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This paper presents an optimized proportional–integral (PI) controller enhanced by a 

hybrid Grey Wolf Optimization–Particle Swarm Optimization (GWO–PSO) algorithm for 

Predictive Direct Power Control (PDPC) of a Shunt Active Power Filter (SAPF). The 

proposed GWO–PSO algorithm combines the global search efficiency of Grey Wolf 

Optimization with the fast convergence of Particle Swarm Optimization to effectively tune 

the parameters of an anti-windup PI controller. This hybrid tuning approach significantly 

improves the controller’s dynamic response and harmonic suppression capability under 

nonlinear and dynamic load conditions. The optimization aims to minimize overshoot in 

the DC-link voltage, reduce power fluctuations, and ensure compliance with the IEEE 519-

2014 harmonic standard. The controller was experimentally validated using a dSPACE 

1104 platform. Results demonstrate a reduction in Total Harmonic Distortion (THD) from 

4.2% (conventional PI) to 3.8% (proposed method) and an improvement in the DC-link 

voltage settling time from 33 ms to 30 ms, representing a 9.1% reduction. These outcomes 

confirm the GWO–PSO-tuned PI controller's effectiveness and practical potential for 

improving power quality in SAPF systems. 
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1. INTRODUCTION

Changes in many domains, such as business, industry, and 

residences, have helped power electronics systems develop 

much recently [1]. These changes have made nonlinear loads 

like regulated rectifiers, variable speed drives, and switching 

power supplies more important. Harmonic distortion is a 

serious concern with these technologies, even though they 

make systems more efficient and versatile. This arises because 

loads do not act in a straight line: the sinusoidal waveforms of 

currents and voltages in electrical networks are messed up, 

which makes the powerless good [2]. Bad distortion has 

repercussions that you cannot see. It changes the voltage and 

current waveforms, increases power losses, lowers system 

efficiency, overheats electrical components, and damages 

sensitive equipment [1].  

Harmonics may make equipment break down faster and 

increase operation and maintenance expenses. This can be a 

massive concern for utilities and end users, both technically 

and financially. For this reason, harmonic mitigation must be 

done in a manner that is always the same, works well, and is 

of good quality to keep the power supply stable [3]. Two main 

types of filters may help with harmonic distortion: passive and 

active power filters (APFs). 

Passive filters are easy to use and cheap. They are made up 

of inductors, resistors, and capacitors. They still cannot adjust 

to changing working circumstances and are built up to block 

specific harmonic frequencies [3]. Conversely, APFs, 

especially Shunt Active Power Filters (SAPFs), have become 

more reliable and adaptable. By introducing compensating 

currents to the system, they actively cancel out harmonics 

across a larger range of frequencies [4]. When the load 

changes, this occurs. How well a SAPF is significantly 

regulated impacts how well it works. Proportional-integral 

(PI) controllers are becoming more popular since they are 

simple and straightforward [5]. PI controllers keep the system 

running smoothly by adjusting the proportional and integral 

gain to bring the real system output closer to the reference 

signal. It could change how well things operate if you change 

the settings. If you do not tune your PI controllers 

appropriately, your system may not be stable, your harmonic 

correction might not work well, and you could have 

oscillations you do not want [3].  

In complicated and variable places, traditional tuning 

methods like the Ziegler-Nichols or heuristic methods do not 

function well. Because of these problems, scientists have been 

seeking new ways to tune, especially those that employ 

metaheuristic optimization algorithms (MOAs) [6]. Some of 

the methods that have worked well for improving PI controller 

settings include ant lion optimization [6], particle swarm 

optimization (PSO) [7], and grey wolf optimization (GWO) 

[8]. They achieve this by looking at significant solution areas 
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and lowering hand-tuning hazards. These approaches also 

have issues, such as taking too long to converge and being 

prone to being stuck in a local minimum.  

This research suggests adopting a hybrid Grey Wolf 

Optimizer–Particle Swarm Optimizer (GWO-PSO) method to 

improve the performance of the PI controller in SAPF systems 

to solve these problems. The GWO-PSO approach combines 

the GWO's balance between exploration and exploitation with 

the PSO's quick convergence. This mixed technique is 

excellent at finding solutions to challenging nonlinear 

optimization issues. It also improves global search and lowers 

the chance of early convergence. GWO-PSO might be a 

helpful way to fine-tune PI parameters in harmonic 

compensation applications since it is easy to use, adaptable, 

and affordable [9]. 

The SAPF design was implemented as an optimization 

problem with numerous aims, such as faster response time, 

maintaining the DC connection's voltage at the reference value, 

and reducing the electrical voltage THD for the current source. 

We utilized the GWO-PSO method to solve the problem. The 

findings were compared to those of past studies to show that 

the recommended method worked.  

The enhanced PDPC approach, PI-GWO-PSO-PDPC, 

works, as shown by real-time platform execution. Endurance 

tests in real conditions demonstrated that PI-GWO-PSO is 

stable and changes with time. The recommended control unit 

has been proven to speed up reactions, lower overvoltage, and 

lower DC link voltage. A look at past experiments 

demonstrates that this new method works.  

