
A Quadtree Spatial Index Method with Inclusion Relations and Its Application in Landcover

Database Update

Hongsong Wang1, Jiangyan Zhu2*

1 School of Geosciences and Info-physics, Central South University, Changsha 410083, China
2 Network Information Center, Guangdong University of Finance & Economics, Guangzhou 510320, China

Corresponding Author Email: zhu_jiangyan@126.com

https://doi.org/10.18280/isi.240303 ABSTRACT

Received: 20 February 2019

Accepted: 18 May 2019

Landcover database often has numerous nonuniform polygons that contain thousands of holes,

and even nesting holes. During incremental update, the new changed polygon is used to clip

the base state complex polygons, and may intersect a few holes in the latter ones. The

traditional update tools, mainly clipping algorithms, must traverse all the holes of complex

polygons, which seriously affects the update efficiency. To solve the problem, this paper

improves the quadtree spatial index considering the inclusion relations between polygons. In

this method, the polygons are divided into two categories: intersecting polygons (intersecting

the quadrant axes) and disjointed polygons (disjoint to the quadrant axes). The intersecting

polygons are stored on the root nodes on different levels, while the disjointed polygons are

stored in the leaf nodes on the index tree. Then, the author introduced the construction of the

spatial index and the table of inclusion relations, and explained the operations of the improved

quadtree spatial index, namely, insertion, deletion and query. After that, the proposed method

was applied to the incremental update of landcover database, and compared with the MX-CIF

quadtree index through experiments. The results show that the update efficiency of our method

was several times better than that of the contrastive method, and that the efficiency of our

method increased with the data volume and complexity.

Keywords:

spatial index, landcover database,

inclusion relation, quadtree, incremental

update

1. INTRODUCTION

Recent years has seen the emergence of many landcover

databases, namely, GlobeLand30 [1]. The databases must be

updated regularly to reflect the continuous changes in real-

world land use and environment. Therefore, the focus of

landcover data handling has shifted from data generation to

data maintenance, and an increased attention has been directed

towards the update problem. The common update strategy is

incremental update, i.e. only renewing the data reflecting the

real-world changes [2]. During incremental update, a new

changed polygon often has 2D intersections (e.g. overlap,

equals and within) with several existing polygons. These

polygons must be identified to achieve automatic update. If

they are complex polygons (i.e. polygons holes, even nesting

holes), which are common in landcover databases of vector

data, then it is necessary to determine whether the holes are

within the 2D intersections. The holes within and without the

intersections are respectively called the involved holes and the

non-involved holes. The traditional update tools, mainly

clipping algorithms, must traverse all the holes of complex

polygons, which seriously affects the update efficiency. The

current spatial index methods, grouped by the minimum

bounding box (MBB) to minimize the size of the index file and

enhance filter efficiency, cannot identify the non-involved

holes rapidly. This is because these methods only store the

MBB of the exterior ring of the complex polygon, failing to

present the inclusion relation between complex polygon and

its holes.

The spatial index is used in geographic information system

(GIS) to make refined geometric operations that target a

limited number of objects. Popular spatial index methods

include Quadtree [3-4], R-tree [5-8], R+tree [9], R* tree [10],

Grid (spatial index) [11], Hilbert R-tree [12], k-d tree [13] and

quadtree [14]. An example of intersecting polygons is given in

Figure 1, where C (Figure 1a) is a complex polygon with over

1,000 holes, denoted as B, D, E, F…, P1 (Figure 1b) is a new

changed polygon. The 2D intersection between P1 and C only

covers holes B and F. If treated by the existing spatial index

methods, the refined geometric operation must be performed

between P1 and each of the 1,000 holes of C. Coupled with the

high cost of the operation, it is extremely complex and

inefficient to identify the polygons with the existing spatial

index methods.

The Quadtree spatial index is dynamic and efficient in

memory space and response time. It has been widely adopted

in commercial spatial database management systems (DBMSs)

[15]. In this paper, an improved quadtree spatial index is

designed based on the inclusion relation between the complex

polygon and its holes, aiming to identify the non-involved

holes and realize efficient incremental update. In this method,

the polygons are divided into two categories: intersecting

polygons (intersecting the quadrant axes) and disjointed

polygons (disjoint to the quadrant axes). The intersecting

polygons are stored on the root nodes on different levels, while

the disjointed polygons are stored in the leaf nodes on the

index tree.

