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With the rapid development of information technology, complex networks are increasingly
vulnerable to abnormal behaviors such as malicious attacks and data breaches due to their
growing scale and structural complexity. Traditional detection methods often struggle in
dynamic network environments due to insufficient utilization of temporal features and lack
of protocol evolution analysis, resulting in suboptimal detection accuracy. Existing studies
based on conventional machine learning typically ignore the temporal characteristics of
network behaviors and the evolutionary nature of protocols. Similarly, image processing
techniques alone fail to incorporate protocol-level information, while static protocol models
cannot adapt to dynamically changing scenarios, leading to incomplete extraction of
essential features of anomalous behaviors. To address these challenges, this paper proposes
anovel detection method that integrates image processing with protocol evolution modeling.
The main contributions are as follows: (1) A method for visual mapping of temporal network
behaviors is designed, converting dynamic behaviors into interpretable image features; (2)
A protocol evolution prediction model is constructed, combining time series analysis with
machine learning techniques to capture the dynamics of protocol changes; (3) A multimodal
behavior recognition model is developed, integrating image features with protocol evolution
features to accurately detect anomalous behaviors. By leveraging cross-disciplinary
techniques, this study overcomes the limitations of existing approaches in temporal feature
utilization, dynamic protocol modeling, and multimodal data fusion. It offers a novel
framework that supports both visual analysis and dynamic mechanism modeling,
contributing to improved accuracy and robustness in detecting anomalous behaviors in
complex networks.

1. INTRODUCTION

methods by combining image processing and protocol
dynamic evolution modeling has important practical demand.

With the rapid development of information technology,
complex networks, as an important carrier for information
transmission, interaction, and storage [1-3], are widely applied
in various fields such as social networking, finance, and
communication [4-6]. As the scale of networks continues to
expand and their structures become increasingly complex,
abnormal behaviors such as malicious attacks, data leakage,
and traffic anomalies frequently occur, posing serious threats
to the security, stability, and reliability of networks [7-10].
Traditional network anomaly detection methods gradually
expose problems such as low recognition accuracy and poor
real-time performance when facing dynamically changing
network environments and complex diverse abnormal
behaviors [11, 12]. Image processing technology can
transform network behavior data into intuitive image forms,
which is convenient for mining hidden features and patterns
behind the data [13, 14]; while protocol dynamic evolution
modeling can effectively describe and analyze the dynamic
changes of network protocols during operation [15, 16].
Therefore, studying complex network anomaly detection
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Accurate detection of abnormal behaviors in complex
networks is crucial for ensuring network security, protecting
user rights, and promoting the healthy development of
networks. Through image processing technology, network
temporal behaviors can be transformed into image features,
providing a new perspective for intuitive analysis of abnormal
behaviors; protocol dynamic evolution modeling can capture
the evolution patterns of network protocols at different stages,
which helps to deeply understand the internal mechanisms of
network behaviors. The combination of the two can not only
improve the accuracy and efficiency of complex network
anomaly detection but also provide a more scientific basis for
the formulation of network security protection strategies,
effectively respond to increasingly complex network security
threats, and has important theoretical and practical value.

At present, research on complex network anomaly detection
has achieved certain results. Some scholars have used
traditional machine learning methods, such as support vector
machines, neural networks, etc. [17, 18], to classify and
identify network behavior data, but these methods often ignore


https://orcid.org/0009-0002-3310-1492
https://orcid.org/0009-0000-8695-3301
https://orcid.org/0009-0000-1483-9956
https://orcid.org/0009-0006-4841-2110
https://orcid.org/0009-0006-3685-7630
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420324&domain=pdf

the temporal characteristics of network behaviors and the
protocol dynamic evolution process, resulting in insufficient
ability to detect dynamically changing abnormal behaviors.
Some studies adopt a single image processing technique to
visualize network traffic data [19, 20], but fail to sufficiently
integrate protocol-level information, making the extraction of
essential features of abnormal behaviors not deep enough. In
addition, most existing protocol modeling methods focus on
static protocol analysis, lacking effective modeling of the
protocol dynamic evolution process, and are difficult to adapt
to the dynamic changes of protocols in complex network
environments.

This paper mainly conducts research in the following three
aspects: first, visualization of network temporal behavior
features, through designing a reasonable image mapping
method, transforming network temporal behavior data into
images with rich features, providing an intuitive visual
representation for subsequent abnormal behavior analysis;
second, protocol dynamic evolution prediction model,
combining time series analysis and machine learning
technology to construct a model that can accurately predict the
trend of protocol dynamic evolution, providing support for
early warning of abnormal behaviors; third, multimodal
behavior detection under the background of complex networks,
integrating image features and protocol dynamic evolution
features to establish a multimodal detection model to achieve
accurate detection of abnormal behaviors in complex networks.
The research value of this paper lies in proposing a complex
network anomaly detection method that combines image
processing and protocol dynamic evolution modeling, which
makes up for the deficiencies of existing methods in temporal
feature utilization, protocol dynamic analysis, and multimodal
fusion. By combining the image features of network behaviors
with the protocol dynamic evolution features, it can more
comprehensively describe the essential characteristics of
network behaviors, improve the accuracy and robustness of
anomaly detection, and provide new ideas and methods for the
security protection of complex networks.