 

 

2. OVERVIEW OF SAPF ARCHITECTURE AND 

CONTROL TECHNIQUE 

 

Modern power systems use SAPFs extensively to reduce 

harmonic distortions, offset reactive power, and improve 

general power quality. These filters operate by injecting 

compensating currents into the grid to offset nonlinear loads. 

The control algorithms used determine how successful SAPFs 

are in suppressing harmonics and effectively controlling 

reactive power [10]. Several control strategies have been 

presented to maximize SAPF performance.  

Using mathematical transformations, conventional methods 

such as the synchronous reference frame (SRF) technique and 

the instantaneous reactive power theory (p–q theory) separate 

harmonic components and provide suitable compensation 

signals [10, 11]. More complex methods, such as artificial 

neural networks (ANNs) and fuzzy logic control (FLC) [12, 

13], have been investigated to increase adaptation and 

dynamic responsiveness. Moreover, model predictive control 

(MPC) has been popular since its switching operation 

optimization and real-time forecasting powers [6]. 

Usually including multiple key components, the SAPF 

system architecture consists of the control algorithm, power 

supply unit, nonlinear load, and voltage source inverter (VSI). 

Usually, a setup provides sufficient current compensation 

utilizing a VSI with pulse-width modulation (PWM). 

Maintaining the required running power to store VSI energy, 

a DC-link capacitor, and precision sensing and signal 

processing circuits track important system variables like 

voltage and current in real time [12]. 

This section details the design of each component within the 

integrated SAPF system. Figure 1 depicts the overall 

configuration. 

 
 

Figure 1. Overall system diagram of the studied SAPF 

configuration 

 

 

3. PREDICTIVE DIRECT POWER CONTROL (PDPC) 

 

Literally, PDPC is a sophisticated control method that aims 

at quick and exact power compensation. Unlike traditional 

DPC [14], which depends on hysteresis controllers and 

switching tables [15], PDPC uses a predictive model of the 

power system to calculate ideal switching states. This method 

dramatically lowers switching losses and improves dynamic 

responsiveness [16]. PDPC means real-time grid voltage, load 

current, and filter current estimate. One minimizes a cost 

function to choose the best switching state that preserves 

power balance and lowers THD [17]. Reduced processing 

complexity enhanced transient responsiveness and resilience 

against grid fluctuations define the benefits of PDPC. 

However, issues like parameter sensitivity and the need for 

exact system modelling must be resolved to guarantee 

dependable functioning [6].  

 

 

4. DC BUS CONTROLLER DESIGN  

 

DC bus voltage management is critical to the correct 

operation of SAPF. The DC voltage control loop provides 

accurate reference for active power in PDPC and keeps the bus 

voltage steady at a preset reference value. This study compares 

the performance of a proposed PI-GWO-PSO controller to 

existing PI controllers. The investigation focuses on assessing 

the PI-GWO-PSO controller's efficacy and performance, 

specifically its impact on the stability and regulation of the DC 

bus voltage in SAPF. 

 

4.1 Design of standard PI controller  

 

Figure 2 shows the closed-loop representation of the SAPF's 

DC bus regulation. A reference value (𝑉𝐷𝐶
∗ ) is used to compare 

the measured DC bus voltage (𝑉𝐷𝐶). The PI controller receives 

this error as an input [18]. The instantaneous active power 𝑃∗ 

is then produced by 𝑉𝐷𝐶  multiplying the output of this 

controller (𝐼𝑠𝑚𝑎𝑥 ) by (𝑉𝐷𝐶 ). By ensuring that the DC bus 

voltage stays within the specified reference value, this control 

mechanism helps the SAPF to operate steadily and effectively 

[19, 20]. 

Eq. (1) provides the system's transfer function (TF), and Eq. 

(2) provides the TF of the PI controller: 
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Figure 3 presents the voltage regulation loop and is given 

by Eq. (3): 
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When simplifying Eq. (2), Eq. (3) has been gotten which is 

a second degree : 
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Figure 2. PI controller-based DC bus architecture 

 

Figure 3 shows the conventional PI controller to maintain 

the DC bus of the SAPF at a reference value.  

 

 
 

Figure 3. Structure of the PI controller integrated into the 

PDPC algorithm 

 

The gains 𝑘𝑝𝑐 and 𝑘𝑖𝑐 are given by the identification of Eqs. 

(5)-(6). They are given by the following expression: 

 

2. . .pc n DCk C =  (5) 

 
2.ic DCk C =  (6) 

 

4.2 Proposed GWO-PSO 

 

MOAs are intended to search for the best solutions within a 

specific range. The GWO-PSO hybrid method, a new 

development, combines the strengths of GWO and PSO to 

increase exploitation and exploration while searching for 

optimum solutions. The fundamental goal of this hybrid 

GWO-PSO approach is to avoid premature convergence and 

improve accuracy in discovering the global optimal solution, 

especially in complicated, multi-modal search spaces. The 

method seeks to balance local refinement and global research 

using the complementing properties of GWO and PSO, 

resulting in improved performance in a wide range of 

optimization tasks. 

