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The temperature forecast of photovoltaic (PV) panels plays a major role in optimizing their
performance and efficiency, particularly in hot regions like Marrakech, where accurate
predictions can enhance energy production management and reduce kWh costs. This study
evaluates the reliability of artificial neural networks (ANN) and long short-term memory
networks (LSTM) for modeling PV panel temperature profiles, providing critical insights
before system installation. Using root mean square error (RMSE) and coefficient of
determination (R?) as key metrics, we compare the predictive performance of both models.
The ANN model demonstrates marginally better accuracy in temperature prediction, with a
training RMSE of 1.7231°C (R? = 0.974) and a test RMSE of 1.952°C (R? = 0.970). In
contrast, the LSTM model shows slightly higher training and test RMSE values (1.8908°C
and 1.959°C, respectively) but maintains competitive R? scores (0.970 and 0.969). While
ANN exhibits a slight edge in RMSE, LSTM demonstrates greater stability in test loss over
time, suggesting that its performance may be more robust in certain operational contexts.
The minimal difference in R? values (0.970 vs. 0.969) further indicates near-identical
predictive capability between the two models. The choice of RMSE over mean absolute
error (MAE) is justified by its sensitivity to larger deviations, which is critical for
identifying extreme temperature fluctuations that could impact PV efficiency. Overall, both
models generalize effectively, with ANN providing marginally better precision in our case
study, while LSTM offers potential advantages in long-term stability. These findings
highlight the importance of model selection based on specific operational requirements,
whether prioritizing immediate prediction accuracy or long-term consistency in PV
temperature forecasting.

1. INTRODUCTION

solar photovoltaic energy, plays a key role in reducing
greenhouse gas emissions, the main cause of climate change

The photovoltaic (PV) performance modules is one of the
most used solutions in solar systems that have high potential,
but this technology is strongly affected by the increase in
temperature. The very high temperature of the photovoltaic
panel can make an important reduction which can be up to 7%
of its maximum electricity production [1]. This loss of energy,
known as the temperature coefficient which is always negative
for the power and voltage of photovoltaic panels depending on
the type of technology [2]. Especially in warm and sunny
regions such as Morocco on the whole South and South-East
Marrakech as a case study, knowing the temperature of PV
modules becomes the most important element to obtain
maximum performance. the chilling of photovoltaic
technologies poses several problems on internal components
of panels and is a major defect for PV installations in hot
climates thus reducing their service life [3]. It is therefore very
important to accurately predict the temperature of photovoltaic
modules in order to improve their energy production and
increase their service life. Renewable energy, particularly
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to achieve the objective of reducing the earth’s temperature [4].

The temperature forecast of photovoltaic modules is
necessary to improve their energy efficiency and ensure stable
production [5]. By using advanced artificial intelligence
modules, we will be able to develop more efficient and
effective methods for temperature prediction in photovoltaic
systems, improving their performance and making the
conditions very comfortable to achieve maximum yield and
maximize their service life. This work focuses on the
introduction of artificial intelligence to predict the temperature
of polycrystalline photovoltaic modules in Marrakech, a
technology that produces more than other technologies in this
climate, with the aim of limiting PV overheating, Improve the
efficiency and production of photovoltaic solar energy.
Classical physical models are very important for determining
and optimizing the temperatures of solar panels, which is
fundamental to maximizing efficiency and maintaining the
right temperature for photovoltaic panels.

The models use equations based on heat transfer principles


https://orcid.org/0009-0002-8429-6699
https://orcid.org/0000-0002-2133-550X
https://orcid.org/0000-0002-4674-8458
https://orcid.org/0000-0001-7058-2120
https://orcid.org/0000-0001-8051-1705
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300522&domain=pdf

and photovoltaic module datasheet characteristics. They take
into consideration variables such as solar irradiation, ambient
temperature, wind speed and module-specific parameters such
as STC efficiency and maximum power temperature factors.
These modeling tools help engineers and researchers to
properly design cooling system [6].

Table 1 shows the physical methods.

