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The temperature forecast of photovoltaic (PV) panels plays a major role in optimizing their 

performance and efficiency, particularly in hot regions like Marrakech, where accurate 

predictions can enhance energy production management and reduce kWh costs. This study 

evaluates the reliability of artificial neural networks (ANN) and long short-term memory 

networks (LSTM) for modeling PV panel temperature profiles, providing critical insights 

before system installation. Using root mean square error (RMSE) and coefficient of 

determination (R²) as key metrics, we compare the predictive performance of both models. 

The ANN model demonstrates marginally better accuracy in temperature prediction, with a 

training RMSE of 1.7231℃ (R² = 0.974) and a test RMSE of 1.952℃ (R² = 0.970). In 

contrast, the LSTM model shows slightly higher training and test RMSE values (1.8908℃ 

and 1.959℃, respectively) but maintains competitive R² scores (0.970 and 0.969). While 

ANN exhibits a slight edge in RMSE, LSTM demonstrates greater stability in test loss over 

time, suggesting that its performance may be more robust in certain operational contexts. 

The minimal difference in R² values (0.970 vs. 0.969) further indicates near-identical 

predictive capability between the two models. The choice of RMSE over mean absolute 

error (MAE) is justified by its sensitivity to larger deviations, which is critical for 

identifying extreme temperature fluctuations that could impact PV efficiency. Overall, both 

models generalize effectively, with ANN providing marginally better precision in our case 

study, while LSTM offers potential advantages in long-term stability. These findings 

highlight the importance of model selection based on specific operational requirements, 

whether prioritizing immediate prediction accuracy or long-term consistency in PV 

temperature forecasting.  
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1. INTRODUCTION

The photovoltaic (PV) performance modules is one of the 

most used solutions in solar systems that have high potential, 

but this technology is strongly affected by the increase in 

temperature.  The very high temperature of the photovoltaic 

panel can make an important reduction which can be up to 7% 

of its maximum electricity production [1]. This loss of energy, 

known as the temperature coefficient which is always negative 

for the power and voltage of photovoltaic panels depending on 

the type of technology [2]. Especially in warm and sunny 

regions such as Morocco on the whole South and South-East 

Marrakech as a case study, knowing the temperature of PV 

modules becomes the most important element to obtain 

maximum performance. the chilling of photovoltaic 

technologies poses several problems on internal components 

of panels and is a major defect for PV installations in hot 

climates thus reducing their service life [3]. It is therefore very 

important to accurately predict the temperature of photovoltaic 

modules in order to improve their energy production and 

increase their service life. Renewable energy, particularly 

solar photovoltaic energy, plays a key role in reducing 

greenhouse gas emissions, the main cause of climate change 

to achieve the objective of reducing the earth’s temperature [4]. 

The temperature forecast of photovoltaic modules is 

necessary to improve their energy efficiency and ensure stable 

production [5]. By using advanced artificial intelligence 

modules, we will be able to develop more efficient and 

effective methods for temperature prediction in photovoltaic 

systems, improving their performance and making the 

conditions very comfortable to achieve maximum yield and 

maximize their service life. This work focuses on the 

introduction of artificial intelligence to predict the temperature 

of polycrystalline photovoltaic modules in Marrakech, a 

technology that produces more than other technologies in this 

climate, with the aim of limiting PV overheating, Improve the 

efficiency and production of photovoltaic solar energy. 

Classical physical models are very important for determining 

and optimizing the temperatures of solar panels, which is 

fundamental to maximizing efficiency and maintaining the 

right temperature for photovoltaic panels. 

The models use equations based on heat transfer principles 
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and photovoltaic module datasheet characteristics. They take 

into consideration variables such as solar irradiation, ambient 

temperature, wind speed and module-specific parameters such 

as STC efficiency and maximum power temperature factors. 

These modeling tools help engineers and researchers to 

properly design cooling system [6]. 

Table 1 shows the physical methods. 

 

Table 1. Correlation for predict temperature of PV models 

 
Ref. Correlation 
[7] Tpv=Ta+0.031G 

[8] Tpv=Ta+
𝐺

800
(TNOCT-20) 

[9] Tpv=Tref+0.0126(G-200)+1.03(Ta-Ta, NOCT) 
[10] Tpv=0.937Ta+0.0195G-1.528Ws+0.3529 
[11] TPV=0.968Ta+0.02G-1.007 

 

where, 

• Tpv: PV panel temperature (℃). 