 

4.2.1 Grey wolf optimization 

Grey wolf optimization algorithm draws inspiration from 

the hunting strategies exhibited by grey wolves [21]. Grey 

wolves hold a significant position as apex predators, 

occupying the uppermost tier of the food chain. Their 

collective hunting prowess is particularly noteworthy; they are 

renowned for their adeptness at cooperative group hunting. 

These groups generally consist of 5 to 12 members on average 

and can be categorized into four types: alpha (𝛼𝐺𝑊𝑂 ), beta 

(𝛽𝐺𝑊𝑂), delta (𝛿𝐺𝑊𝑂), and omega (𝜔𝐺𝑊𝑂). A distinctive aspect 

of their behavior is the strict adherence to a well-defined social 

hierarchy, visually represented in Figure.4. 

  

 
 

Figure 4. Hierarchy of GWO 

 

The alpha wolf is pivotal in decision-making concerning 

hunting, resting locations, wake-up schedules, and other pack-

related affairs in the grey wolf hierarchy. The alpha (α) is 

commanding, dictating the pack's actions and, therefore, earns 

the "alpha wolf" [6]. Following the alpha is the beta, 

constituting the next tier in the grey wolf hierarchy. Beta 

wolves collaborate with the alpha in decision-making and 

active participation in pack endeavors. The beta (β) wolf 

assumes a dual role as the alpha's advisor and enforcer of pack 

discipline. They must respect the alpha while leading the 

lower-ranked members, namely the delta (δ) and omega (w). 

Sitting at the lowest rung of the hierarchy, the omega wolf is 

tasked with a critical function as a scapegoat. While the omega 

might appear less influential, its absence has been observed to 

trigger internal conflicts and turmoil within the entire pack. 

Figure 5 shows the hunting techniques of grey wolves. 

 

 
 

Figure 5. Hunting techniques employed by grey wolves [21] 

 

If a wolf does not fall into the alpha, beta, or omega 

categories, it is referred to as a delta. Delta wolves submit to 

the authority of the alpha and beta members but wield 

dominance over omega wolves. The fundamental stages of 

grey wolf hunting behavior are depicted in Figure 5; Stage (a) 

encompasses tracking, approach, and pursuit of prey. 

Subsequent stages (b) through (d) correspond to pursuit, 

 1 

2 

GWO  

GWO  

GWO  

GWO  
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harassment, and the strategic encircling of the prey. The static 

encounter and attack on the prey are depicted in phase (E) [21]. 
 

(1) GWO algorithm's mathematical formulas 

The social hierarchy, tracking, encircling, and attacking 

aspects of the GWO algorithm can be captured through the 

following mathematical equations [6]: 
 

( ) ( ). pD C X l X l= −  (7) 

 

( ) ( ) .
1 .pX l X l A D+ = −  (8) 

 

where: 

l: Iteration number.  

𝐴 and 𝐶: Coefficients vectors.  

𝑋⃗𝑝 : The prey's position vector and 𝑋⃗  refers to a position 

vector for a grey wolf.  

𝐷⃗⃗⃗: The distance between wolves and prey.  

𝐶 and 𝐴 vectors can be expressed by: 

 

12.C r=  (9) 

 

22. .A a r a= −  (10) 

 

where, 𝑟1, 𝑟2 are two randomly generated numbers falling 

within the range [0, 1]. These parameters are subject to 

variation within each iteration. And, 𝑎⃗ commences from 2 and 

gradually decreases to 0 across the iterations.  

𝐷⃗⃗⃗𝛼 , 𝐷⃗⃗⃗𝛽 and 𝐷⃗⃗⃗𝛿 representing the separations between wolves’ 

distances of different categories, and the prey, are defined as 

follows: 

 

1

2

3

.

.

.

D C X X

D C X X

D C X X

 

 

 

= −

= −

= −

 (11) 

 

where: 

𝐷⃗⃗⃗𝛼: Distance between wolves in this category (α) and their 

prey. 

𝐷⃗⃗⃗𝛽: Distance between wolves in this category (β)and their 

prey.  

𝐷⃗⃗⃗𝛿: Distance between wolves in this category (δ)and their 

prey. 

𝐶1, 𝐶2 and 𝐶3: Represent coefficient vectors corresponding 

to the first three best positions 𝑋⃗1,𝑋⃗2 and 𝑋⃗3.  

𝑋⃗𝛼,𝑋⃗𝛽  and 𝑋⃗𝛿 : Refer to the best, 2nd best, and 3rd best 

search agents, respectively, within the algorithm. 

The first three best positions (solutions) of the grey wolves, 

denoted as 𝑋⃗1,𝑋⃗2 and 𝑋⃗3 are: 
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Eq. (13) that updates the positions of the prey for the best 

search agent's position is expressed as follows: 

 

( )
1 2 3

1
3

X X X
X l

+ +
+ =  (13) 

 

4.2.2 PSO technique 

One of metaheuristic optimization is PSO that uses swarms 

to find the global optimum. A population-based exploration 

strategy drives the search. What sets PSO apart is its unique 

inspiration from bird social behavior. It portrays candidate 

solutions as particles, each with its position in the search space 

represented by x. Every particle has a velocity v, which 

determines its movement in terms of distance, direction, and 

step size. In addition to its position and velocity, each particle 

remembers its best position (𝑃𝑏𝑒𝑠𝑡 ). In contrast, the best 

position any particle in the swarm reaches is called the global 

best (𝐺𝑏𝑒𝑠𝑡 ) [22]. PSO’s simplicity stems from its ease of 

implementation and minimum requirement for parameter 

adjustment. The particle’s velocity is changed according to 

specific rules, allowing for fine-tuning its path toward better 

solutions. This velocity adjustment is crucial in optimization 

because it helps balance exploration (finding new regions of 

the solution space) with exploitation (fine-tuning existing 

potential solutions). PSO is a metaheuristic optimization 

approach that uses swarms to find the global optimum [7]. 

