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Landcover database often has numerous nonuniform polygons that contain thousands of holes, 

and even nesting holes. During incremental update, the new changed polygon is used to clip 

the base state complex polygons, and may intersect a few holes in the latter ones. The 

traditional update tools, mainly clipping algorithms, must traverse all the holes of complex 

polygons, which seriously affects the update efficiency. To solve the problem, this paper 

improves the quadtree spatial index considering the inclusion relations between polygons. In 

this method, the polygons are divided into two categories: intersecting polygons (intersecting 

the quadrant axes) and disjointed polygons (disjoint to the quadrant axes). The intersecting 

polygons are stored on the root nodes on different levels, while the disjointed polygons are 

stored in the leaf nodes on the index tree. Then, the author introduced the construction of the 

spatial index and the table of inclusion relations, and explained the operations of the improved 

quadtree spatial index, namely, insertion, deletion and query. After that, the proposed method 

was applied to the incremental update of landcover database, and compared with the MX-CIF 

quadtree index through experiments. The results show that the update efficiency of our method 

was several times better than that of the contrastive method, and that the efficiency of our 

method increased with the data volume and complexity. 
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1. INTRODUCTION

Recent years has seen the emergence of many landcover 

databases, namely, GlobeLand30 [1]. The databases must be 

updated regularly to reflect the continuous changes in real-

world land use and environment. Therefore, the focus of 

landcover data handling has shifted from data generation to 

data maintenance, and an increased attention has been directed 

towards the update problem. The common update strategy is 

incremental update, i.e. only renewing the data reflecting the 

real-world changes [2]. During incremental update, a new 

changed polygon often has 2D intersections (e.g. overlap, 

equals and within) with several existing polygons. These 

polygons must be identified to achieve automatic update. If 

they are complex polygons (i.e. polygons holes, even nesting 

holes), which are common in landcover databases of vector 

data, then it is necessary to determine whether the holes are 

within the 2D intersections. The holes within and without the 

intersections are respectively called the involved holes and the 

non-involved holes. The traditional update tools, mainly 

clipping algorithms, must traverse all the holes of complex 

polygons, which seriously affects the update efficiency. The 

current spatial index methods, grouped by the minimum 

bounding box (MBB) to minimize the size of the index file and 

enhance filter efficiency, cannot identify the non-involved 

holes rapidly. This is because these methods only store the 

MBB of the exterior ring of the complex polygon, failing to 

present the inclusion relation between complex polygon and 

its holes. 

The spatial index is used in geographic information system 

(GIS) to make refined geometric operations that target a 

limited number of objects. Popular spatial index methods 

include Quadtree [3-4], R-tree [5-8], R+tree [9], R* tree [10], 

Grid (spatial index) [11], Hilbert R-tree [12], k-d tree [13] and 

quadtree [14]. An example of intersecting polygons is given in 

Figure 1, where C (Figure 1a) is a complex polygon with over 

1,000 holes, denoted as B, D, E, F…, P1 (Figure 1b) is a new 

changed polygon. The 2D intersection between P1 and C only 

covers holes B and F. If treated by the existing spatial index 

methods, the refined geometric operation must be performed 

between P1 and each of the 1,000 holes of C. Coupled with the 

high cost of the operation, it is extremely complex and 

inefficient to identify the polygons with the existing spatial 

index methods. 

The Quadtree spatial index is dynamic and efficient in 

memory space and response time. It has been widely adopted 

in commercial spatial database management systems (DBMSs) 

[15]. In this paper, an improved quadtree spatial index is 

designed based on the inclusion relation between the complex 

polygon and its holes, aiming to identify the non-involved 

holes and realize efficient incremental update. In this method, 

the polygons are divided into two categories: intersecting 

polygons (intersecting the quadrant axes) and disjointed 

polygons (disjoint to the quadrant axes). The intersecting 

polygons are stored on the root nodes on different levels, while 

the disjointed polygons are stored in the leaf nodes on the 

index tree. 
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(a) Data before update                      (b) New changed polygon                       (c) Data after update 

 

Figure 1. An example of intersecting polygons in incremental update of a landcover database 

 

The remainder of this paper is organized as follows: Section 

2 introduces the construction of the improved quadtree spatial 

index, including determining the inclusion relations between 

the complex polygon and its holes and optimizing the 

traditional quadtree spatial index; Section 3 modifies the 

improved quadtree spatial index based on the dynamic 

operations (e.g. insertion, deletion and query) of spatial objects; 

Section 4 applies the improved quadtree spatial index to the 

incremental update of landcover database; Section 5 

experimentally compares the improved quadtree spatial index 

and the MX-CIF quadtree index; Section 6 wraps up this paper 

with meaningful conclusions. 