2. TEMPORAL BEHAVIOR FEATURE
VISUALIZATION OF COMPLEX NETWORKS

This paper, targeting the characteristics of complex network
temporal behavior data such as high dimensionality, dynamic
nature, and strong feature correlation, adopts the Fast
Correlation-Based  Filter with Maximal Information
Coefficient (FCBF-MIC) method for feature selection and
visualization expression. Specifically, the FCBF-MIC method
is first used to analyze the correlation and redundancy of
massive temporal behavior features, removing redundant
features and retaining core features highly relevant to anomaly
detection. This constructs an optimal feature set that includes
temporal dynamic patterns and key behavior modes, solving
the problems of computational complexity and information
interference caused by high-dimensional data. On this basis, a
suitable feature visualization mapping method is designed,
which structurally arranges the filtered one-dimensional
temporal feature sequences in temporal or spatial dimensions
and transforms them into two-dimensional image matrices
with local spatial correlation. This allows the temporal features,
originally suitable for one-dimensional data, to be presented in
image form, thereby overcoming the limitations of two-
dimensional convolutional neural networks in extracting
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features from one-dimensional data. Through visual
representation, the implicit associations between features are
enhanced, providing more efficient and intuitive input
information for subsequent deep feature extraction based on
convolutional neural networks, enabling effective cross-modal
transformation from temporal data to image features and
laying the foundation for accurate identification of abnormal
behaviors in complex networks.

2.1 FCBF-MIC two-stage feature selection algorithm

This paper uses the FCBF-MIC two-stage feature selection
algorithm to select temporal behavior features in complex
networks, optimizing and refining the feature set through
staged filtering. The first stage focuses on correlation analysis,
using symmetrical uncertainty 77 as the measurement metric
to calculate the correlation degree between each feature d, in
the temporal feature set S and the target class z. Features with
TI(d.,z)<o are filtered out by setting a threshold o. Assuming
that the information entropy of feature du and label z are
represented by G(d.) and G(z), the calculation formula is as
follows:

Through the above operation, redundant information with
low contribution to anomaly detection can be removed,
reducing the data scale for subsequent processing and avoiding
interference of invalid features in the image mapping process
caused by high-dimensional data. Periodic normal fluctuation
features in network traffic or isolated parameters unrelated to
protocols may be deleted first due to 77 values below the
threshold, thereby retaining the core temporal features highly
correlated with abnormal behaviors to form an initial temporal
feature subset 7, providing a cleaner input data source for
subsequent image mapping. Figure 1 shows the process of
correlation analysis.

MIC(d,,z)

G(d,)+G(2) M

Tl(du,z):z{

Input the initial
temporal feature set S

Calculate the symmetrical
uncertainty between each
feature and the label

Yes

l Add {d,} fo the empty
subset T

Remove
{d,} from T

No
raverse the feature set

Figure 1. Correlation analysis process

The second stage conducts redundancy analysis based on
the MIC, by calculating the MIC(d,, z) at different time
components and the MIC(d,, di) between features to further
remove redundant features and construct an optimal feature set.
Specifically, the results of MIC(d,, z) are first sorted in



descending order to clarify the priority of feature relevance to
the target class, and then approximate Markov blanket
conditions are applied. When MIC(d,, z) > MIC(dk, z) and
MIC(d,, di) > MIC(dy, z), feature dy is determined to be a
redundant feature and deleted. This process ensures that the
retained features are not only highly relevant to abnormal
behaviors but also have low mutual information overlap,
thereby preserving independent and complementary dynamic
features in the temporal data to the greatest extent. For
example, in the temporal parameters of network protocol
interactions, this step can remove duplicate features caused by
protocol state transition rules and retain differentiated features
that reflect key nodes of protocol evolution. The final optimal
temporal feature subset 7z contains both the core dynamic
patterns of temporal behavior and low redundancy feature
independence, laying a foundation for mapping one-
dimensional temporal features into two-dimensional image
matrices. This allows the visualization process to more
accurately capture the spatiotemporal correlation between
features. Figure 2 shows the process of redundancy analysis.