Ingénierie des Systèmes d’Information
Vol. 24, No. 3, June, 2019, pp. 241-247

Journal homepage: http://iieta.org/journals/isi

241

A

C

D

E

F

G

H

I J

K

B

L
M

N

O P1

A

C

D

E

F

G

H

I J

K

B1

L
M

N

OP1

B2

(a) Data before update (b) New changed polygon (c) Data after update

Figure 1. An example of intersecting polygons in incremental update of a landcover database

The remainder of this paper is organized as follows: Section

2 introduces the construction of the improved quadtree spatial

index, including determining the inclusion relations between

the complex polygon and its holes and optimizing the

traditional quadtree spatial index; Section 3 modifies the

improved quadtree spatial index based on the dynamic

operations (e.g. insertion, deletion and query) of spatial objects;

Section 4 applies the improved quadtree spatial index to the

incremental update of landcover database; Section 5

experimentally compares the improved quadtree spatial index

and the MX-CIF quadtree index; Section 6 wraps up this paper

with meaningful conclusions.

2. CONSTRUCTION OF THE IMPROVED QUADTREE

SPATIAL INDEX

The inclusion relation between the complex polygon and its

holes must be clarified before the incremental update of

landcover database. However, this relation is not stored in the

current geological information system (GIS) models. Thus, the

first step of this section is to determine this relation. The

inclusion relation is indirect if the hole is nested, and direct if

otherwise. As shown in Figure 1(a), the generalized region of

F (i.e. the union of F and its holes) is one hole of C; the

generalized region of H (i.e. the union of H and its hole- K) is

one hole of F, and the union of I and J is another hole of F.

There is no direct inclusion relationship between C and H and

K. In other words, F is the child polygon of C, and the parent

polygon of H and the union of I and J. Then, the direct

inclusion relation can be expressed as [16]:

{CP, PP, RIP, CPL}

where CP is the current polygon; PP is the parent polygon; RIP

is the ring of the current polygon in its parent; CPL is the

children polygon list of the current polygon. For the traditional

quadtree spatial index, the search space is recursively

decomposed into four quadrants: northwest (NW), northeast

(NE), southwest (SW) and southeast (SE). The four quadrants

are not overlapped at the same level. Meanwhile, the index

size will increase significantly due to the duplication of object

in neighbour cells. As shown in Figure 1(a), object C must be

stored in NW, NE, SW and SE; object B must be stored in NE,

SW and SE; object N must be stored in NE, SE on the first

level. The storage principles lay a heavy burden on index size

and dynamic operations.

To solve the problem, this paper improves the quadtree

spatial index method by dividing the polygons into disjointed

polygons and intersecting polygons. The intersecting polygons

are further divided into five types, depending on the

intersection position (only on the positive X-axis, only on

positive Y-axis, only on the negative X-axis, only on the

negative Y-axis, and both on X- and Y-axes). The five types

are stored separately in five buckets, respectively denoted as

XpB, XnB, YpB, YnB and XYB. Meanwhile, the disjointed

polygons are stored in leaf nodes. The data structure of each

node can be illustrated as [16]:

{NID, NMBB, Subtrees, PPtr, Depth, XpB, XnB, YpB, YnB,

XYB}

where NID is the identity of the node; NMBB is the union of

the MBB of all polygons; Subtrees are the subtrees of the

current node; PPtr is the parent pointer of the tree; Depth is the

depth of the node level. The relation between the complex

polygon and its holes is stored as: {PID, PP, ER, LIPs}, where

PID is the identity of the polygon, PP is the parent polygon,

ER is the exterior ring, and LIPs is the list of the interior

polygons. Figure 2 presents the improved quadtree index and

the table of inclusion relations of the data in Figure 1(c).