• Ta: Ambient temperature (℃). 

• G: Solar irradiance (W/m²).  

• TNOCT: Nominal Operating Cell Temperature (℃). 

• Tref: Reference temperature (℃).  

• Ta, NOCT: Ambient temperature at NOCT conditions (℃).  

• Ws: Wind speed (m/s). 

Physical methods used to predict the temperature of 

photovoltaic modules often do not provide accurate results due 

to their dependence on simplified assumptions and limited 

consideration of complex environmental interactions [12]. 

These precautionary principles are based on fixed coefficients, 

variations in weather conditions and linear relationships with 

these parameters that do not give a clear picture of the complex, 

non-linear nature of temperature variations in photovoltaic 

panels, particularly in hot and variable climates [2, 7]. 

Advanced techniques, on the other hand, can analyze large 

amounts of data to identify more complex patterns and 

relationships, resulting in more accurate and reliable 

temperature forecasts. Applying these advanced techniques to 

predict the temperature of photovoltaic systems increases 

accuracy, reduces the risk of overheating and improves the 

efficiency and durability of photovoltaic systems. Physical 

models, although fundamental to determine the temperature of 

photovoltaic modules have important limitations. They are 

based on fixed coefficients and linear relations, which do not 

take into account the non-linear nature of temperature 

variations [13]. This limits their validity, especially in difficult 

environments such as Marrakesh, where climatic conditions 

change rapidly. Artificial intelligence-based models, such as 

ANN and LSTM, allow for more detailed analysis and greater 

accuracy through their ability to process large amounts of data 

and model complex relationships. This study focuses on the 

application of machine learning models, in particular ANN 

and LSTM, to predict the temperature of photovoltaic modules. 

The model demonstrated robust performance, reinforced by 

evaluation metrics such as RMSE and R². 

 

 

2. MATERIEL AND METHODS 

 

As part of a “propre.ma” [8] project to study the 

performance of three photovoltaic technologies—

Monocrystalline, Polycrystalline and Amorphous—in 

different climatic regions of Morocco, we are focusing in 

particular on the city of Marrakech. For each technology, a 2-

kWp installation has been set up to provide accurate and 

reliable comparative data.  

Photovoltaic panel performs in the specific climatic 

conditions of Marrakech, known for its intense sunshine and 

temperature variations. Local weather data, together with 

temperature measurements of polycrystalline panels, will be 

used to assess the energy performance and efficiency of these 

technologies. Specifically, our work aims to predict the 

temperature of polycrystalline panels as a function of weather 

conditions. Table 2 represents the datasheet of polycrystalline 

panels [9]. 

 

Table 2. Module specifications for p:Si (P) 

 

Modules p:Si (P) 

Module nominal power (W) 255 

Module nominal open circuit voltage (V) 38.0 

Module nominal short circuit current (A) 8.88 

Temperature coefficient short circuit current (%per K) 0.051 

Temperature coefficient of power (%per K) -0.410 

Temperature coefficient open circuit voltage (%per K) -0.310 

Normal operating cell temperature (℃) 46 

Number of cells 60 

 

2.1 Visualization of meteorological parameters and panel 

temperature 

 

Figure 1 visualization provides an in-depth understanding 

of the complex interactions between solar irradiation, wind 

speed, ambient temperature and photovoltaic panel 

temperature. Dispersion diagrams and histograms clearly 

show that irradiation has a significant positive correlation with 

the panel temperature, highlighting the direct impact of solar 

energy on the panel heating. In addition, the marked linear 

relationship between room temperature and panel temperature 

suggests that variations in room temperature directly influence 

the panel temperature. This means that there is a very strong 

relationship between irradiation and panel temperature, as 

illustrated by the correlations in Table 1 [14]. 

 

 
 

Figure 1. Visualization of meteorological parameters and 

panel temperature 
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Figure 2. Temperature of photovoltaic (PV) panels 

Figure 3. ANN architecture 

Figure 4. LSTM architecture 

The target variable represented in Figure 2 the temperature 

of photovoltaic (PV) panels, measured in degrees Celsius (℃). 

It is derived from time-series data spanning multiple days, 

with timestamps at regular intervals five minute. The values 

exhibit diurnal and seasonal fluctuations, influenced by solar 

irradiance, ambient temperature, and panel material properties 

[15]. 