Sort MIC(dy.. z) in T
in descending order

Add the dominant
element du to the
optimal subset gz

Y

‘ Remove the subset ‘
{d,} from T

MIC(dy.z)=MIC(d}.2) and Remove {d,}

from T

Output the optimal temporal
feature subset Tz

End

Figure 2. Redundancy analysis process
2.2 Construction of temporal feature grayscale image

The core principle of constructing grayscale images of
complex network temporal behavior features in this paper lies
in transforming the one-dimensional temporal features filtered
by the FCBF-MIC method into two-dimensional grayscale
matrices containing spatiotemporal correlations through factor
reconstruction and image enhancement techniques, so as to
adapt to the feature extraction mechanism of two-dimensional
convolutional neural networks. First, based on the optimal
temporal feature subset 7z, the one-dimensional feature
matrix Dy, which changes over time, is normalized to eliminate
the influence of dimensional differences among different
features and ensure the consistency of subsequent image
reconstruction. Assuming that the column vector in Dy is
denoted by a, the normalized data is denoted by a*, the
maximum value in the input data is ayux, and the minimum
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value is awmn, the normalization process is given by the
following formula:

A- AMIN
AM

A*= 2)

- AM]N

On this basis, a structured reorganization of the one-
dimensional feature sequence is performed using the factor
reconstruction method: all factor sets J of a positive integer v
are enumerated, and the optimal combination Jpr with the
smallest sum of factors is selected as the reconstruction
dimension. The one-dimensional features are filled into a g;xe;
two-dimensional matrix in time order, forming a quasi-square
arrangement grayscale image. This reconstruction method not
only retains the temporal sequence property of the features but
also endows local spatial correlation to the feature space
through the row-column structure of the matrix, transforming
the originally independent one-dimensional features into a set
of pixel points with spatial positional relationships on a two-
dimensional plane. This provides a visual basis for the
convolutional neural network to capture implicit correlations
among features. The grayscale matrix reconstructed from J; is
finally represented as:

3)

To address the potential insufficiency in expressing feature
correlations in the grayscale images after factor reconstruction,
this paper further proposes the MIC-gamma image
enhancement method. Traditional gamma transformation
improves image contrast by adjusting a nonlinear curve but
does not consider the actual correlation among temporal
features. This paper introduces the MIC into the gamma
transformation, quantifying the dependency among features
through MIC values and dynamically adjusting the gamma
coefficient, so that the grayscale values reflect not only the
temporal variation of individual features but also the strength
of correlation among different features in the spatiotemporal
dimension. Specifically, for each pixel in the reconstructed
grayscale matrix, the grayscale mapping curve is adaptively
adjusted according to the MIC value between its
corresponding feature and other features, enhancing grayscale
differences in high-correlation regions and weakening the
interference in low-correlation regions. Figure 3 shows the
similarity between pixels and feature values. Assuming the
matrix elements are represented by X, user-defined constants
by ¢ and #, the grayscale image is represented as:

&

F(X)=h-(MIC(d,,z)-X) (4)

The above enhancement method can more accurately
portray the dynamic coupling relationships among features in
complex network temporal behaviors, so that the grayscale
image not only retains the original temporal information but
also highlights key correlated features for anomaly detection,
providing more discriminative input data for subsequent deep
feature extraction based on two-dimensional convolution,
thereby improving the performance of the complex network
anomaly behavior recognition model.
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Figure 3. Similarity between pixel and feature values

3. PROTOCOL DYNAMIC EVOLUTION PREDICTION
MODEL

This paper constructs a Convolutional Block Attention
Module Convolutional Neural Network Double
Bidirectional Gated Recurrent Unit — Multi-Task Learning
(CBAM-CNN-DBiGRU-MTL) network based on a multi-task
learning framework as the protocol dynamic evolution
prediction model. Among them, the CBAM-CNN module
combines CNN and CBAM to achieve efficient extraction of
spatiotemporal features and key information focus in the
process of protocol dynamic evolution, meeting the research
goal of the "protocol dynamic evolution prediction model" in
capturing protocol temporal dependencies and feature
importance.

This module first uses the multi-layer convolutional kernels
of CNN to extract local spatial features of protocol interaction
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data, converting the protocol state sequence into feature maps
with hierarchical semantics, capturing spatial associations and
pattern features among protocol fields. On this basis, the
CBAM attention mechanism is embedded: the channel
attention sub-module calculates the importance weights of
each feature channel, suppresses redundant channels unrelated
to protocol evolution, and enhances key channels carrying
dynamic evolution information. Meanwhile, the spatial
attention sub-module focuses on the spatial positions in the
feature map that reflect key interaction nodes of the protocol,
forming an enhanced feature representation that fuses channel
and spatial dimension attention. Figure 4 shows the schematic
structure of CBAM. Specifically, let the feature map extracted
by the 2D convolutional layer be D; the channel attention
feature map is denoted by Lz(D), and the spatial attention
feature map by L#(D"). The output feature map D" is obtained
by element-wise multiplication of L7(D") and D'. Assuming the
Sigmoid function is represented by J, the multi-layer
perceptron weights by Qo and O, the 7x7 convolution layer
by d”7, and element-wise multiplication by ), the whole
process is expressed as:

