: Used to fix the FG-plate sample 

on it with support parts for fixing. 

2). Impact hammer: The model (086C03) (PCB 

Piezotronics vibration division) is utilized; the hammer mass 

(0.16 kg), excitation voltage (20-30 VDC), resonance 

frequency (≥22 kHz), measurement range (2224 N), and 

constant current excitation (2×10-3-20×10-3 A) are all 

included. 

3). Accelerometer: The model used is SN 151779. 

4). Amplifier: The used model is 480E09. 

5). Digital data storage oscilloscope; the used model is 

ADS 1202CL+ with serial No. is 01020200300012, FFT 

spectrum analysis, the two input channels, the maximum 

frequency (200 MHz), and the maximum sample r/s (500 

MSa/s). 

 

 
 

Figure 6. Vibration rig flowchart 

 

 
 

Figure 7. Vibration test machine of cantilever FG-plate 

 

 

3. FINITE ELEMENT SIMULATION 

 

In this work, ANSYS Software is used to apply the method 

of finite element method (FEM) for simulating together with 

analyzing the free vibration behavior of FG-Plate. In the 

beginning, the FG-plate is divided into N-layers along its 

thickness (N=5 in simulation of experimental work and N=10 

in theoretical work) (see Figure 5). Then, the N-plates with 

dimensions (Length*Width*(thickness/N)) are drawn with 

zero distance between them (see Figure 8(a)) and then glue 

them to gather. After that, N-sets of Material properties are 

interred to ANSYS software (see Figure 8(b)). The element 

(SOLID187) is used is this model (see Figure 8(c)) to mesh 

the N-plates (see Figure 8(d)). The adopted boundary 

conditions and the model analysis are utilized to calculate the 

natural frequencies of FG-plate [31, 32]. 
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(a) N-plates 

 
(b) Five sets of material properties 

 
(c) SOLID187 

 
(d) Meshing 

 

Figure 8. ANSYS simulation 

 

4. VALIDATION 

 

4.1 Validation with available literatures 

 

By contrasting the current model's results with the existing 

literature, the validity of the finite element model is examined 

in this part. The natural frequencies of the square FG-Plate 

created by ZrO2 and Ti-6Al-4V were determined by 

Bourihane et al. [22] using easily supported boundary 

conditions. 

The 3rd-order shear deformation plate kinematics (TSDT) 

and classical plate theory (CPT) were employed by 

Bourihane et al. [22], who then compared their findings with 

those calculated by Huang and Shen [33]. Table 7 lists the 

material characteristics of the progenitors of FGM. The 

plate's dimensions are Length=Width=0.2 m and 

Thickness=0.025 m. Table 8 shows how the current model 

compares to findings from Huang and Shen [33] and 

Bourihane et al. [22]. Table 8 shows that the results of the 

current model and those of Bourihane et al. [22] coincide 

quite well (TSDT). 

 

Table 7. Material properties of ZrO2 and Ti-6Al-4V [22, 

26] 

 

Property Unit 
Materials 

ZrO2 Ti-6Al-4V 

Density kg/m3 3000 4429 

Young's Modulus GPa 244.27 122.56 

Poisson Ratio - 0.288 0.31 

 

Table 8. Comparison of natural frequencies for FG-plates 

made by ZrO2 and Ti-6Al-4V 

 

Mode References 

FG-Plate 

ZrO2 (m=0) m=1/2 m=1 m=2 
Ti-6Al-4V 

(m=∞) 

(1,1) 

[33] 8,270 7,130 6,657 6,286 5,400 

[22]-TSDT 8,968 7,530 6,980 6,513 5,228 

[22]-CPT 9,723 8,073 7,429 6,930 5,668 

Present Work 

(FEM) 
8,492.2 7,045.8 6,552.5 6,069.8 4,975.3 

(1,2) 

[33] 19,261 16,643 15,514 14,625 12,571 

[22]-TSDT 21,276 17,871 16,551 15,413 12,404 

[22]-CPT 24,235 20,093 18,465 17,212 14,128 

Present Work 

(FEM) 
21,276 17,871 16,551 15,413 12,404 

(2,2) 

[33] 34,870 30,174 28,120 26,454 22,762 

[22]-TSDT 36,342 30,813 28,276 25,850 21,187 

[22]-CPT 36,342 30,827 28,296 25,867 21,187 

Present Work 

(FEM) 
36,342 30,813 28,276 25,850 21,187 

 

4.2 Validation with experimental work 

 

In this section, three FG-plate are made polyester-silica 

powder and with dimensions (Length=50 cm, Width=13 cm, 

and Thickness=2 cm) and supporting as CFFF condition. 