PSO’s simplicity stems from its ease of implementation and 

minimum requirement for parameter adjustment. The 

particle’s velocity is changed according to specific rules, 

allowing for fine-tuning its path toward better solutions. This 

velocity adjustment is crucial in optimization because it helps 

balance exploration (finding new regions of the solution space) 

with exploitation (fine-tuning existing potential solutions). 

The rules for velocity updates are expressed as follows: 

 

1 1 best( )

2 2 best( )

( 1) ( ( ) ( ))

( ) ( ( ) ( ))

i i i

i i i

v k rc P k x k

wv k r c G k x k

+ = −

+ ++ −
 (14) 

 

( 1) ( ) ( 1)i i ix k x k v k+ = + +  (15) 

 

where: 

ω: The inertial weight constant regulates the influence of 

the particle’s previous velocity on its current velocity. 

𝑐1 and 𝑐2: These are the cognitive and social coefficients, 

respectively. They control the weight given to the particle’s 

personal best (𝑃𝑏𝑒𝑠𝑡 , 𝑖) and the best position among the group 

(𝐺𝑏𝑒𝑠𝑡) when updating the velocity. 

𝑟1 and 𝑟2: These are uniformly distributed random variables 

within the range [0, 1], contributing to the stochastic nature of 

the algorithm. 

𝑃𝑏𝑒𝑠𝑡 , 𝑖: Represents the personal best position of particle i. 

𝐺𝑏𝑒𝑠𝑡 : Represents the best particle position among all 

members of the swarm. 

 

4.2.3 GWO-PSO 

GWO component features three essential agents: Alpha (α), 

Beta (β), and Delta (δ), which represent the most effective 

solutions found thus far. These wolves, known as Omega 

wolves, coordinate the movements of the remaining 

population and lead the search [7]. The GWO mathematical 

model updates the locations of all search agents (wolves) 

based on their relative attraction to α, β, and δ. This technique 
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helps the GWO strike a balance between exploration and 

exploitation. The agent’s updated locations are determined 

using the following Eqs. (11) and (12). 

The PSO component updates each agent’s velocity 

depending on its previous velocity and attraction to the newly 

calculated coordinates 𝑋1, 𝑋2  and 𝑋3 . The formula for 

updating velocity in PSO is as follows:  

 

• Velocity update 

 

1 1 1

2 2 2 3 3 3

( 1) ( ) ( )

( ) ( )

i i i

i i

v k w v k C r X X

C r X X C r X X

+ =  +   − +

+   − +   −
 (16) 

 

• Position update 

 

( 1) ( ) ( 1)i i iX k X k v k+ = + +  (17) 

 

This equation adjusts each agent’s position based on the 

newly estimated velocity. The hybrid method achieves the best 

balance of exploration and exploitation by combining GWO’s 

exploitation-driven technique with PSO’s velocity-based 

exploration. 

4.2.4 Anti-windup PI controller tuned by GWO-PSO  

The PI-GWO-PSO controller efficiently manages the DC 

link in the SAPF. However, the anti-windup PI controller's 

dependence on an accurate mathematical model presents 

challenges when dealing with system nonlinearities and 

parameter variations. Consequently, the PI anti-windup 

controller, designed using conventional methods, struggles to 

perform optimally across different operating conditions. To 

address this, the GWO-PSO algorithm is proposed to enhance 

the anti-windup PI controller's performance. The optimization 

process focuses on three parameters of the PI-GWO-PSO 

controller (𝐾𝑝𝑐 , 𝐾𝑖𝑐  and 𝐺𝑎). The GWO-PSO algorithm aims to 

solve an objective function that minimizes overall costs, with 

the study targeting three key objectives: reducing DC link 

voltage overshoot, minimizing the instantaneous (𝑇𝐻𝐷𝑖 ) of 

supply current, and controlling the instantaneous error in the 

DC link voltage loop (𝜀(𝑡)). 
A fitness function evaluates the robustness of the PDPC-

SAPF model during its iterative execution, determining the 

relevance of each search agent until the algorithm reaches the 

maximum specified iterations. As depicted in Figure 6, the 

PDPC-SAPF model operates using the closed-loop transfer 

function of the DC link voltage and the anti-windup PI 

controller. The number of problem variables corresponds to 

the initial set of search agents, randomly generated by the 

GWO-PSO algorithm. In this case, the search agent operates 

in a three-dimensional space (𝐾𝑝𝑐 , 𝐾𝑖𝑐  and 𝐺𝑎 ). With each 

iteration, the GWO-PSO algorithm adjusts these parameters. 