L, (D") = 5(MLP(Avgpool (D) + MAXpool (D))) =

s(afo (02 (@(oiu)) g
L, (D') = §(d7x7 ([MAXPOOI(D');Avgpool(D")])) _
77 T T (6)
5(d ([DMAX;DAVG:D)
D":LT(D')@)D‘ -
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Figure 4. Schematic diagram of CBAM structure

This enhanced feature representation mechanism, which
fuses channel and spatial dimensional attention, enables the
CBAM-CNN module to adaptively filter the core evolution
features in protocol dynamic data, effectively highlighting key
patterns of protocol state transitions and potential clues of
abnormal behaviors, providing highly discriminative feature
inputs for the subsequent DBiGRU module to capture long-
term temporal dependencies of protocol evolution.
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The DBiGRU module in the model serves as the core
temporal feature processing unit of the protocol dynamic
evolution prediction model. Its fundamental principle is to
capture the forward and backward dependencies of temporal
features in the protocol interaction process through a
bidirectional gated recurrent mechanism and enhance the
modeling ability for protocol dynamic evolution patterns
under the multi-task learning framework. This module consists



of forward and backward BiGRU network layers, which
respectively start from the beginning and end of the protocol
temporal data and perform bidirectional traversal on the
enhanced feature sequences extracted by the CBAM-CNN
module, so that the protocol state feature at each time step can
integrate both past and future contextual information,
effectively capturing the long-term dependencies and short-
term fluctuation patterns of state transitions in protocol
evolution. Through the adaptive adjustment of gate units,
DBiGRU can dynamically filter historical information critical
to protocol evolution prediction and suppress interference
from irrelevant noise, such as enhancing memory weights of
corresponding features at key time points of protocol version
upgrades or abnormal interactions. Specifically, assuming the
Sigmoid function is denoted as J, the weight matrices of the
update gate, reset gate, and candidate hidden state are
represented by QO., Q., and Q, the computation formulas for
each gate unit in the GRU are as follows:

Temporal mutation
feature grayscale image

Protocol deviation feature
grayscale image

¢s = 6(Qc - [gs-1, as]) (®)

es = 6(Qe - [gs-1,a5]) )

gs = tanh(Q; - [es - gs-1, as]) (10)
g =(1-¢)xg +¢,xg, (11)

Assuming that at time step s, the outputs of the forward
GRU network, the backward GRU network, and the
bidirectional GRU network in the #-th hidden layer are
denoted as x™, ;, x*£, ;, and x’%, s respectively, and the number
of hidden layers is n, then the outputs of each hidden layer of
the DBiGRU network are obtained by combining the outputs
of the forward and backward GRU neural networks, with the
specific expression as:
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Figure 5. Complete framework of protocol dynamic evolution prediction model

The CBAM-CNN-DBiGRU-MTL protocol dynamic
evolution prediction model constructed in this paper is based
on the core principle of integrating image-based feature
representation and temporal dynamic modeling through a
multi-task learning framework, aiming to deeply explore the
evolution patterns of complex network protocols. The model
uses the CBAM-CNN module as the front-end feature
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extractor. The temporally featured grayscale images that have
been filtered by FCBF-MIC and transformed into image
format are input into the model. The convolutional neural
network is used to capture spatial feature patterns in protocol
interactions, and the CBAM attention mechanism is used to
adaptively enhance the feature expression of key protocol
fields while suppressing the interference of redundant



information. Then, the DBiGRU module performs
bidirectional temporal modeling on the extracted spatial
feature sequences. Through the gated recurrent unit, it captures
the forward and backward dependencies of protocol state
transitions, retaining the influence of historical interaction
information on the current state while incorporating the
constraints of future context on the current state, forming a
temporally aware representation of the protocol evolution
process. This design enables the model to process both the
spatial correlation and temporal dynamics of protocol features
simultaneously, which aligns with the actual characteristics of
protocol operation in complex network environments. In this
paper, three typical types of grayscale images of network
abnormal behavior features are used as model inputs according
to the spatial mapping patterns of temporal features in
grayscale images, the visualization expression intensity of
protocol dynamic features, and the semantic correlation
characteristics of abnormal behaviors: temporal mutation-type
grayscale image, protocol deviation-type grayscale image, and
multi-modal association-type grayscale image. Figure 5 shows
the complete framework of the protocol dynamic evolution
prediction model.