Table 1. Correlation for predict temperature of PV models

Ref. Correlation

[7] T»w=Ta+0.031G

[8] Tp=Tut==(Tnocr-20)

[91  Tpw=Tr+0.0126(G-200)+1.03(Ta-Tu NoOCT)
[10]  T»=0.937T.+0.0195G-1.528 Ws+0.3529

[11] Trr=0.968T,+0.02G-1.007

where,

T,v: PV panel temperature (°C).

T,: Ambient temperature (°C).

G: Solar irradiance (W/m?).

Tnocr: Nominal Operating Cell Temperature (°C).

Ts: Reference temperature (°C).

T,, nocr: Ambient temperature at NOCT conditions (°C).

W,: Wind speed (m/s).
Physical methods used to predict the temperature of
photovoltaic modules often do not provide accurate results due
to their dependence on simplified assumptions and limited
consideration of complex environmental interactions [12].
These precautionary principles are based on fixed coefficients,
variations in weather conditions and linear relationships with
these parameters that do not give a clear picture of the complex,
non-linear nature of temperature variations in photovoltaic
panels, particularly in hot and variable climates [2, 7].
Advanced techniques, on the other hand, can analyze large
amounts of data to identify more complex patterns and
relationships, resulting in more accurate and reliable
temperature forecasts. Applying these advanced techniques to
predict the temperature of photovoltaic systems increases
accuracy, reduces the risk of overheating and improves the
efficiency and durability of photovoltaic systems. Physical
models, although fundamental to determine the temperature of
photovoltaic modules have important limitations. They are
based on fixed coefficients and linear relations, which do not
take into account the non-linear nature of temperature
variations [13]. This limits their validity, especially in difficult
environments such as Marrakesh, where climatic conditions
change rapidly. Artificial intelligence-based models, such as
ANN and LSTM, allow for more detailed analysis and greater
accuracy through their ability to process large amounts of data
and model complex relationships. This study focuses on the
application of machine learning models, in particular ANN
and LSTM, to predict the temperature of photovoltaic modules.
The model demonstrated robust performance, reinforced by
evaluation metrics such as RMSE and R

2. MATERIEL AND METHODS

As part of a “propre.ma” [8] project to study the
performance of three photovoltaic  technologies—
Monocrystalline, Polycrystalline and Amorphous—in
different climatic regions of Morocco, we are focusing in
particular on the city of Marrakech. For each technology, a 2-
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kWp installation has been set up to provide accurate and
reliable comparative data.

Photovoltaic panel performs in the specific climatic
conditions of Marrakech, known for its intense sunshine and
temperature variations. Local weather data, together with
temperature measurements of polycrystalline panels, will be
used to assess the energy performance and efficiency of these
technologies. Specifically, our work aims to predict the
temperature of polycrystalline panels as a function of weather
conditions. Table 2 represents the datasheet of polycrystalline
panels [9].

Table 2. Module specifications for p:Si (P)

Modules p:Si (P)
Module nominal power (W) 255
Module nominal open circuit voltage (V) 38.0
Module nominal short circuit current (A) 8.88
Temperature coefficient short circuit current (%per K)  0.051
Temperature coefficient of power (%per K) -0.410
Temperature coefficient open circuit voltage (%oper K)  -0.310
Normal operating cell temperature (°C) 46
Number of cells 60

2.1 Visualization of meteorological parameters and panel
temperature

Figure 1 visualization provides an in-depth understanding
of the complex interactions between solar irradiation, wind
speed, ambient temperature and photovoltaic panel
temperature. Dispersion diagrams and histograms clearly
show that irradiation has a significant positive correlation with
the panel temperature, highlighting the direct impact of solar
energy on the panel heating. In addition, the marked linear
relationship between room temperature and panel temperature
suggests that variations in room temperature directly influence
the panel temperature. This means that there is a very strong
relationship between irradiation and panel temperature, as
illustrated by the correlations in Table 1 [14].
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Figure 1. Visualization of meteorological parameters and
panel temperature
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Figure 2. Temperature of photovoltaic (PV) panels
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Figure 4. LSTM architecture

The target variable represented in Figure 2 the temperature
of photovoltaic (PV) panels, measured in degrees Celsius (°C).
It is derived from time-series data spanning multiple days,
with timestamps at regular intervals five minute. The values
exhibit diurnal and seasonal fluctuations, influenced by solar
irradiance, ambient temperature, and panel material properties
[15].

