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With the rapid development of information technology, complex networks are increasingly 

vulnerable to abnormal behaviors such as malicious attacks and data breaches due to their 

growing scale and structural complexity. Traditional detection methods often struggle in 

dynamic network environments due to insufficient utilization of temporal features and lack 

of protocol evolution analysis, resulting in suboptimal detection accuracy. Existing studies 

based on conventional machine learning typically ignore the temporal characteristics of 

network behaviors and the evolutionary nature of protocols. Similarly, image processing 

techniques alone fail to incorporate protocol-level information, while static protocol models 

cannot adapt to dynamically changing scenarios, leading to incomplete extraction of 

essential features of anomalous behaviors. To address these challenges, this paper proposes 

a novel detection method that integrates image processing with protocol evolution modeling. 

The main contributions are as follows: (1) A method for visual mapping of temporal network 

behaviors is designed, converting dynamic behaviors into interpretable image features; (2) 

A protocol evolution prediction model is constructed, combining time series analysis with 

machine learning techniques to capture the dynamics of protocol changes; (3) A multimodal 

behavior recognition model is developed, integrating image features with protocol evolution 

features to accurately detect anomalous behaviors. By leveraging cross-disciplinary 

techniques, this study overcomes the limitations of existing approaches in temporal feature 

utilization, dynamic protocol modeling, and multimodal data fusion. It offers a novel 

framework that supports both visual analysis and dynamic mechanism modeling, 

contributing to improved accuracy and robustness in detecting anomalous behaviors in 

complex networks.  
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1. INTRODUCTION

With the rapid development of information technology, 

complex networks, as an important carrier for information 

transmission, interaction, and storage [1-3], are widely applied 

in various fields such as social networking, finance, and 

communication [4-6]. As the scale of networks continues to 

expand and their structures become increasingly complex, 

abnormal behaviors such as malicious attacks, data leakage, 

and traffic anomalies frequently occur, posing serious threats 

to the security, stability, and reliability of networks [7-10]. 

Traditional network anomaly detection methods gradually 

expose problems such as low recognition accuracy and poor 

real-time performance when facing dynamically changing 

network environments and complex diverse abnormal 

behaviors [11, 12]. Image processing technology can 

transform network behavior data into intuitive image forms, 

which is convenient for mining hidden features and patterns 

behind the data [13, 14]; while protocol dynamic evolution 

modeling can effectively describe and analyze the dynamic 

changes of network protocols during operation [15, 16]. 

Therefore, studying complex network anomaly detection 

methods by combining image processing and protocol 

dynamic evolution modeling has important practical demand. 

Accurate detection of abnormal behaviors in complex 

networks is crucial for ensuring network security, protecting 

user rights, and promoting the healthy development of 

networks. Through image processing technology, network 

temporal behaviors can be transformed into image features, 

providing a new perspective for intuitive analysis of abnormal 

behaviors; protocol dynamic evolution modeling can capture 

the evolution patterns of network protocols at different stages, 

which helps to deeply understand the internal mechanisms of 

network behaviors. The combination of the two can not only 

improve the accuracy and efficiency of complex network 

anomaly detection but also provide a more scientific basis for 

the formulation of network security protection strategies, 

effectively respond to increasingly complex network security 

threats, and has important theoretical and practical value. 

At present, research on complex network anomaly detection 

has achieved certain results. Some scholars have used 

traditional machine learning methods, such as support vector 

machines, neural networks, etc. [17, 18], to classify and 

identify network behavior data, but these methods often ignore 
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the temporal characteristics of network behaviors and the 

protocol dynamic evolution process, resulting in insufficient 

ability to detect dynamically changing abnormal behaviors. 

Some studies adopt a single image processing technique to 

visualize network traffic data [19, 20], but fail to sufficiently 

integrate protocol-level information, making the extraction of 

essential features of abnormal behaviors not deep enough. In 

addition, most existing protocol modeling methods focus on 

static protocol analysis, lacking effective modeling of the 

protocol dynamic evolution process, and are difficult to adapt 

to the dynamic changes of protocols in complex network 

environments. 