Under the multi-task learning framework, the model
realizes multi-dimensional prediction of protocol evolution
through the collaborative design of shared layers and task-
specific layers. The shared layers are responsible for extracting
the general feature representation of protocol interactions,
which includes the basic rules and patterns of protocol
operation. The task-specific layers set up independent fully
connected networks for different prediction targets and
adaptively adjust the shared features through task-specific
parameters ¢', so as to achieve accurate prediction of each sub-
task. The model adopts a hard parameter sharing mechanism
¢'¢, which forces different tasks to share low-level features
during the learning process, thereby enhancing the ability to
mine complex coupled information of the protocol, and
alleviating the overfitting problem through the regularization
effect among tasks, improving the generalization ability of the
model. For example, when predicting the changes of HTTP
protocol status codes, the shared layer can learn the general
temporal patterns of the request-response cycle, while the task-
specific layers respectively optimize the prediction parameters
for normal state transitions and abnormal state jumps. Finally,
through joint optimization of multiple tasks, a comprehensive
and accurate modeling of protocol dynamic evolution is
achieved. Assuming the weight coefficient is denoted by ¢,
and the loss function is denoted by M! (¢%,4'), defined as:
1/VEY sl M(d¥(au, ¢4, ¢7), b'y), then the loss function expression
for multi-task learning is:

MINiq[M’ (0%.¢) (13)

i=1

4. MULTIMODAL BEHAVIOR RECOGNITION
UNDER COMPLEX NETWORK BACKGROUND

To realize the graph-structured fusion and deep analysis of
image features and protocol dynamic features through
hierarchical processing, this paper constructs a detection
framework based on Graph Attention Network (GAT) to
achieve multimodal behavior recognition under complex
network background. Among them, the GAT layer maps
multimodal inputs as node attributes in the graph structure,
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using the connections between nodes to represent the
spatiotemporal correlation or protocol interaction logic
between features. Through a multi-head attention mechanism,
node vectors are iteratively updated to dynamically capture the
key dependencies of different modal features within local
neighborhoods, realizing precise extraction of fine-grained
behavior features in multimodal data. Secondly, the Readout
layer aggregates node-level features output by the GAT layer
through pooling and other operations, generating graph-level
representations containing fused multimodal information,
integrating scattered node features into high-level semantics
reflecting the global structure of network behaviors. Finally,
the fully connected layer performs classification decisions
based on the graph-level representation, combining the global
correlation patterns and local detailed features of multimodal
features to realize comprehensive discrimination of abnormal
behaviors in complex networks. This framework unifies the
spatial features visualized as images and temporal features of
protocol dynamics through graph structures, and uses attention
mechanisms to adaptively allocate weights of multimodal
features, effectively solving the feature heterogeneity problem
in cross-modal information fusion encountered by traditional
methods.

Specifically, let the set of feature vectors of all / nodes in
the graph be denoted as G={§;,§,,.--.g;}- The GAT layer
takes G~ and X as inputs, outputting a new set of node feature
representations G"={ g, , J, »..., gy }, where the set of all
neighbor nodes of node u is denoted by V,. The GAT layer
takes the node feature vector set G generated by traffic
conversion and adjacency matrix X as inputs. First, using the
shared attention mechanism shown in the following formula,
it computes the attention coefficient S« between the center
node and its neighbor nodes. That is, by applying a learnable
weight matrix Q for linear transformation on node features,
concatenating || the features of the center node u and neighbor
node k, passing through a single-layer feedforward neural
network x( ) and LeakyReLU activation function, generating
asymmetric attention scores, and then normalizing by softmax
to obtain the importance weights between nodes.

B« = softmax  LeakyReLU(a([0g, | ng]))),
keV,

(14)

The above process enables the model to adaptively focus on
neighbor nodes that contribute highly to the current node
feature update, suppressing interference from irrelevant or
weakly related nodes, thus accurately capturing the local
dependency relationships between multimodal features in the
graph structure. For example, coupling the spatially adjacent
features in temporal behavior grayscale images with the
temporal correlations of protocol fields through node attention
weights.

Further, the GAT layer employs the multi-head attention
mechanism shown in the following formula to enhance the
robustness and richness of feature extraction. By parallel
computing node feature updates through J independent
attention heads, each head generates an independent feature
representation §; based on different parameter matrices Q'.
The final node feature g, is aggregated by concatenation or
averaging operations.

g .82, 80 (15)



The above processing allows the model to capture complex
association patterns in multimodal data from multiple
perspectives, such as simultaneously learning local texture
structures of visualized features and state transition paths of
protocol dynamic features, avoiding feature expression bias
possibly caused by a single attention head. Additionally, the
spatial domain characteristics of the GAT layer enable it to
flexibly =~ handle  dynamically = changing  network
communication structures by dynamically adjusting attention
weights to adapt to the spatiotemporal heterogeneity of
multimodal behaviors in complex networks. This is especially
suitable for abnormal behavior scenarios with frequent traffic
interactions and diverse protocol states, ensuring continuous
and efficient extraction of cross-modal fused features during
network topology dynamic evolution.