The artificial neural network (ANN) is a basic type of
machine learning model designed to process data by passing it
through several layers of neurons. In the ANN model
illustrated in Figure 3, data passes through an input layer,
followed by two hidden layers of 64, 32 and 16 neurons. The
ANN model excels at capturing direct relationships between
features, making it a good choice for static data prediction
tasks, such as temperature prediction in photovoltaic systems.
In contrast, the LSTM (Long Short-Term Memory) network is
specifically designed to process sequential type data, making
it perfectly suited for time series forecasting. In the LSTM
model, the structure is made up of memory cells, which
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include doors - inlets, forgets and exits - that regulate the flow
of information. The LSTM model (Figure 4) illustrates data
processing from multiple time steps, where each LSTM unit
processes sequential inputs, making it very effective for
capturing models over time, as the temperature variations in
photovoltaic panels [16].

2.2 Evaluation metrics

To evaluate the performance of a prediction model, several
criteria are used, including the coefficient of determination
(R?), the mean quadratic error (MSE) (Eq. (1)) and the mean
absolute error (MAE) (Eq. (2)). The determination coefficient
(R?) (Eq.(3)) measures the variability of the model-explained
dependent variable compared to the variability of the
independent variables [17]. The RMSE quantifies the
dispersion of predictions around actual temperature values of
PV. The MAE indicates the moderate error between
temperature that predict and test data of our models, which
gives a local indication for each model prediction [18].

n
1
RMSE = —Z(Tp —Tm)? (D
nk:l
]- n
MAE = —ZlTp — Tm| )
nk:l
R2=1-— k=1(Tp — Tm)? 3)

n_(Tp — Tav)?

where,
e  Tp is the predicted temperature.

Tm is the measured temperature.

Tav is the average of the measured temperature.

n is the total number of data points.

3. RESULTS AND DISCUSSION

It is necessary to predict the temperature of photovoltaic
(PV) panels in order to optimize their performance and
efficiency. Accurate temperature forecasts allow for
appropriate management of energy production, which has an
impact on overall energy efficiency and the overall KWh costs
of energy. This study evaluates the effect of different learning
models in Marrakesh for polycrystalline technology and
predict temperature variations, assess their impact and discuss
their potential implications for improving the performance of
photovoltaic panels [19].

3.1 Metrics of model evaluation in test and training

ANN and LSTM, for temperature prediction. For the ANN,
the performance indicators are an RMSE of 1.7231, a MAE of
1.31 and an R? 0f 0.974, which are acceptable and noted values,
although temperature varies greatly every 5 min. In addition,
the LSTM shows slightly higher values, with an RMSE of
1.8908, a MAE of 1.47 and an R? of 0.970 less pronounced
than ANN. These figures show that ANN tends to predict PV
temperature better than LSTM in this case of marrekesh.
Therefore, the convergence between training and test set



results indicates that the models are well trained in Table 3 and
can generalize effectively, providing accurate and reliable
predictions for the new value. Comparison obtained in Figure
5 shows the differences between the performance of ANN and
LSTM (“This work”) models and that of Decision Trees,
Random Forest and Gradient Boost (“Published work™) [1]
based on three parameters: R?, RMSE and MAE. While
Gradient Boost has the highest R? (0.982) and the lowest
RMSE (1.925) and MAE (1.340), indicating better predictive
accuracy, its slight advantage in terms of R? can however come
at the expense of over-adjustment. ANN (R%: 0.970, RMSE:

1.952, MAE: 1.46) and LSTM (R%: 0.969, RMSE: 1.959, MAE:

1.48) of “This work” have comparable performances, in
particular in terms of RMSE and MAE, Significantly
surpassing the decision trees and the Random Forest that
follows them very closely.

Table 3. Performance metrics for ANN and LSTM models

model Training Test
RMSE MAE R? RMSE MAE R?
ANN 1.7231 131 0974 1.952 1.46 0.970
LSTM 1.8908 147 0.97 1.959 1.48  0.969
Model Performance Comparison
25 gpecision Trees @ This Work

@ Published Work

gpandom Forest

RMSE (°C)

asradient Boost
&

oSTM. g

0.94

0.86 0.88 0.90 0.92

Figure 5. Comparison of machine learning models for PV
panel temperature prediction: current work and published

This indicates that while the tree-based models excel
somewhat in explaining variance, the ANN and LSTM show
stable results for all metrics, demonstrating their ability to
perform predictive tasks with potential benefits in the
manipulation of complex relationships between different data.
The results of this study have important practical implications
for photovoltaic (PV) systems in real situations. The
integration of prediction models such as ANN and LSTM in
the management of photovoltaic systems can improve
operational efficiency by better anticipating temperature
changes [20].