 

 

2. CONSTRUCTION OF THE IMPROVED QUADTREE 

SPATIAL INDEX 

 

The inclusion relation between the complex polygon and its 

holes must be clarified before the incremental update of 

landcover database. However, this relation is not stored in the 

current geological information system (GIS) models. Thus, the 

first step of this section is to determine this relation. The 

inclusion relation is indirect if the hole is nested, and direct if 

otherwise. As shown in Figure 1(a), the generalized region of 

F (i.e. the union of F and its holes) is one hole of C; the 

generalized region of H (i.e. the union of H and its hole- K) is 

one hole of F, and the union of I and J is another hole of F. 

There is no direct inclusion relationship between C and H and 

K. In other words, F is the child polygon of C, and the parent 

polygon of H and the union of I and J. Then, the direct 

inclusion relation can be expressed as [16]: 

 

{CP, PP, RIP, CPL} 

 

where CP is the current polygon; PP is the parent polygon; RIP 

is the ring of the current polygon in its parent; CPL is the 

children polygon list of the current polygon. For the traditional 

quadtree spatial index, the search space is recursively 

decomposed into four quadrants: northwest (NW), northeast 

(NE), southwest (SW) and southeast (SE). The four quadrants 

are not overlapped at the same level. Meanwhile, the index 

size will increase significantly due to the duplication of object 

in neighbour cells. As shown in Figure 1(a), object C must be 

stored in NW, NE, SW and SE; object B must be stored in NE, 

SW and SE; object N must be stored in NE, SE on the first 

level. The storage principles lay a heavy burden on index size 

and dynamic operations. 

To solve the problem, this paper improves the quadtree 

spatial index method by dividing the polygons into disjointed 

polygons and intersecting polygons. The intersecting polygons 

are further divided into five types, depending on the 

intersection position (only on the positive X-axis, only on 

positive Y-axis, only on the negative X-axis, only on the 

negative Y-axis, and both on X- and Y-axes). The five types 

are stored separately in five buckets, respectively denoted as 

XpB, XnB, YpB, YnB and XYB. Meanwhile, the disjointed 

polygons are stored in leaf nodes. The data structure of each 

node can be illustrated as [16]: 

 

{NID, NMBB, Subtrees, PPtr, Depth, XpB, XnB, YpB, YnB, 

XYB} 

 

where NID is the identity of the node; NMBB is the union of 

the MBB of all polygons; Subtrees are the subtrees of the 

current node; PPtr is the parent pointer of the tree; Depth is the 

depth of the node level. The relation between the complex 

polygon and its holes is stored as: {PID, PP, ER, LIPs}, where 

PID is the identity of the polygon, PP is the parent polygon, 

ER is the exterior ring, and LIPs is the list of the interior 

polygons. Figure 2 presents the improved quadtree index and 

the table of inclusion relations of the data in Figure 1(c). 

 

C Cr c B1,B2,P1,D,E,F,G,L,M,N,O

F C Crf H,I,J

H F Cr h K

D

0

F H I

O

0

J

0

A E

0

G L M

0B1 B2 C N P1 

Subtree Parent PointerD Polygon Null Pointer

K

0

Ø 

 
 

Figure 2. The improved quadtree index and the table of inclusion relations of the data in Figure 1(a) 
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The improved quadtree was established in the following 

steps. Firstly, the MBB of all polygons and holes were 

calculated [17] and the table of inclusion relations was 

constructed. Then, the search space was decomposed into 

quadrants recursively until the number of MBBs in each node 

fell below the pre-set threshold. The polygons whose MBB 

overlaps the quadrant axes were stored to the five buckets, and 

those whose MBB falls within a quadrant are stored to the 

quadrant nodes on the respective level. In the improved 

quadtree, each object is stored in one node only.  

 

 

3. IMPROVED QUADTREE INDEX METHOD  

 

Queries can be divided into point query and window query. 

The latter is related to the quadtree improved in our research. 

The window query of the improved quadtree contains the 

following steps: 

Step 1: From the root to leaf, check if any polygon overlaps 

the argument MBB in the five buckets and the quadrant nodes 

on each level, and set up the list of candidate MBBs. 

Step 2: For complex polygons, add the children polygon 

with RIP overlapping the argument MBB to the result set. 

Step 3: For the other polygons, add the polygon itself into 

the result list, if any point of the argument window falls in the 

exterior ring and outside the candidate children polygon. 

The incremental update involves many dynamic insertion 

and deletion operations. The two types of operations are 

introduced concisely below. 