This paper mainly conducts research in the following three 

aspects: first, visualization of network temporal behavior 

features, through designing a reasonable image mapping 

method, transforming network temporal behavior data into 

images with rich features, providing an intuitive visual 

representation for subsequent abnormal behavior analysis; 

second, protocol dynamic evolution prediction model, 

combining time series analysis and machine learning 

technology to construct a model that can accurately predict the 

trend of protocol dynamic evolution, providing support for 

early warning of abnormal behaviors; third, multimodal 

behavior detection under the background of complex networks, 

integrating image features and protocol dynamic evolution 

features to establish a multimodal detection model to achieve 

accurate detection of abnormal behaviors in complex networks. 

The research value of this paper lies in proposing a complex 

network anomaly detection method that combines image 

processing and protocol dynamic evolution modeling, which 

makes up for the deficiencies of existing methods in temporal 

feature utilization, protocol dynamic analysis, and multimodal 

fusion. By combining the image features of network behaviors 

with the protocol dynamic evolution features, it can more 

comprehensively describe the essential characteristics of 

network behaviors, improve the accuracy and robustness of 

anomaly detection, and provide new ideas and methods for the 

security protection of complex networks. 

2. TEMPORAL BEHAVIOR FEATURE 

VISUALIZATION OF COMPLEX NETWORKS

This paper, targeting the characteristics of complex network 

temporal behavior data such as high dimensionality, dynamic 

nature, and strong feature correlation, adopts the Fast 

Correlation-Based Filter with Maximal Information 

Coefficient (FCBF-MIC) method for feature selection and 

visualization expression. Specifically, the FCBF-MIC method 

is first used to analyze the correlation and redundancy of 

massive temporal behavior features, removing redundant 

features and retaining core features highly relevant to anomaly 

detection. This constructs an optimal feature set that includes 

temporal dynamic patterns and key behavior modes, solving 

the problems of computational complexity and information 

interference caused by high-dimensional data. On this basis, a 

suitable feature visualization mapping method is designed, 

which structurally arranges the filtered one-dimensional 

temporal feature sequences in temporal or spatial dimensions 

and transforms them into two-dimensional image matrices 

with local spatial correlation. This allows the temporal features, 

originally suitable for one-dimensional data, to be presented in 

image form, thereby overcoming the limitations of two-

dimensional convolutional neural networks in extracting 

features from one-dimensional data. Through visual 

representation, the implicit associations between features are 

enhanced, providing more efficient and intuitive input 

information for subsequent deep feature extraction based on 

convolutional neural networks, enabling effective cross-modal 

transformation from temporal data to image features and 

laying the foundation for accurate identification of abnormal 

behaviors in complex networks. 

2.1 FCBF-MIC two-stage feature selection algorithm 

This paper uses the FCBF-MIC two-stage feature selection 

algorithm to select temporal behavior features in complex 

networks, optimizing and refining the feature set through 

staged filtering. The first stage focuses on correlation analysis, 

using symmetrical uncertainty TI as the measurement metric 

to calculate the correlation degree between each feature du in 

the temporal feature set S and the target class z. Features with 

TI(du,z)<σ are filtered out by setting a threshold σ. Assuming 

that the information entropy of feature du and label z are 

represented by G(du) and G(z), the calculation formula is as 

follows: 

( )
( )

( ) ( )

,
, 2

u

u

u

MIC d z
TI d z

G d G z

 
=  

+  
(1) 

Through the above operation, redundant information with 

low contribution to anomaly detection can be removed, 

reducing the data scale for subsequent processing and avoiding 

interference of invalid features in the image mapping process 

caused by high-dimensional data. Periodic normal fluctuation 

features in network traffic or isolated parameters unrelated to 

protocols may be deleted first due to TI values below the 

threshold, thereby retaining the core temporal features highly 

correlated with abnormal behaviors to form an initial temporal 

feature subset T, providing a cleaner input data source for 

subsequent image mapping. Figure 1 shows the process of 

correlation analysis. 

Figure 1. Correlation analysis process 

The second stage conducts redundancy analysis based on 

the MIC, by calculating the MIC(du, z) at different time 

components and the MIC(du, dk) between features to further 

remove redundant features and construct an optimal feature set. 