C Cr c B1,B2,P1,D,E,F,G,L,M,N,O

F C Crf H,I,J

H F Cr h K

D

0

F H I

O

0

J

0

A E

0

G L M

0B1 B2 C N P1

Subtree Parent PointerD Polygon Null Pointer

K

0

Ø

Figure 2. The improved quadtree index and the table of inclusion relations of the data in Figure 1(a)

242

The improved quadtree was established in the following

steps. Firstly, the MBB of all polygons and holes were

calculated [17] and the table of inclusion relations was

constructed. Then, the search space was decomposed into

quadrants recursively until the number of MBBs in each node

fell below the pre-set threshold. The polygons whose MBB

overlaps the quadrant axes were stored to the five buckets, and

those whose MBB falls within a quadrant are stored to the

quadrant nodes on the respective level. In the improved

quadtree, each object is stored in one node only.

3. IMPROVED QUADTREE INDEX METHOD

Queries can be divided into point query and window query.

The latter is related to the quadtree improved in our research.

The window query of the improved quadtree contains the

following steps:

Step 1: From the root to leaf, check if any polygon overlaps

the argument MBB in the five buckets and the quadrant nodes

on each level, and set up the list of candidate MBBs.

Step 2: For complex polygons, add the children polygon

with RIP overlapping the argument MBB to the result set.

Step 3: For the other polygons, add the polygon itself into

the result list, if any point of the argument window falls in the

exterior ring and outside the candidate children polygon.

The incremental update involves many dynamic insertion

and deletion operations. The two types of operations are

introduced concisely below.

To insert a polygon to the improved Quadtree, the first step

is to select a bucket or leaf. If the page is not full, a new entry

should be inserted; otherwise, the quadrant should be split. The

table of inclusion relations must not be changed in the

insertion process. The insertion operation is illustrated by an

example in Figure 3.

Step 1: Polygon P2 was inserted into the NE quadrant node

on the second level. Since the number of objects (3) is greater

than the threshold (2), the NE quadrant was split.

Step 2: Polygon P2 was stored in the bucket on the second

level, and polygon E in the NE quadrant node on second level

were stored to the corresponding quadrant node on the third

level.

Step 3: The parent polygon C of polygon P2 was searched

for upward from the NE quadrant node on the second level,

and the polygon C was found as the parent polygon.

Step 4: Polygon C was replaced with new polygon C, and

the table of inclusion relations was updated.

Deletion is the reverse operation of insertion.

P1

A

C

D

E

F

G

H

I J

K

B1

L
M

N

O

B2

P2

(a) Inserting P2 to the data in Figure 1(c); (b) The post-insertion quadtree

Figure 3. Example of insertion operation

4. APPLICATION IN LANDCOVER DATABASE

UPDATE

During incremental update, a new changed polygon often

has 2D intersections with several existing polygons or several

holes in the complex polygon. Most of the disjointed holes can

be filtered with our improved quadtree index, considering the

inclusion relation. It is assumed that the changed landcover

object is much smaller than the current database, and the

changed objects are stored in the main memory during the

update. Then, the landcover database can be updated

incrementally in two steps: setting up the improved quadtree

index and reconstructing the objects after the update. The first

step has been detailed in the previous section. The second step

is explained in this section with the data in Figure 1 as the

example. As shown in Figure 4, the reconstruction operation

consists of six steps:

Step 1. A new changed polygon P1 was selected, and the

involved existing polygons (B, C and F) were identified by the

Quadtree index. As shown in Figure 4(a), C is a complex

polygon with several holes.

Step 2. Only two interior rings of C, i.e. the boundary of B

and F, are involved in the update, because B and F are the

children polygons of C.

Step 3. A new polygon C’ was created with one exterior ring

and two interior rings, i.e. the boundary of B and F (Figure

4(b)).

Step 4. The two holes of the new polygon C’ was clipped

with P1, forming polygon C’’ with only one hole (Figure 4(c)).

Step 5. The polygons B and F were clipped with P1, using

the inclusion relation in the improved quadtree, forming the

new B and F (Figure 1(c)). After C’’ (Figure 5(a)) was updated,

the non-involved interior rings were backfilled into C’’

(Figure 5(b)), creating the new complex polygon C (Figure

5(c)).