To insert a polygon to the improved Quadtree, the first step 

is to select a bucket or leaf. If the page is not full, a new entry 

should be inserted; otherwise, the quadrant should be split. The 

table of inclusion relations must not be changed in the 

insertion process. The insertion operation is illustrated by an 

example in Figure 3. 

Step 1: Polygon P2 was inserted into the NE quadrant node 

on the second level. Since the number of objects (3) is greater 

than the threshold (2), the NE quadrant was split. 

Step 2: Polygon P2 was stored in the bucket on the second 

level, and polygon E in the NE quadrant node on second level 

were stored to the corresponding quadrant node on the third 

level. 

Step 3: The parent polygon C of polygon P2 was searched 

for upward from the NE quadrant node on the second level, 

and the polygon C was found as the parent polygon. 

Step 4: Polygon C was replaced with new polygon C, and 

the table of inclusion relations was updated. 

Deletion is the reverse operation of insertion. 
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(a) Inserting P2 to the data in Figure 1(c);                                  (b) The post-insertion quadtree 

 

Figure 3. Example of insertion operation 

 

 

4. APPLICATION IN LANDCOVER DATABASE 

UPDATE 

 

During incremental update, a new changed polygon often 

has 2D intersections with several existing polygons or several 

holes in the complex polygon. Most of the disjointed holes can 

be filtered with our improved quadtree index, considering the 

inclusion relation. It is assumed that the changed landcover 

object is much smaller than the current database, and the 

changed objects are stored in the main memory during the 

update. Then, the landcover database can be updated 

incrementally in two steps: setting up the improved quadtree 

index and reconstructing the objects after the update. The first 

step has been detailed in the previous section. The second step 

is explained in this section with the data in Figure 1 as the 

example. As shown in Figure 4, the reconstruction operation 

consists of six steps: 

Step 1. A new changed polygon P1 was selected, and the 

involved existing polygons (B, C and F) were identified by the 

Quadtree index. As shown in Figure 4(a), C is a complex 

polygon with several holes. 

Step 2. Only two interior rings of C, i.e. the boundary of B 

and F, are involved in the update, because B and F are the 

children polygons of C. 

Step 3. A new polygon C’ was created with one exterior ring 

and two interior rings, i.e. the boundary of B and F (Figure 

4(b)). 

Step 4. The two holes of the new polygon C’ was clipped 

with P1, forming polygon C’’ with only one hole (Figure 4(c)). 

Step 5. The polygons B and F were clipped with P1, using 

the inclusion relation in the improved quadtree, forming the 

new B and F (Figure 1(c)). After C’’ (Figure 5(a)) was updated, 

the non-involved interior rings were backfilled into C’’ 

(Figure 5(b)), creating the new complex polygon C (Figure 

5(c)). 

Step 6. The new objects were stored in the set of temporary 

objects. 

Using our improved quadtree index, the incremental update 

process of landcover database can be implemented in the 

following steps (Figure 6): 

Step 1. The improved quadtree index was developed for the 

existing landcover database. 

Step 2. One changed objected was selected from the set of 

changed data. 
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Figure 4. Example of reconstruction operation 
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Figure 5. Reconstruct the complex polygon after updating 
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Figure 6. Incremental update process of landcover database by improved quadtree index 
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Step 3. The improved quadtree index was employed to filter 

out the non-involved polygons in the existing database, and the 

involved polygons were stored in a set. 

Step 4. One polygon was selected from the involved object 

set, and checked if it is a complex polygon. 

Step 5. If the polygon is a complex one, the updated object 

was obtained through reconstruction operation. Otherwise, the 

updated object was obtained by clipping the existing polygon 

with the new changed object. 

Step 6. The quadtree index was updated, without changing 

the inclusion relation. 

Step 7. Steps 4-6 were repeated until all existing involved 

objects had been handled. 

Step 8. Steps 2-7 were repeated until all new changed 

objects had been handled. 

Step 9. The topological consistency was checked and the 

conflicts were solved one by one. 

Step 10. The landcover database was updated to form the 

new state data, and the outdated data were stored in the history 

database. 

The above update process eliminates the need to traverse the 

non-involved interior rings in the update of complex polygon, 

thus improving the update efficiency. In the above process, 

one of the core algorithms is the update of complex polygons. 

The general idea of this algorithm is shown as Figure 7, and 

can be implemented in the following steps: 

Step1: Choose an existing involved polygon, and split it into 

relevant and irrelevant interior rings according to inclusion 

relation stored our improved index; 

Step 2: Build the temporary polygon with relevant interior 

rings and update it with update rules for complex polygons; 

Step 3: Rebuild the reconstructed polygons and insert it into 

result dataset; 

Step 4: Maintain the inclusion relation in our improved 

quadtree; 

Step 5: Steps 1-4 were repeated until all existing involved 

polygon s had been handled. 