The artificial neural network (ANN) is a basic type of 

machine learning model designed to process data by passing it 

through several layers of neurons. In the ANN model 

illustrated in Figure 3, data passes through an input layer, 

followed by two hidden layers of 64, 32 and 16 neurons. The 

ANN model excels at capturing direct relationships between 

features, making it a good choice for static data prediction 

tasks, such as temperature prediction in photovoltaic systems. 

In contrast, the LSTM (Long Short-Term Memory) network is 

specifically designed to process sequential type data, making 

it perfectly suited for time series forecasting. In the LSTM 

model, the structure is made up of memory cells, which 

include doors - inlets, forgets and exits - that regulate the flow 

of information. The LSTM model (Figure 4) illustrates data 

processing from multiple time steps, where each LSTM unit 

processes sequential inputs, making it very effective for 

capturing models over time, as the temperature variations in 

photovoltaic panels [16]. 

2.2 Evaluation metrics 

To evaluate the performance of a prediction model, several 

criteria are used, including the coefficient of determination 

(R2), the mean quadratic error (MSE) (Eq. (1)) and the mean 

absolute error (MAE) (Eq. (2)). The determination coefficient 

(R2) (Eq.(3)) measures the variability of the model-explained 

dependent variable compared to the variability of the 

independent variables [17]. The RMSE quantifies the 

dispersion of predictions around actual temperature values of 

PV. The MAE indicates the moderate error between 

temperature that predict and test data of our models, which 

gives a local indication for each model prediction [18]. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑇𝑝 − 𝑇𝑚)

𝑛

𝑘=1

² (1) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑇𝑝 − 𝑇𝑚|

𝑛

𝑘=1

 (2) 

𝑅2 = 1 −
∑ (𝑇𝑝 − 𝑇𝑚)²𝑛
𝑘=1

∑ (𝑇𝑝 − 𝑇𝑎𝑣)²𝑛
𝑘=1

(3) 

where, 

• Tp is the predicted temperature.

• Tm is the measured temperature.

• Tav is the average of the measured temperature.

• n is the total number of data points.

3. RESULTS AND DISCUSSION

It is necessary to predict the temperature of photovoltaic 

(PV) panels in order to optimize their performance and 

efficiency. Accurate temperature forecasts allow for 

appropriate management of energy production, which has an 

impact on overall energy efficiency and the overall KWh costs 

of energy. This study evaluates the effect of different learning 

models in Marrakesh for polycrystalline technology and 

predict temperature variations, assess their impact and discuss 

their potential implications for improving the performance of 

photovoltaic panels [19]. 

3.1 Metrics of model evaluation in test and training 

ANN and LSTM, for temperature prediction. For the ANN, 

the performance indicators are an RMSE of 1.7231, a MAE of 

1.31 and an R2 of 0.974, which are acceptable and noted values, 

although temperature varies greatly every 5 min. In addition, 

the LSTM shows slightly higher values, with an RMSE of 

1.8908, a MAE of 1.47 and an R2 of 0.970 less pronounced 

than ANN. These figures show that ANN tends to predict PV 

temperature better than LSTM in this case of marrekesh. 

Therefore, the convergence between training and test set 
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results indicates that the models are well trained in Table 3 and 

can generalize effectively, providing accurate and reliable 

predictions for the new value. Comparison obtained in Figure 

5 shows the differences between the performance of ANN and 

LSTM (“This work”) models and that of Decision Trees, 

Random Forest and Gradient Boost (“Published work”) [1] 

based on three parameters: R2, RMSE and MAE. While 

Gradient Boost has the highest R2 (0.982) and the lowest 

RMSE (1.925) and MAE (1.340), indicating better predictive 

accuracy, its slight advantage in terms of R2 can however come 

at the expense of over-adjustment. ANN (R2: 0.970, RMSE: 

1.952, MAE: 1.46) and LSTM (R2: 0.969, RMSE: 1.959, MAE: 

1.48) of “This work” have comparable performances, in 

particular in terms of RMSE and MAE, Significantly 

surpassing the decision trees and the Random Forest that 

follows them very closely. 

Table 3. Performance metrics for ANN and LSTM models 

model 
Training Test 

RMSE MAE R² RMSE MAE R² 

ANN 1.7231 1.31 0.974 1.952 1.46 0.970 

LSTM 1.8908 1.47 0.97 1.959 1.48 0.969 

Figure 5. Comparison of machine learning models for PV 

panel temperature prediction: current work and published 

This indicates that while the tree-based models excel 

somewhat in explaining variance, the ANN and LSTM show 

stable results for all metrics, demonstrating their ability to 

perform predictive tasks with potential benefits in the 

manipulation of complex relationships between different data. 