3.2 Loss function

Figures 6 and 7 show a comparative analysis of the learning
loss of long-short-term memory (LSTM) and artificial neural
networks (ANN). Both models show a rapid decrease in initial
learning loss, indicating rapid learning, with the LSTM model
showing a steeper decrease at the beginning of the period
during which learning takes place. As learning progresses,
both models see their learning loss curves flatten out,
suggesting that MSE is minimal. At the end of the 100-epoch
training period, both models experience a minimal drop in
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learning, but the ANN model grows faster and achieves a
slightly lower final loss. This indicates that while both models
do learn from training data, the ANN model demonstrates
slightly slightly higher performance in minimizing training
errors for this specific task. The test loss curves for the LSTM
and ANN models are over 100 test periods. The dashed curves
represent the test loss for each model, with the yellow curve
for the LSTM and the red curve for the ANN. The visualization
shows that the test loss for the ANN is generally greater than
that of the LSTM. In addition, the loss of LSTM varies little
and stabilizes in a very low loss range, indicating better
performance and greater stability of the LSTM model
compared to the ANN.
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Figure 6. The evolution of training loss function for LSTM
and ANN models
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Figure 7. The evolution of testing loss function for LSTM
and ANN models

3.3 Comparison between observed and predicted values

Figures 8 and 9 display a point cloud for both the ANN and
LSTM models, comparing measured values to predicted
values. The ANN model demonstrates a very high precision in
representing the temperature of photovoltaic panels. However,
some points deviate from the perfect prediction line,
corresponding to peaks in the loss function. Similarly, the
LSTM model is represented by orange dots, each indicating a
pair of measured and predicted values. The dashed black line
represents the ideal scenario where measured and predicted
values are identical, and ANN models signifying perfect



prediction. The proximity of most points to this line indicates
strong model performance and high precision, which aligns
with the high coefficient of determination (R?) for both models.
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Measured Values

Figure 8. Scatter plot of the measured and predicted PV
temperature for ANN models
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Figure 9. Scatter plot of the measured and predicted PV
temperature for LSTM models
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Figure 10. Representation of 200 samples of predicted and
measured temperature

Figure 10 compares measured temperature values with the
predictions of the LSTM and ANN models. Both models show
good overall accuracy, following the trends of the measured
values with a few visible deviations. The predictions of both
models are often close to the actual values, although errors
persist. In comparison, the LSTM and ANN models perform
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similarly, but it can happen that one is more accurate than the
other. Improvements can be made to reduce deviations and
increase prediction accuracy. But from a general point of view,
ANN is a more accurate module with a large deference and an
LSTM face.

4. CONCLUSIONS

Based on the training and test results of the ANN and LSTM
models for predicting the temperature of photovoltaic panels,
both models demonstrate strong predictive capabilities, with
the ANN achieving an RMSE of 1.952, an MAE of 1.46, and
an R? of 0.970, and the LSTM achieving an RMSE of 1.959,
an MAE of 1.48, and an R? of 0.969. These results highlight
the possibility for models to determine temperature variations
and manage temporal differences between PV panel
temperature data. Although the LSTM model displays slightly
higher error measures than the ANN, both models produce
reliable forecasts, providing flexibility of application based on
operating conditions and data characteristics. Continuous
optimization and refinement of model parameters and data
preprocessing techniques can further improve predictive
accuracy and applicability in real-world PV management
scenarios. These results highlight the potential role of machine
learning models in transforming the PV industry by enabling
predictive maintenance, optimizing system performance and
improving energy performance. Good temperature modelling
can mitigate efficiency losses, contribute to the design of
efficient air conditioning systems and promote the integration
of photovoltaic technologies in different climates, Promoting
both operational efficiency and the global trend towards
renewable energy.
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