After running the PDPC-SAPF model, the fitness function 

evaluates the parameter values, and the optimal parameters are 

those that minimize the fitness function.  

The study aims to reduce power fluctuations, mitigate over 

and under-voltages in the DC link, and reduction of (THD). 

The ideal PI-GWO-PSO controller gains (𝐾𝑝𝑐 , 𝐾𝑖𝑐  and 𝐺𝑎) are 

determined by solving the following equation, which 

minimizes the fitness function. 

 

• Minimize F 

 

1 2 3J J J J= + +  (18) 

 

To reduce the error related to the DC-link voltage in both 

transient and steady states, the Integral Time Square Error 

(ITSE) index is utilized to select 𝐽1  [6]. The ITSE can be 

defined as follows: 

 

2

1 1
0

.( ( ))
t

J w t t dt=   (19) 

 

𝐽2 can be expressed as follows and represents the overshoot 

in the DC-link voltage that was noticed: 

 

max
2 2

D D
J w

D





−
=  (20) 

 

where:  

𝐷𝑚𝑎𝑥: Maximum value. 

𝐷∞: Final value. 

To enhance power quality, The THD of the source current 

is represented by the formula for 𝐽3, which is as follows: 

 

2

2

3 3 100
n

n

f

I

J w
I



=
= 


 

(21) 

 

𝐽3 involving the Root Mean Square (RMS) values of 𝐼𝑠 for 

the nth harmonic (𝐼𝑛) and the fundamental (𝐼𝑓).   

Different impacts are assigned coefficients, which are the 

weighting factors 𝑤1, 𝑤2 and 𝑤3. The relative significance of 

each impact in the overall assessment is established by these 

weights. The absolute values of these weights sum together are 

[6]: 

 

1 2 3 1w w w+ + =  (22) 

 

Several investigations revealed that raising the weight 

allocated to f1 (ITSE) increased overshoot and undershoot. In 

contrast, increasing the weight provided to f3 (THD) resulted 

in a significant steady-state inaccuracy and increased 

overshoot and undershoot.  

The proposed GWO-PSO based PI controller is illustrated 

in Figure 6. 

The pseudo code of GWO-PSO used to tune the proposed 

controller of SAPF is listed in Algorithm of Figure 7. 

 

 
 

Figure 6. Block diagram of proposed PI-GWO-PSO 
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Figure 7. GWO-PSO pseudo-code 

 

Table 1. Key parameters used in the PSO component of the GWO–PSO algorithm 

 
Parameter Symbol Value Rationale 

Inertia Weight 𝜔 0.9 → 0.4 Linearly decreased to balance exploration and exploitation  

Cognitive Coefficient 𝑐1  2 Encourage personal (particle-level) best experience  

Social Coefficient 𝑐2 2 Promotes cooperation and swarm intelligence  

Swarm Size / 30 Common default for balance between convergence and computation cost 

Maximum Iterations max_iter 100 Sufficient for convergence based on empirical tuning 

Velocity Limits 𝑣𝑚𝑎𝑥𝑚𝑖𝑛 ±20% of search range Prevents particles from overshooting solutions 

 

 
 

Figure 8. Evolution of the control parameter a across 

Iterations in the GWO-PSO algorithm 

 

The development of the control parameter 𝑎 across 

iterations is analyzed to show how the GWO-PSO algorithm 

transitions from global exploration to local exploitation. 

Figure 8 illustrates that the parameter 𝑎 drops linearly from 2 

to 0, promoting exploration in the early phases and gradually 

favoring exploitation. This behavior is crucial for avoiding 

premature convergence and ensuring a strong global search 

capacity during first iterations, which progressively improves 

solution refinement in later stages. 

The parameters  for the PSO component of the hybrid 

GWO-PSO algorithm are carefully chosen to strike a 

compromise between convergence speed and solution quality. 

The cognitive and social coefficients (𝑐1 and 𝑐2) are both set 

to 2, encouraging both individual and group learning. The 

inertia weight 𝜔 decreases linearly from 0.9 to 0.4 throughout 

the shift from exploration to exploitation. Table 1 contains 

details on this and other parameter settings. 

Figure 9 depicts the whole workflow for the proposed 
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hybrid GWO-PSO-based PI controller tuning method. The 

method starts with the initialization phase, which generates a 

set of candidate solutions at random inside the chosen search 

space, each representing a combination of and gains. Next, 

each candidate's performance is assessed using a composite 

fitness function that incorporates primary potwer quality 

objectives: overshoot (ITSE), DC-link voltage variation, and 

THD, with weights 𝑤2= 0.1, 𝑤1= 0.6, and 𝑤3= 0.3.  

The hybrid GWO-PSO method is then used to update the 

search agents' locations and velocities based on a combination 

of exploitation (by the GWO leadership hierarchy) and 

exploration (via PSO velocity updates). Figure 8 illustrates 

how the control parameter 𝑎 declines linearly over repetitions, 

ensuring a gentle shift from exploration to exploitation.  