The traditional way to update the complex polygon has a 

time complexity of O((e+k)loge) [4,17], where e is the number 

of all segments of the rings of the polygon, and k is the number 

of intersections. By contrast, the time cost of the improved 

quadtree index is only related to the number of interior rings 

involved in the update. This is attributable to the inclusion 

relation in the spatial index, which filters out the non-involved 

interior rings. 
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Figure 7. Incremental update process of landcover database by improved quadtree index 

 

 

5. EXPERIMENTAL VERIFICATION 

 

The improved quadtree index was adopted for the 

incremental update of complex polygons on Visual Studio 

2013. The test landcover database includes the vector data 

(Figure 8(a)) on a region (N: 3654’12’’~38°39’87’’; E: 108°

32’41’’~11083’01’’) in northern China’s Shanxi Province. 

The data were collected from the remote sensing images of 

Landsat ETM+/TM (spatial resolution: 30m). To diversify the 

test data, the small polygons were merged into large ones with 

different thresholds. The polygons in the database generally 

have many holes. The most complex polygon includes about 
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6,000 holes. The new changed data include 181 new polygons 

added (Figure 8 (b)) from 2009 to 2010. These data were 

produced with a change detection software for remote-sensing 

images. For comparison, the improved MX-CIF quadtree [4] 

was also selected for the experiment. 

The query efficiency was measured through five tests. In 

each test, 100 query points and 100 polygons were produced 

randomly in the test area. The test results are listed in Table 1. 

 

 
(a) Vector landcover data in 2009                                                    (b) The new changed data 

 

Figure 8. The test landcover database 

 

Table 1. Query time of the improved quadtree index and the MX-CIF quadtree index 

 

 Point Query Window Query 

 Our method MX-CIF Our method MX-CIF 

 ms ms ms ms 

1 2.348  5.256  40.542  73.940  

2 2.118  4.717  40.085  58.581  

3 2.478  4.617  37.342  57.597  

4 2.183  5.658  46.536  66.745  

5 2.075  5.055  36.892  60.659  

Average 2.241  5.061  40.280  63.505 

 

Figure 9 compares the incremental update time of the two 

methods. Note that the most complex polygon in the test area 

has more holes than any other polygon, and the time cost of 

the update includes the time for reconstructing the index and 

the table of inclusion relations. 

 

 
 

Figure 9. Incremental update time of our method and the 

MX-CIF methed 

 

From Figure 9, it can be concluded that our method 

consumed much less time to update the landcover database 

than the MX-CIF quadtree index. The update efficiency of our 

method was several times better than that of the contrastive 

method. The experimental results also show that the efficiency 

of our method increased with the data volume and complexity. 

The update efficiency of our method was more than 6 times 

that of the MX-CIF quadtree index, when the number of 

original polygons was above 100,000 and the number of holes 

in the most complex polygon stood at 6,000. 

 

 

6. CONCLUSIONS 

 

This paper improves the quadtree spatial index for 

incremental update of landcover database. In this method, the 

intersecting polygons are stored in five buckets of root nodes 

on different levels, the disjointed polygons are stored in the 

leaf nodes, and the inclusion relations between the complex 

polygons and their holes are stored in a separate table. Then, 

the author introduced the construction of the spatial index and 

the table of inclusion relations, and explained the operations 

of the improved quadtree spatial index, namely, insertion, 

deletion and query. After that, the proposed method was 

applied to the incremental update of landcover database, and 

compared with the MX-CIF quadtree index through 

experiments. The results show that the update efficiency of our 

method was several times better than that of the contrastive 

method, and that the efficiency of our method increased with 

the data volume and complexity. 

Compared with the existing methods for landcover database 

update, our method boasts the following advantages: 

(1) The non-involved holes can be filtered efficiently, as the 

MBB of the holes of complex polygons are stored explicitly. 

(2) The query efficiency is high thanks to the storage of 

intersecting polygons in the five buckets of root nodes on 

different levels. This storage pattern reduces the duplicate 

storage of objects in adjacent quadrants.  

(3) The complex polygons can be updated efficiently, for 
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the inclusion relations between complex polygons and their 

holes are stored in a separate table. 

Our research only targets the objects (i.e. complex polygons 

and their holes) stored in the same layer. However, the objects 

may span across different layers in actual landcover database. 

This problem will be tackled in future research. 
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