The results of this study have important practical implications 

for photovoltaic (PV) systems in real situations. The 

integration of prediction models such as ANN and LSTM in 

the management of photovoltaic systems can improve 

operational efficiency by better anticipating temperature 

changes [20].  

3.2 Loss function 

Figures 6 and 7 show a comparative analysis of the learning 

loss of long-short-term memory (LSTM) and artificial neural 

networks (ANN). Both models show a rapid decrease in initial 

learning loss, indicating rapid learning, with the LSTM model 

showing a steeper decrease at the beginning of the period 

during which learning takes place. As learning progresses, 

both models see their learning loss curves flatten out, 

suggesting that MSE is minimal. At the end of the 100-epoch 

training period, both models experience a minimal drop in 

learning, but the ANN model grows faster and achieves a 

slightly lower final loss. This indicates that while both models 

do learn from training data, the ANN model demonstrates 

slightly slightly higher performance in minimizing training 

errors for this specific task. The test loss curves for the LSTM 

and ANN models are over 100 test periods. The dashed curves 

represent the test loss for each model, with the yellow curve 

for the LSTM and the red curve for the ANN. The visualization 

shows that the test loss for the ANN is generally greater than 

that of the LSTM. In addition, the loss of LSTM varies little 

and stabilizes in a very low loss range, indicating better 

performance and greater stability of the LSTM model 

compared to the ANN. 

Figure 6. The evolution of training loss function for LSTM 

and ANN models 

Figure 7. The evolution of testing loss function for LSTM 

and ANN models 

3.3 Comparison between observed and predicted values 

Figures 8 and 9 display a point cloud for both the ANN and 

LSTM models, comparing measured values to predicted 

values. The ANN model demonstrates a very high precision in 

representing the temperature of photovoltaic panels. However, 

some points deviate from the perfect prediction line, 

corresponding to peaks in the loss function. Similarly, the 

LSTM model is represented by orange dots, each indicating a 

pair of measured and predicted values. The dashed black line 

represents the ideal scenario where measured and predicted 

values are identical, and ANN models signifying perfect 
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prediction. The proximity of most points to this line indicates 

strong model performance and high precision, which aligns 

with the high coefficient of determination (R²) for both models.  

 

 
 

Figure 8. Scatter plot of the measured and predicted PV 

temperature for ANN models 

 

 
 

Figure 9. Scatter plot of the measured and predicted PV 

temperature for LSTM models 

 

 
 

Figure 10. Representation of 200 samples of predicted and 

measured temperature 

 

Figure 10 compares measured temperature values with the 

predictions of the LSTM and ANN models. Both models show 

good overall accuracy, following the trends of the measured 

values with a few visible deviations. The predictions of both 

models are often close to the actual values, although errors 

persist. In comparison, the LSTM and ANN models perform 

similarly, but it can happen that one is more accurate than the 

other. Improvements can be made to reduce deviations and 

increase prediction accuracy. But from a general point of view, 

ANN is a more accurate module with a large deference and an 

LSTM face. 

 

 

4. CONCLUSIONS 

 

Based on the training and test results of the ANN and LSTM 

models for predicting the temperature of photovoltaic panels, 

both models demonstrate strong predictive capabilities, with 

the ANN achieving an RMSE of 1.952, an MAE of 1.46, and 

an R² of 0.970, and the LSTM achieving an RMSE of 1.959, 

an MAE of 1.48, and an R² of 0.969. These results highlight 

the possibility for models to determine temperature variations 

and manage temporal differences between PV panel 

temperature data. Although the LSTM model displays slightly 

higher error measures than the ANN, both models produce 

reliable forecasts, providing flexibility of application based on 

operating conditions and data characteristics. Continuous 

optimization and refinement of model parameters and data 

preprocessing techniques can further improve predictive 

accuracy and applicability in real-world PV management 

scenarios. These results highlight the potential role of machine 

learning models in transforming the PV industry by enabling 

predictive maintenance, optimizing system performance and 

improving energy performance. Good temperature modelling 

can mitigate efficiency losses, contribute to the design of 

efficient air conditioning systems and promote the integration 

of photovoltaic technologies in different climates, Promoting 

both operational efficiency and the global trend towards 

renewable energy. 
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