The iterative procedure continues until a convergence 

condition is fulfilled. Finally, the best-performing PI 

parameter set is retrieved and used for real-time control in the 

SAPF system. This hierarchical tuning method assures that the 

controller performs reliably and adaptively under dynamic 

load and nonlinear situations. 

 

 
 

Figure 9. Flow diagram of the hybrid GWO–PSO-based PI 

tuning process 

 

 

5. EXPERIMENTAL RESULTS  

 

Figure 10 depicts the experimental setup for a study 

involving a SAPF; as illustrated, the setup includes several key 

components essential for the analysis and implementation of 

the filter. These components are listed in Table 2 and consist 

of a PC equipped with dSPACE1104 for control and data 

acquisition, a three-phase voltage source to simulate the power 

supply, and an oscilloscope for monitoring electrical signals. 

The setup also features an RL load to simulate real-world load 

conditions, a SEMIKRON universal converter that combines 

rectifier and inverter functionalities, and filtering inductors (L) 

to smooth out the current. Current and voltage sensors are 

integrated to measure electrical parameters accurately, and a 

power analyzer is used to assess the performance and 

efficiency of the SAPF. This comprehensive setup allows for 

detailed experimentation and validation of the filter's ability to 

mitigate harmonic distortions and improve power quality in 

electrical systems. 

 

 
 

Figure 10. Photo of the experimental setup 

 

Table 2. Experimental components specifications 

 
Number Components Names 

1 PC + dSPACE 1104 

2 Three-phase voltage source 

3 Oscilloscope 

4 RL load 

5 
SEMIKRON Universal Converter (Rectifier + 

Inverter) 

6 Filtering inductors (𝐿𝑓𝑎,𝑏,𝑐) 

7 Current sensors 

8 Voltage sensors 

9 Power Analyzer 

 

5.1 Theoretical analysis of PI-GWO-PSO performance 

 

The PI-GWO-PSO controller’s superior performance, 

evidenced by reduced THD. This subsection provides a 

mathematical analysis of how gain tuning enhances the SAPF 

dynamic response, crediting GWO-PSO’s exploration and 

exploitation features, and compares its performance with other 

optimization algorithms and conventional tuning methods. 

The GWO-PSO algorithm minimizes the fitness function 

𝐽 = 𝑤1𝑓1 + 𝑤2𝑓2 + 𝑤3𝑓3, where 𝑓1 is overshoot, 𝑓2 is integral 

time square error, and 𝑓3 is THD. From Eq. (3) the gains 𝐾𝑝 

and 𝐾𝑖 determine the system’s damping ratio (𝜁) and natural 

frequency (𝜔𝑛): 

 

𝜔𝑛 = √
𝐾𝑖
𝐶𝐷𝐶

,    𝜁 =
𝐾𝑝

2√𝐾𝑖𝐶𝐷𝐶
 (23) 

 

Optimal 𝐾𝑝  increases 𝜁 , reducing overshoot, while 𝐾𝑖 

adjusts 𝜔𝑛, speeding up the response to minimize ITSE. The 

anti-windup gain G mitigates integrator saturation, further 

reducing overshoot under nonlinear loads. 

GWO-PSO’s balanced exploration-exploitation optimizes 

the closed-loop response, enhancing damping and harmonic 

suppression, making it superior for dynamic SAPF 

applications. 

 

5.2 Analysis of results 

 

In steady-state conditions, Figure 11 shows the performance 

of a SAPF managed under steady-state settings utilizing a 

PDPC technique. The oscilloscope records four color-coded 
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waveforms: blue source voltage (Vs), yellow source current 

(Is), pink load current (IL), and green filter current (If). The 

source voltage is constant and almost sinusoidal, suggesting a 

constant power supply. Minor distortion in the source current 

reflects the effect of nonlinear loads. Harmonics from 

nonlinear devices seriously damage the load current; the filter 

current shows a compensatory waveform that actively 

suppresses these harmonics. These experimental findings 

demonstrate that, despite nonlinear loads, the enhanced PDPC 

approach minimizes harmonic distortion in the current source, 

thereby improving power quality. 

 

 
 

Figure 11. Steady-state experimental results of the SAPF 

controlled using PDPC 

 

Using Fresnel diagrams to show the phase angle (ΦVA) 

between voltage (V1) and current (A1), Figure 12 compares 

voltage and current phase relationships before and after 

applying the SAPF, therefore reflecting power factor (PF) and 

harmonic distortion. With voltage at 23.0 V and current at 3.3 

A, the system displays a phase angle of +16° before filtering 

(Figure 12a), suggesting a mostly inductive load and a poor 

power factor. This leads to higher power losses and poorer 

efficiency. 

 

 
(a)  

 
(b) 

 

Figure 12. Comparative analysis of steady-state voltage and 

current phases using Fresnel diagrams, a) Before filtering, 

and b) After plug-in SAPF 

Following the SAPF (Figure 12b), the voltage rises slightly 

to 23.5 V and the current to 3.4 A; the phase angle falls sharply 

to +0.1°, indicating a near-unity PF. This shows how well the 

SAPF minimizes harmonic distortion and aligns current with 

voltage. The Fresnel’s will show the SAPF's potential to 

improve power quality by lowering phase angle deviation and 

thereby adjusting the power factor. These experimental 

findings demonstrate SAPF's usefulness in applications related 

to power quality improvement, as they confirm that it 

increases system performance and energy economy. 