The Readout layer addresses the need for global feature
aggregation in multimodal behavior recognition under
complex networks, realizing high-level semantic modeling of
traffic graphs through hierarchical feature fusion and cross-
layer information concatenation. This layer takes as input the
node feature matrices output by multiple GAT layers. First, it
performs pooling operations on node representations
generated by each GAT layer separately to obtain
corresponding graph-level representation vectors, capturing
graph structural features under different numbers of attention
heads and different iteration depths. Assuming functions of
average pooling, max pooling, and sum pooling are denoted as
d(), the M-th GAT network is denoted by M, and the j-th
attention computation by j, then:

gy =d(8.8,..8)) (16)
Subsequently, the multi-layer pooling results are
concatenated along the dimension by Concat operation to form
the final graph-level representation vector containing multi-
scale and multi-level semantic information:
go=layllgn &y ] (17)

The above process enables the Readout layer to preserve the
detailed features and abstract semantics extracted by the GAT
at different depths. The lower-level features retain pixel-level
correlations of the visualized temporal features and fine-
grained interaction patterns of protocol fields, while the
higher-level features integrate cross-modal global behavior
patterns, thereby fusing local details and global dependencies
of multimodal data into a single vector.

In the detection framework constructed in this paper, the
fully connected layer serves as the final decision unit for
multimodal behavior recognition. Its core principle is to map
the graph-level representation vector output by the Readout
layer to classification probabilities of complex network
behaviors through a combination of multilayer perceptron
(MLP) and Softmax function, achieving semantic
discrimination of multimodal fused features. This layer takes
as input a global vector containing visualized temporal
features, protocol dynamic features, and graph structure
associations. First, it performs nonlinear mapping of high-
dimensional features through the fully connected
transformation of the MLP, capturing the complex interaction
patterns of multimodal information in the abstract semantic
space. For example, it integrates the pixel correlation features
of abnormal regions in grayscale images with abnormal
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temporal patterns of protocol state transitions through cross-
modal logical fusion, forming comprehensive discriminative
clues for malicious or normal traffic. Subsequently, the
Softmax function normalizes the unnormalized scores output
by the MLP into probability distributions, generating predicted
probability vectors for each behavior category, enabling the
model to quantify the contribution of different modal features
to the classification decision. Let the predicted label be
denoted by b, and the learnable weight parameters and biases
in the MLP be denoted by Q and y, then:
b = softmax(Qgy + y) (18)
For the binary classification task of encrypted malicious
traffic detection, the fully connected layer uses the binary
cross-entropy loss function as the optimization objective. It
dynamically adjusts the learnable weights O and biases y
through backpropagation to minimize the distribution
difference between the predicted label b and the true label b.
This mechanism enables the fully connected layer to
adaptively strengthen the weights of key discriminative
information in multimodal features while suppressing
interference from redundant or noisy features. For example,
when processing encrypted traffic, the fully connected layer
can focus on abnormal node connection patterns captured by
the GAT layer and the global traffic temporal anomalies
integrated by the Readout layer, transforming these cross-
modal abnormal clues into high-confidence predictions of
malicious traffic through nonlinear transformations.
Ultimately, the fully connected layer acts as the "decision
center" of the detection framework, converting the hierarchical
abstract representation of multimodal features into precise
behavior recognition results, achieving efficient classification
of encrypted malicious and benign traffic in complex network
environments. The objective function expression is:

1085 =~ (blogh+(1-b)log(1-5)) (19)

5. EXPERIMENTAL RESULTS AND ANALYSIS

From the ablation experiment results in Table 1, the
complete model proposed in this paper performs best on all
performance indicators: accuracy reaches 98.78%, precision
98.11%, recall 98.21%, and F1 score 98.24%, significantly
higher than other ablation models, such as the MIC replacing
model with accuracy 97.25%, the model without MIC-gamma
enhancement with accuracy 96.32%, the CBAM replacing
model with accuracy 98.41%, and the BiGRU replacing model
with accuracy 98.23%. This result verifies the effectiveness of
the research content in this paper: first, the network temporal
behavior feature visualization effectively improves the
discriminability of image features; second, the protocol
dynamic evolution modeling enhances the ability to capture
abnormal protocol state transitions; finally, multimodal
behavior recognition achieves precise discrimination of
complex network anomalies by integrating visual and
semantic information. Experimental data shows that the
method in this paper significantly improves the accuracy and
robustness of anomaly behavior recognition through the
collaborative design of image-based mapping, protocol
dynamic prediction, and multimodal fusion, verifying the
effectiveness of the technical route of "image processing +
protocol dynamic modeling + multimodal fusion."