Three values of power-law index are used in experimental 

work and these values are 1/2, 1 and 5, and Young's modulus 

of five layers of each FG-plate are listed in Tables 4-6, while, 

the density (ρlayer i) and Poisson ratio(μlayer i) of each layer 

are calculated using the following equations: 

 

𝜌(𝑧) = (𝜌2 − 𝜌1) (
𝑧

ℎ
+ 0.5)

𝑚

+ 𝜌1 (4) 
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𝜌𝑙𝑎𝑦𝑒𝑟 𝑖 =
(𝜌𝑝𝑜𝑖𝑛𝑡 𝑖+1 − 𝜌𝑝𝑜𝑖𝑛𝑡 𝑖)

2
 (5) 

 

𝜇(𝑧) = (𝜇2 − 𝜇1) (
𝑧

ℎ
+ 0.5)

𝑚

+ 𝜇1 (6) 

 

𝜇𝑙𝑎𝑦𝑒𝑟 𝑖 =
(𝜇𝑝𝑜𝑖𝑛𝑡 𝑖+1 − 𝜇𝑝𝑜𝑖𝑛𝑡 𝑖)

2
 (7) 

 

 
 

Figure 9. Regression value of natural frequency for the 

experimental and theoretical FG-plates 

 

Table 9. Fundamental natural frequency comparison of the 

experimental and theoretical parts for FG-plates made by 

polyester-silica powder 

 
Power Law 

Index (m) 

Frequency (Hz) 
Error (%) 

Experimental Theoretical 

1/2 20.541 22.343 -8.773 

1 23.021 22.163 3.727 

5 21.524 22.039 -2.393 

 

A comparison between the experimental and theoretical 

results is presented in Table 9. One can see that there is a very 

good agreement between the experimental and theoretical 

results. The maximum absolute error percentage is (8.773%) 

when m=1/2. Furthermore, Figure 9 indicate the relationship 

for natural frequency for FG-plates made by polyester-silica 

powder for the theoretical FEM and the experimental parts. 

 

 

5. RESULTS AND DISCUSSION 

 

In this section, the effect of many parameters; power law 

index, modular ratio, length/thickness, mode number and 

supporting types, on the natural frequencies of FG-plate are 

investigated. 

 

5.1 Modular ratio and material index (power law index) 

 

Figure 10 shows the variation of the first fifth natural 

frequencies of FG-plate that is clamped for four edges 

(CCCC FG-plate) at different modular ratio (E1/E2) when 

the length/thickness ratio (L/h) is 5. Generally, one can see 

that the increase material index more than 5 causes slight 

variation (increase or decrease) in natural frequencies (first 

to fifth natural frequencies) for any modular ratio excepted to 

one. Physically, this happens because the volume fraction of 

material 2 or top (i.e., 𝑉2 = (
𝑧

ℎ
+ 0.5)

𝑚

), approaches to zero 

and the volume fraction of material (1 or bottom) (V1=1-V2) 

approaches to 1 (see Eq. (2)). For example, the volume 

fraction of material 2 or top at z=0 is 0.5m and this value 

decreases with increasing power law index (m). 

When m=1, the linear relationship between V1 and V2 

appears, (i.e., V1 increases with decreasing V2 and vice 

versa). When m<1, the volume fraction of material 2 or top 

at z=0 is 0.5m and this value increases and approaches to 1 

with decreasing m and the corresponding value of the volume 

fraction of material 1 or bottom (V1=1-V2) approaches to 

zero. The values of V1 and V2 mean the percentage of 

materials (1) and (2) in composite FG-plate and these values 

don’t work alone but their effect depends on modular ratio 

(E1/E2). 

When modular ratio equals unity (i.e., the plate contains 

one material only), the effect of material index vanishes (see 

Figure10(c)). If E2 is greater than E1 (i.e., modular ratio <1), 

the frequency of FG-plate increases with increase material 

index because the volume fraction of material 2 decreases 

and the FG-plate be more stiffened (see Figures 10(a)-(b)). In 

other side, the stiffness of FG-plate decreases if E2 is smaller 

than E1 (i.e., Modular ratio >1) (see Figures 10(d)-(e)). 

 

 
(a) Modulus/Ratio=0.25 

 
(b) Modulus/Ratio=0.5 

 
(c) Modulus/Ratio=1 
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(d) Modulus/Ratio=2 

 
(e) Modulus/Ratio=4 

 

Figure 10. Frequency for CCCC FG-plate due to varying of 

power law index (m) at different modulus/ratio and L/h=5 

 

 
(a) Modulus/Ratio=0.25 

 
(b) Modulus/Ratio=0.5 

 
(c) Modulus/Ratio=1 

 
(d) Modulus/Ratio=2 

 
(e) Modulus/Ratio=4 

 

Figure 11. Frequency for SSSS FG-plate due to varying of 

power law index (m) at different modulus/ratio and L/h=5 
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(b) Modulus/Ratio=0.5 

 
(c) Modulus/Ratio=1 

 
(d) Modulus/Ratio=2 

 
(e) Modulus/Ratio=4 

 

Figure 12. Frequency for SCSC FG-plate due to varying of 

power law index (m) at different modulus/ratio and L/h=5 

 

Similar variation behavior can be seen for natural 

frequency of simply supported FG-plate (SSSS FG-plate) 

and simply-clamped-simply-clamped FG-plate as shown in 

Figure 11 and Figure 12 respectively. This can mean that 

higher index results in a softer surface reducing overall 

stiffness and leading to lower natural frequencies. Also, high 

modular ratio can be beneficial for aerospace applications 

needs stiffness tuning to evade unwanted vibrations. 