Figures 13a and 13b emphasize the effect on power quality 

improvement of experimental power factor (PF) 

measurements obtained before and after integrating a SAPF 

into a three-phase system. 

Inductive behavior and the existence of reactive power were 

indicated by somewhat below unity (+0.938, +0.900, and 

+0.937) power factor values for phases L1, L2, and L3 before 

SAPF installation (Figure 11a). Corresponding phase angles 

varied from +15° to +21°, therefore verifying a clear phase 

shift between voltage and current. 

With cos(Φ) values nearing +1.000 and phase angles 

decreasing close to 0°, SAPF activation (Figure 13b) enhanced 

the power factor substantially to near unity (+0.996 to +0.995). 

Minimal reactive power was indicated. 

These findings show how well SAPF fixes phase shift and 

power factor, raising system efficiency and quality. This 

confirms that the SAPF is a dependable means of improving 

power quality in invaluable applications. 

 

 
(a) 

 
(b) 

 

Figure 13. Experimental evaluation of power factor 

correction via SAPF, a) Before filtering, and b) After plug-in 

SAPF 

 

Under three conditions: without filtering, with an SAPF 

using a PI controller, and with an SAPF using a PI-GWO-PSO 

controller. Figure 14 compares THD in a three-phase system. 

Reflecting the degree of waveform distortion by harmonics, 

THD is a fundamental measure of power quality. 
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The waveforms reveal significant distortion, suggesting a 

high THD level before filtering (Figure 14a). Respectively 

verifying low power quality owing to unfiltered harmonic 

content, voltage, and current values are +33.6 V and +4.3 A, 

respectively. 

The waveform clearly shows less distortion with the SAPF 

and PI controller (Figure 14b). The PI controller's modest 

efficacy in lowering harmonics is evident: voltage falls 

somewhat to +31.8 V, and current rises to +4.9 A. 

The waveform becomes almost sinusoidal with the SAPF 

and PI-GWO-PSO controller (Figure 14c), suggesting a 

significant decrease in THD. Rising to +35.5 V and +4.7 A, 

respectively, voltage and current values highlight the excellent 

harmonic suppression capability of the PI-GWO-PSO 

controller. 

These experimental findings show that the PI-GWO-PSO 

controller provides far superior THD reduction even if the PI 

controller enhances power quality. This emphasizes how well-

developed control techniques such as PI-GWO-PSO might 

improve the dependability and efficiency of power systems. 

Modern power electronics and the continuous advancement of 

high-performance active power filters depend on such 

methods. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 14. Experimental THD results, a) before filtering, b) 

Plug in SAPF with PI controller, c) Plug in SAPF with PI-

GWO-PSO controller 

In transient state, Figure 15 shows the transient behavior of 

a three-phase electrical system subjected to two load change 

scenarios using both a conventional PI controller and a 

proposed hybrid PI-GWO-PSO controller. Oscilloscope traces 

provide a visual analysis of the system's dynamic response. 

PI Controller: When the load shifts from a purely resistive 

(RL) to a resistive-inductive (RL/LR) configuration at around 

2 ms and back to RL at approximately 4.2 ms, the DC voltage 

(blue) remains relatively stable. However, the current (yellow), 

load current (pink), and filter current (green) exhibit clear 

oscillations following each transition, which gradually 

subsides as the system regains a steady state. 

Proposed PI-GWO-PSO Controller: Under the same load 

conditions, the proposed controller significantly reduces 

oscillations and speeds up stabilization. The DC voltage 

remains stable throughout, while the current waveforms return 

to steady state more quickly, indicating better control 

performance. 

The proposed PI-GWO-PSO controller outperforms the 

traditional PI controller in transient response, offering quicker 

damping and enhanced system stability during dynamic load 

changes. These results highlight the controller's potential for 

improving the performance and reliability of modern power 

systems, and they encourage further research into intelligent 

optimization-based control strategies for power electronics 

applications. 

 

 
(a) 

 
(b) 

 

Figure 15. Transient state experimental results for two 

changes of load, a) PI controller, b) GWO-PSO-PI controller 

 

Comparatively to a standard PI controller, Figure 16 shows 

the experimental transient response of a SAPF system after a 

step change in the DC bus voltage reference (Vdc*), thereby 

evaluating the performance of a suggested advanced controller. 

Captured on an oscilloscope, the findings show how well each 

controller controls dynamic changes. 
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PI Controller (Figure 16a): The blue DC voltage increases 

rapidly and settles upon the step increase in 𝑉𝐷𝐶
∗ . The source 

current (yellow), load current (pink), and filter current (green) 

do, however, show clear oscillations. Gradually settling these 

currents suggests a modest dynamic reaction from the PI 

controller. 

In the same situation, the suggested PI-GWO-PSO 

controller (Figure 16b) also guarantees a fast DC bus voltage 

rise and stabilization. However, the transient behavior of the 

current waveforms is substantially enhanced; oscillations are 

negligible, and steady state is obtained much quicker, 

therefore indicating a more responsive and stable system. 