Table 1. Ablation experiment results

Model Accuracy (%)  Precision (%) Recall (%) Fl-measure (%)
MIC replacing FCBF-MIC 97.25 97.56 97.56 97.58
Without MIC-gamma image enhancement 96.32 95.32 93.21 94.25
CBAM replacing CBAM-CNN module 98.41 97.89 94.56 96.32
BiGRU replacing DBiGRU module 98.23 98.31 98.23 98.41
Complete model 98.78 98.11 98.21 98.24
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Figure 6. Grayscale images and histograms of network abnormal behavior temporal features before and after image enhancement

Table 2. Comparison of different network abnormal behavior recognition methods

Model Behavior Type Accuracy (%)  Precision (%) Recall (%) Fl-measure (%)
Temporal Mutation 95.26+1.23 95.12+1.18 95.21+1.58 95.36+1.69
DySAT Protocol Deviation 96.54+1.28 96.32+1.32 96.32+0.97 96.69+1.14

Multimodal Correlation 96.58+4.58 96.89+1.66 96.34+1.56 96.87+1.87
Temporal Mutation 96.32+1.18 95.36+1.03 95.68+1.07 95.36+1.17

DHHNN Protocol Deviation 96.87+0.78 96.36+0.85 96.36+0.78 96.57+0.82
Multimodal Correlation 97.58+1.48 97.56+1.69 97.56+0.91 97.56+1.12

Temporal Mutation 96.32+0.92 96.35+0.44 96.32+0.71 96.36+0.38

APAN Protocol Deviation 96.32+0.68 96.12+0.62 96.34+0.55 96.34+0.72
Multimodal Correlation 97.25+0.71 98.36+0.34 97.88+0.57 97.56+0.52

Temporal Mutation 94.25+1.58 93.58+0.98 94.56+1.68 94.56+1.28

LA-DGNN Protocol Deviation 94.23+1.52 94.56+1.89 94.56+1.55 94.58+1.69

Multimodal Correlation 95.32+1.89 95.36+1.17 95.36+1.23 95.36+1.57

Temporal Mutation 97.26+0.35 97.56+0.38 97.56+0.58 97.56+0.42

The Proposed Method Protocol Deviation 97.88+0.24 97.32+40.11 97.58+0.33 98.36+0.28
Multimodal Correlation 98.69+0.12 98.69+0.15 98.69+0.19 98.36+0.22
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From Figure 6, it can be seen that before image
enhancement, the grayscale images of temporal features show
low contrast between abnormal regions and normal regions,
and the histogram distribution is relatively dispersed; the pixel
values of abnormal features do not form significant clusters.
After enhancement, the dark blocks in abnormal regions of the
grayscale image are denser and boundaries are clearer; the
frequency of high grayscale value samples in the histogram
significantly increases, indicating that the MIC-gamma
enhancement technique effectively strengthens the visual
representation of abnormal features. Through image mapping
and enhancement processing, the local high-contrast pixel
clusters of network abnormal behaviors become easier for
subsequent models to capture. The enhanced grayscale images
not only improve the recognizability of abnormal features but

also provide higher quality visual inputs for multimodal fusion.

Combined with the performance decline in the ablation
experiment model "without MIC-gamma enhancement," this
further verifies the key role of image enhancement in feature
extraction. By optimizing the pixel distribution of the
grayscale image, it enhances the visual differences between
abnormal and normal behaviors, laying the foundation for
subsequent GAT layers to capture cross-modal associations
among nodes.

From the comparative experimental results in Table 2, it can
be seen that this paper’s method demonstrates significant
advantages in recognizing the three types of network abnormal
behaviors: temporal mutation type, protocol deviation type,
and multimodal correlation type. Specifically, for temporal
mutation behavior, this method achieves accuracy
(97.26%=0.35), precision (97.56%=0.38), recall
(97.56%=0.58), and F1 score (97.56%=0.42) all higher than
comparison models, indicating that the image mapping
effectively captures abnormal patterns of local high-contrast
pixel clusters; in protocol deviation behavior recognition, this
method’s  accuracy (97.88%=+0.24) and Fl score
(98.36%=+0.28) significantly outperform DHHNN
(96.87%=+0.78, 96.57%+0.82), reflecting the protocol dynamic
evolution model’s precise discrimination of global semantic
anomalies; for multimodal correlation behavior, this method’s
accuracy (98.69%=+0.12) and F1 score (98.36%+0.22) far
exceed APAN (97.25%+0.71, 97.56%+0.52), verifying the
superiority of the multimodal fusion architecture in integrating
cross-modal correlation “fingerprints.” Experimental data
show that the method’s technical route of "image mapping
enhancing visual feature recognition — protocol dynamic
modeling capturing semantic anomaly trends — multimodal
fusion realizing cross-modal information complementarity"
successfully breaks through the limitations of single-modal
features and achieves the current best performance in
recognizing the three types of abnormal behaviors.
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Figure 7. Network abnormal behavior recognition
performance under different proportions of behaviors