Step 6. The new objects were stored in the set of temporary

objects.

Using our improved quadtree index, the incremental update

process of landcover database can be implemented in the

following steps (Figure 6):

Step 1. The improved quadtree index was developed for the

existing landcover database.

Step 2. One changed objected was selected from the set of

changed data.

C Cr c B1,B2,P1,P2,D,E,F,G,L,M,N,O

F C Crf H,I,J

H F Cr h K

D

0

F H I

O

0

J

0

A P2 G L M

0B1 B2 C N P1

Subtree Parent PointerD Polygon Null Pointer

K

0

Ø

E

0

243

P1

C

C' C''

(a) (b) (c)

Figure 4. Example of reconstruction operation

P1

C

F

B1

B2

C'' C''

(a) (b) (c)

Figure 5. Reconstruct the complex polygon after updating

Involved

Polygon Set

Complex

Polygon

Reconstructed

Polygons

Are There Any

Involved Polygons ?

End

Choosing an Existing

Polygon

Y

Filtering Polygons

Inserting into

Quadtree Index

Complex Polygon

Reconstrution

New Changed

Dataset

Choosing a

New Changed

Polygon

Are There Any

New Changed Polygons?

N

N

Y

Land Cover

Existing

Database

Proposed

Quadtree Index

Builting

Spatial Index

Y

Simple Polygon

Reconstrution

N

Begin

Historic Dataset

Reconstructed

Dataset

Batch Updating

Land Cover Database

Quality Control and

Builting result Dataset

Figure 6. Incremental update process of landcover database by improved quadtree index

244

Step 3. The improved quadtree index was employed to filter

out the non-involved polygons in the existing database, and the

involved polygons were stored in a set.

Step 4. One polygon was selected from the involved object

set, and checked if it is a complex polygon.

Step 5. If the polygon is a complex one, the updated object

was obtained through reconstruction operation. Otherwise, the

updated object was obtained by clipping the existing polygon

with the new changed object.

Step 6. The quadtree index was updated, without changing

the inclusion relation.

Step 7. Steps 4-6 were repeated until all existing involved

objects had been handled.

Step 8. Steps 2-7 were repeated until all new changed

objects had been handled.

Step 9. The topological consistency was checked and the

conflicts were solved one by one.

Step 10. The landcover database was updated to form the

new state data, and the outdated data were stored in the history

database.

The above update process eliminates the need to traverse the

non-involved interior rings in the update of complex polygon,

thus improving the update efficiency. In the above process,

one of the core algorithms is the update of complex polygons.

The general idea of this algorithm is shown as Figure 7, and

can be implemented in the following steps:

Step1: Choose an existing involved polygon, and split it into

relevant and irrelevant interior rings according to inclusion

relation stored our improved index;

Step 2: Build the temporary polygon with relevant interior

rings and update it with update rules for complex polygons;

Step 3: Rebuild the reconstructed polygons and insert it into

result dataset;

Step 4: Maintain the inclusion relation in our improved

quadtree;

Step 5: Steps 1-4 were repeated until all existing involved

polygon s had been handled.

The traditional way to update the complex polygon has a

time complexity of O((e+k)loge) [4,17], where e is the number

of all segments of the rings of the polygon, and k is the number

of intersections. By contrast, the time cost of the improved

quadtree index is only related to the number of interior rings

involved in the update. This is attributable to the inclusion

relation in the spatial index, which filters out the non-involved

interior rings.

End

Involved Polygon Set

Split Complex

Polygon according to

Inclusion Relatoin

Irrelevant

Interior Rings

Build the Temporary

Polygon with Relevant

Interior Rings

Reconstructed

Polygons

Rebuild the

Reconstructed

Polygons

Are There Any

Involved Polygons ?

Choosing a

 Involved Polygon

Yes

Insert into Result

Dataset and

Maintain the Index

Update Rules

for Complex

Polygons

No

Our Improved

Quadtree

New Changed

Polygon

Begin

Figure 7. Incremental update process of landcover database by improved quadtree index

5. EXPERIMENTAL VERIFICATION

The improved quadtree index was adopted for the

incremental update of complex polygons on Visual Studio

2013. The test landcover database includes the vector data

(Figure 8(a)) on a region (N: 3654’12’’~38°39’87’’; E: 108°

32’41’’~11083’01’’) in northern China’s Shanxi Province.