In conclusion, this comparison study verified the suggested 

controller's improved dynamic performance over the 

conventional PI method. Faster stabilization and lower 

oscillations point to better management of transient events, 

which is essential for improving SAPF system dependability 

and efficiency. These results confirm the need for smart and 

hybrid control strategies in contemporary power electronics. 

Table 3 presents a comprehensive summary of the 

experimental results comparing the performance of a 

conventional PI controller and the proposed PI-GWO-PSO 

(hybrid PI anti-windup controller tuned by GWO-PSO) 

controller in a SAPF system. The analysis focuses on steady-

state and transient-state performance using key performance 

indicators such as THD, PF, settling time (tr), and overshoot 

(D) characteristics. 

Figure 17 presents the harmonic spectrum before and after 

applying the SAPF, measured using a power analyzer in three-

phase setup. Before filtering, the harmonic amplitude 

contributing to the 19.6% THD. With PI-GWO-PSO, this is 

reduced to THD of 3.9%. PI-GWO-PSO’s tighter gain tuning 

reduces odd harmonics more effectively, as evidenced in 

Figure 17. 

 
(a) 

 
(b) 

 

Figure 16. Transient state experimental results for a step of 

𝑉𝐷𝐶
∗ , a) PI controller, b) GWO-PSO-PI controller 

Table 3. Summary of main experimental results 

 

 
Steady State Transient State 

THD (%) PF Tr1 (ms) D1 (%) Tr2 (ms) D2 (%) Tr3 (ms) D2 (%) 

PI  4.2 0.99 33 6 45 6 160 0 

GWO-PSO-PI 3.8 0.99 30 3.33 35 3.33 120 0 

 

The results comply with IEEE 519-2014 standards for low-

voltage systems, which specify a THD limit of 5% and 

individual odd harmonic limits of 4% for orders 3 to 11. The 

PI-GWO-PSO controller’s THD (3.9%) and individual 

harmonics are well below these thresholds, unlike the 

unfiltered case (19.6% THD). PI-GWO-PSO’s hybrid 

exploration-exploitation ensures superior suppression by 

avoiding local minima in gain tuning. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 17. Harmonic spectrum before and after SAPF turned 

on, a) Before SAPF on, b) PI controller, c) PI-GWO-PSO 
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These results indicate that the PI-GWO-PSO controller 

significantly outperforms the traditional PI controller by 

minimizing transient distortions, reducing overshoots, and 

stabilizing the system more rapidly during sudden operating 

conditions. 

The proposed PI-GWO-PSO controller benefits both 

transient and steady-state settings. It reduces THD by 0.4% in 

steady state, generating a higher overall power quality and a 

cleaner current waveform. With a high-power factor of 0.99, 

both controllers underline the system's efficiency. 

The proposed controller provides a transient state analysis: 

• Durations of stabilization and settling provide faster 

dynamic adaptation. 

• Lowered run-through levels improve control 

smoothness and reduce the load on system 

components. 

• Zero-third overshoot is an outstanding achievement 

showing improved damping and control. 

Applications like renewable energy systems, electric motors, 

and power distribution networks that need real-time 

performance and rapid recovery from load changes that is, 

applications depend on these developments specifically. 

 

 

6. CONCLUSIONS  

 

This study has demonstrated the effectiveness of a hybrid 

GWO-PSO-tuned PI anti-windup (PI-GWO-PSO) controller 

in enhancing the performance of SAPF systems. Through 

comprehensive experimental validation, the proposed 

controller significantly reduced harmonic distortion, improved 

the power factor and provided a faster transient response 

compared to a conventional PI controller. These results 

highlight the potential of integrating metaheuristic 

optimization techniques with classical control strategies to 

enhance power quality and improve dynamic system 

performance. 

The analysis emphasizes the crucial role of advanced 

optimization algorithms, particularly hybrid methods such as 

GWO-PSO, in overcoming the limitations inherent in 

traditional controllers in nonlinear and dynamic environments. 

By effectively minimizing overshoot, reducing THD, and 

accelerating system stabilization, the proposed approach 

contributes to the development of more stable, efficient, and 

reliable modern power systems. 

The success of the PI-GWO-PSO controller encourages 

further research in this domain. Future work may focus on : 

• Enhancing the GWO-PSO algorithm for improved 

convergence speed and robustness against disturbances. 

• Investigating real-time optimization through online 

adaptive gain tuning for industrial environment, where the 

PI controller parameters are adjusted dynamically using a 

lightweight version of the GWO-PSO algorithm to respond 

to time-varying operating conditions. 

• Conducting comparative studies with other metaheuristic 

algorithms such as Whale Optimization Algorithm (WOA), 

Differential Evolution (DE), or Ant Colony Optimization 

(ACO). 

• Extending the approach to more complex topologies, 

including grid-connected renewable energy systems and 

multi-inverter architectures. 

Such advancements would strengthen the role of intelligent 

and adaptive control strategies in realizing robust, flexible, and 

high-performance power electronic systems tailored to the 

evolving demands of smart grids and modern energy 

applications. 
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