 

 
(a) CCCC 

 
(b) SSSS 

 
(c) SCSC 

 

Figure 13. First five natural frequencies for FG-plate due to 

varying of (L/h) ratio at different three supporting type 

when modulus/ratio =1 

 

5.2 Length/thickness ratio (L/h) and material index 

 

The impact of the L/h ratio on the first five natural 

frequencies of a homogeneous plate (Modular ratio =1) with 

varying supporting types is depicted in Figure 13. The 

material index has no effect on the FG-plate's natural 

frequency when Modular ratio =1, and the (L/h) ratio has the 

sole effect. As the (L/h) ratio increases, the natural frequency 

drop, which is given the same dimensions, material, and 

supporting type, the natural frequency of thick plates is 

higher than that of thin plates. 
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Figure 14. Variation of first five natural frequencies for CCCC FG-plate due to varying of (L/h) ratio at different material 

index when modulus/ratio=0.5 and 2 
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Figure 15. Variation of first five natural frequencies for SSSS FG-plate due to varying of (L/h) ratio at different material index 

when modulus/ratio=0.5 and 2 
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Figure 16. First five natural frequencies for SCSC FG-plate due to varying of (L/h) ratio at different material index when 

modulus/ratio =0.5 and 2 
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Generally, the natural frequency increases when the 

thickness of FG-plate increases and length of FG-plate is 

constant because increasing of the shear effect. In other side, 

the shear effect decreases when the thickness of FG-plate 

decreases and length of FG-plate is constant and this leads to 

decrease the natural frequency of plate. 

For FG-plate, Figures 14-16 illustrate the variation of 

natural frequencies due to increase (L/h) ratio with different 

supports CCCC, SSSS and SCSC, respectively. 

Figure 14, where modular ratio =1/2 and 2, compares the 

first five natural frequencies of CCCC FG-plate for various 

material indices. When m=0, or homogenous material (2), the 

modular ratio effect manifests, and the (L/h) ratio impact is 

comparable to that shown in Figure 12(a). The plate goes from 

thick to thin, allowing one to observe that the natural 

frequencies fall as the (L/h) ratio increases. The natural 

frequencies of FG-plate, CCCC, on the other hand, increase as 

the material index rises when modular ratio =0.5. Modular 

ratio =2 causes the natural frequencies of FG-plate, CCCC, to 

decrease as the material index increases. As the (L/h) ratio 

increases, the natural frequencies for SSSS FG-plate drop 

because, as Figure 15, the plate transitions from a thick to a 

thin one. The FG-plate's inherent frequencies also rise when 

the material index rises when the modular ratio is equal to 0.5. 

When modular ratio =2, the volume proportion of the two 

parents (material 1 and material 2) changes, causing the 

natural frequencies of the FG-plate to decrease as the material 

index increases. As the plate in Figure 16 changes from a thick 

to a thin one, the natural frequencies of the SCSC FG-plate 

decrease as the (L/h) ratio increases. Additionally, the natural 

frequencies of the SCSC FG-plate increase when the material 

index increases when the modular ratio equals 1/2. When the 

modular ratio =2, the natural frequencies of the SCSC FG-

plate decrease as the material index increases due to changes 

in the volume fraction of the two parents (material 1 and 

material 2). 

 

5.3 Mode number and supporting type 

 

From Figures 10-16, it can be seen that the natural 

frequency increases with increasing mode number for any 

material index, modular ratio and supporting type. In other 

side, the natural frequency of CCCC FG-plate is larger than 

that of SCSC FG-plate and SSSS FG-plate respectively for the 

same modular ratio, material index, mode number and L/h 

ratio. This can lead that for aerospace structures, choosing the 

boundary constraints is important in controlling vibration and 

avoiding resonance. On can conclude that clamped plates are 

preferred in high stiffness and minimal vibration applications, 

while simply supported configurations may be more suitable 

for flexible and adaptive structures. 
 

 

6. CONCLUSIONS AND FUTURE WORKS 
 

This paper presents a novel experimental procedure to 

fabricate the FG-plates made by polyester resin and silica 

powder utilizing tensile test results of polyester / silica powder 

composite materials. The experimental results of vibration test 

are compared with the finite element method from ANSYS 

program. The effects of several parameters, modular ratio, 

material index, (L/h) ratio, and different supporting conditions 

are investigated. Some of the main findings is that, when the 

modulus ratio is unity, the material index or power law index 

is not affected on the natural frequencies. While the natural 

frequencies decrease with increasing power law when the 

modulus ratio is exceeds the unity. But the natural frequencies 

increase with increasing power law when the modulus ratio is 

smaller than unity. Also, the natural frequencies decreasing 

with increasing (L/h) ratio. As a future work, using other 

models of material properties variation such as exponential 

and sigmoid models are interesting. Also, studying the 

influences of cracks on the natural frequencies of FG-plates 

and fabrication FG-plate using powder technology are good 

research areas. 
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