The data were collected from the remote sensing images of

Landsat ETM+/TM (spatial resolution: 30m). To diversify the

test data, the small polygons were merged into large ones with

different thresholds. The polygons in the database generally

have many holes. The most complex polygon includes about

245

6,000 holes. The new changed data include 181 new polygons

added (Figure 8 (b)) from 2009 to 2010. These data were

produced with a change detection software for remote-sensing

images. For comparison, the improved MX-CIF quadtree [4]

was also selected for the experiment.

The query efficiency was measured through five tests. In

each test, 100 query points and 100 polygons were produced

randomly in the test area. The test results are listed in Table 1.

(a) Vector landcover data in 2009 (b) The new changed data

Figure 8. The test landcover database

Table 1. Query time of the improved quadtree index and the MX-CIF quadtree index

 Point Query Window Query

 Our method MX-CIF Our method MX-CIF

 ms ms ms ms

1 2.348 5.256 40.542 73.940

2 2.118 4.717 40.085 58.581

3 2.478 4.617 37.342 57.597

4 2.183 5.658 46.536 66.745

5 2.075 5.055 36.892 60.659

Average 2.241 5.061 40.280 63.505

Figure 9 compares the incremental update time of the two

methods. Note that the most complex polygon in the test area

has more holes than any other polygon, and the time cost of

the update includes the time for reconstructing the index and

the table of inclusion relations.

Figure 9. Incremental update time of our method and the

MX-CIF methed

From Figure 9, it can be concluded that our method

consumed much less time to update the landcover database

than the MX-CIF quadtree index. The update efficiency of our

method was several times better than that of the contrastive

method. The experimental results also show that the efficiency

of our method increased with the data volume and complexity.

The update efficiency of our method was more than 6 times

that of the MX-CIF quadtree index, when the number of

original polygons was above 100,000 and the number of holes

in the most complex polygon stood at 6,000.

6. CONCLUSIONS

This paper improves the quadtree spatial index for

incremental update of landcover database. In this method, the

intersecting polygons are stored in five buckets of root nodes

on different levels, the disjointed polygons are stored in the

leaf nodes, and the inclusion relations between the complex

polygons and their holes are stored in a separate table. Then,

the author introduced the construction of the spatial index and

the table of inclusion relations, and explained the operations

of the improved quadtree spatial index, namely, insertion,

deletion and query. After that, the proposed method was

applied to the incremental update of landcover database, and

compared with the MX-CIF quadtree index through

experiments. The results show that the update efficiency of our

method was several times better than that of the contrastive

method, and that the efficiency of our method increased with

the data volume and complexity.

Compared with the existing methods for landcover database

update, our method boasts the following advantages:

(1) The non-involved holes can be filtered efficiently, as the

MBB of the holes of complex polygons are stored explicitly.

(2) The query efficiency is high thanks to the storage of

intersecting polygons in the five buckets of root nodes on

different levels. This storage pattern reduces the duplicate

storage of objects in adjacent quadrants.

(3) The complex polygons can be updated efficiently, for

246

the inclusion relations between complex polygons and their

holes are stored in a separate table.

Our research only targets the objects (i.e. complex polygons

and their holes) stored in the same layer. However, the objects

may span across different layers in actual landcover database.

This problem will be tackled in future research.

ACKNOWLEDGMENT

The work described in this paper was supported by the

National Key Research and Development Program of China

(NO.2016YFB0501403) and the National Natural Science

Foundation of China (No. 41371366).