In summary, the effectiveness of this method is fully
validated through comparative experiments with mainstream
models. Its leading performance indicators directly reflect the
innovation and practicality of the "image processing +
protocol dynamic modeling + multimodal fusion" technical
system in complex network abnormal behavior recognition,
providing a more accurate and robust solution for network
security detection.

From Figure 7, it can be seen that under different abnormal
behavior proportions, the model after protocol dynamic
evolution significantly outperforms the model before
evolution in accuracy, precision, recall, and F1 score. When
the abnormal proportion is 10%, the accuracy after evolution
approaches 1, while before evolution it is slightly lower; as the
abnormal proportion increases to 60%, the F1 score after
evolution still remains above 0.75, far exceeding the 0.7 before
evolution. This indicates that the protocol dynamic evolution
prediction model proposed in the second part of the paper
effectively improves the early warning ability for abnormal
behaviors by capturing the dynamic trend of protocol state
transitions, enhancing the model's semantic anomaly
discrimination capability. Meanwhile, combined with the
image mapping in the first part and the multimodal fusion in



the third part, the model achieves complementary cross-modal
information: visual features capture local temporal mutations,
protocol dynamic features identify global semantic deviations,
and their synergy allows the model to maintain high robustness
under fluctuations in abnormal proportions. Experimental data
verify the superiority of the "image processing + protocol
dynamic modeling + multimodal fusion" technical route. The
model's lead in all performance indicators after protocol
dynamic evolution directly reflects the method's precise
recognition capability for complex network abnormal
behaviors.

6. CONCLUSION

The "complex network abnormal behavior recognition
method combining image processing and protocol dynamic
evolution modeling" proposed in this paper systematically
solves the problems of insufficient utilization of temporal
features, lack of protocol semantic analysis, and low
multimodal fusion efficiency in complex network
environments through the technical chain design of "network
temporal behavior feature imaging — protocol dynamic
evolution prediction — multimodal behavior recognition."
This method breaks through the limitations of traditional
single-modal recognition and constructs a trinity framework of
"visual feature perception — protocol semantic understanding
— multimodal reasoning," providing a solution with both
theoretical innovation and engineering value for the network
security field. Its core values are: 1) methodological
innovation: for the first time deeply integrating image
processing technology and protocol dynamic modeling,
realizing hierarchical representation of abnormal behaviors
through grayscale image classification, providing a new
visualization paradigm for complex network feature analysis;
2) technical feasibility: designed FCBF-MIC feature selection,
MIC-gamma image enhancement, and multitask learning
mechanisms effectively balance model accuracy and
computational  efficiency, and experimental results
demonstrate its feasibility for engineering deployment; 3)
scenario universality: the three types of grayscale image
classification systems cover a wide range of scenarios from
single-feature mutations to multi-protocol coordinated attacks,
providing a generalized framework for abnormal detection in
security-sensitive fields such as industrial internet and
financial networks.

Although this method performs excellently in multiple
abnormal scenarios, there remain areas for improvement: 1)
generalization in extreme abnormal scenarios: the current
model’s recognition of very low-frequency abnormal
behaviors relies on historical data features, with limitations in
detecting completely unknown anomalies; 2) dynamic graph
scale adaptability: when the number of network nodes
dramatically increases, the computational complexity of the
GAT layer significantly rises, requiring further optimization
of sparse strategies for graph attention mechanisms; 3) deep
mining of protocol semantics: existing protocol dynamic
models have limited field parsing capability for encrypted
traffic and lack effective modeling of encrypted content
semantics. Future research can proceed in the following
directions: 1) introducing contrastive learning or generative
adversarial networks to build unsupervised anomaly
representation learning models to enhance detection ability for
unknown anomalies; 2) studying efficient GAT variants based
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on subgraph sampling or attention weight pruning to reduce
computational costs in large-scale network scenarios; 3)
combining natural language processing technology to
semantically reconstruct encrypted traffic payloads,
overcoming the limitations of encrypted content on protocol
dynamic modeling.

In summary, this research provides a new technical path for
complex network abnormal behavior recognition. Its three-
category grayscale image classification system and
multimodal fusion framework have significant scalability, and
the related results can further promote the development of
network security detection technology toward intelligence and
precision.
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