REFERENCES

[1] Chen, J., Cao, X., Peng, S., Ren, H. (2017). Analysis and

applications of global land 30: A review. International

Journal of Geo-Information, 6(8): 230-230.

https://doi.org/10.3390/ijgi6080230

[2] Zhou, X.G., Chen, J., Zhan, F.B., Li Z.L., Madden, M.,

Zhao, R.L., Liu, W.Z. (2013). A Euler-number-based

topological computation model for land parcel database

updating. International Journal of Geographical

Information Science, 27(10): 1983-2005.

https://doi.org/10.1080/13658816.2013.780607

[3] Hjaltason, G. R., Samet, H. (2002). Speeding up

construction of Pmr quadtree-based spatial indexes. The

VLDB Journal, 11(2): 109-137.

https://doi.org/10.1007/s00778-002-0067-8

[4] Wei, Y., Tanaka, S. (2012). Performance improvement

of MX-CIF quadtree by reducing the query results.

International Journal of Computer Theory & Engineering,

4(6): 902-906.

https://doi.org/10.7763/IJCTE.2012.V4.603

[5] Murakami, S., Takemoto, T., Ito, Y. (2012). Data

updating methods for spatial data infrastructure that

maintain infrastructure quality and enable its sustainable

operation. ISPRS-International Archives of the

Photogrammetry, Remote Sensing and Spatial

Information Sciences, Melbourne, Australia.

https://doi.org/10.5194/isprsarchives-XXXIX-B4-29-

2012

[6] Warekuromor, T., James, A., Anifowose, B., Trodd, N.

(2017). A distributed, scalable and provenance-enabled

data access protocol for spatial data infrastructure. 2017

IEEE 21st International Conference on Computer

Supported Cooperative Work in Design (CSCWD).

https://doi.org/10.1109/CSCWD.2017.8066691

[7] Abramic, A., Kotsev, A., Cetl, V., Kephalopoulos, S.,

Paviotti, M. (2017). A spatial data infrastructure for

environmental noise data in Europe. International

Journal of Environmental Research and Public Health,

14(7): 726-726. https://doi.org/10.3390/ijerph14070726

[8] Guttman, A. (1984). R-trees: A dynamic index structure

for spatial searching. ACM SIGMOD International

Conference on Management of Data, Boston,

Massachusetts. https://doi.org/10.1145/971697.602266

[9] Sellis, T. K., Roussopoulos, N., Faloutsos, C. (1987). The

R+-tree: A dynamic index for multi-dimensional objects.

International Conference on Very Large Data Bases,

Brighton. http://hdl.handle.net/1903/4541

[10] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.

(1990). The R*-tree: An efficient and robust access

method for points and rectangles. ACM SIGMOD

international conference on management of data,

Atlantic City, New Jersey. 19(2): 322-331.

https://doi.org/10.1145/93597.98741

[11] Zhang, X., Du, Z. (2017). Spatial Indexing. The

Geographic Information Science & Technology Body of

Knowledge (4th Quarter 2017 Edition). J. P. Wilson.

https://doi.org/10.22224/gistbok/2017.4.12.

[12] Wang, L., Ma, Y., Yan, J., Chang, V., Zomaya, A. (2018).

PipsCloud: High performance cloud computing for

remote sensing big data management and processing.

Future Generation Computer Systems, 78: 353-368.

https://doi.org/10.1016/j.future.2016.06.009

[13] Rigaux, P., Scholl, M., Voisard, A. (2002). Spatial

Databases with Application to GIS. ACM SIGMOD

Record, Academic Press, USA. ISBN:1-55860-588-6

[14] Kedem, G. (1982). The Quad-CIF tree: A data structure

for hierarchical on-line algorithms. 19th Design

Automation Conference, Las Vegas.

https://doi.org/10.1109/DAC.1982.1585523

[15] ORACLE. Developer's Guide. 2019,

https://docs.oracle.com/en/database/oracle/oracle-

database/19/spatl/loe.html.

[16] Zhou, X.G., Wang, H.S. (2018). A quadtree spatial index

method with inclusion relations for the incremental

updating of vector landcover database, ISPRS Technical

Commission IV Midterm Symposium, October 1-5, 2018,

Delft, The Netherlands (Oral Presention, the second best

paper).

[17] Zimmermann, R., Ku, W. S., Chu, W. C., (2004).

Efficient query routing in distributed spatial databases.

ACM International Workshop on Geographic

Information Systems. 176-183.

https://doi.org/10.1145/1032222.1032249

247