Specifically, the results of MIC(du, z) are first sorted in 
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descending order to clarify the priority of feature relevance to 

the target class, and then approximate Markov blanket 

conditions are applied. When MIC(du, z) > MIC(dk, z) and 

MIC(du, dk) > MIC(dk, z), feature dk is determined to be a 

redundant feature and deleted. This process ensures that the 

retained features are not only highly relevant to abnormal 

behaviors but also have low mutual information overlap, 

thereby preserving independent and complementary dynamic 

features in the temporal data to the greatest extent. For 

example, in the temporal parameters of network protocol 

interactions, this step can remove duplicate features caused by 

protocol state transition rules and retain differentiated features 

that reflect key nodes of protocol evolution. The final optimal 

temporal feature subset TBE contains both the core dynamic 

patterns of temporal behavior and low redundancy feature 

independence, laying a foundation for mapping one-

dimensional temporal features into two-dimensional image 

matrices. This allows the visualization process to more 

accurately capture the spatiotemporal correlation between 

features. Figure 2 shows the process of redundancy analysis. 

 

 
 

Figure 2. Redundancy analysis process 

 

2.2 Construction of temporal feature grayscale image 

 

The core principle of constructing grayscale images of 

complex network temporal behavior features in this paper lies 

in transforming the one-dimensional temporal features filtered 

by the FCBF-MIC method into two-dimensional grayscale 

matrices containing spatiotemporal correlations through factor 

reconstruction and image enhancement techniques, so as to 

adapt to the feature extraction mechanism of two-dimensional 

convolutional neural networks. First, based on the optimal 

temporal feature subset TBE, the one-dimensional feature 

matrix Ds, which changes over time, is normalized to eliminate 

the influence of dimensional differences among different 

features and ensure the consistency of subsequent image 

reconstruction. Assuming that the column vector in Ds is 

denoted by a, the normalized data is denoted by a*, the 

maximum value in the input data is aMAX, and the minimum 

value is aMIN, the normalization process is given by the 

following formula: 

 

* MIN

MAX MIN

A A
A

A A

−
=

−
 (2) 

 

On this basis, a structured reorganization of the one-

dimensional feature sequence is performed using the factor 

reconstruction method: all factor sets J of a positive integer v 

are enumerated, and the optimal combination JBE with the 

smallest sum of factors is selected as the reconstruction 

dimension. The one-dimensional features are filled into a gj×ej 

two-dimensional matrix in time order, forming a quasi-square 

arrangement grayscale image. This reconstruction method not 

only retains the temporal sequence property of the features but 

also endows local spatial correlation to the feature space 

through the row-column structure of the matrix, transforming 

the originally independent one-dimensional features into a set 

of pixel points with spatial positional relationships on a two-

dimensional plane. This provides a visual basis for the 

convolutional neural network to capture implicit correlations 

among features. The grayscale matrix reconstructed from Js is 

finally represented as: 
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1
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 (3) 

 

To address the potential insufficiency in expressing feature 

correlations in the grayscale images after factor reconstruction, 

this paper further proposes the MIC-gamma image 

enhancement method. Traditional gamma transformation 

improves image contrast by adjusting a nonlinear curve but 

does not consider the actual correlation among temporal 

features. This paper introduces the MIC into the gamma 

transformation, quantifying the dependency among features 

through MIC values and dynamically adjusting the gamma 

coefficient, so that the grayscale values reflect not only the 

temporal variation of individual features but also the strength 

of correlation among different features in the spatiotemporal 

dimension. Specifically, for each pixel in the reconstructed 

grayscale matrix, the grayscale mapping curve is adaptively 

adjusted according to the MIC value between its 

corresponding feature and other features, enhancing grayscale 

differences in high-correlation regions and weakening the 

interference in low-correlation regions. Figure 3 shows the 

similarity between pixels and feature values. Assuming the 

matrix elements are represented by X, user-defined constants 

by ε and h, the grayscale image is represented as: 

 

( ) ( )( ),uF X h MIC d z X


=    (4) 

 

The above enhancement method can more accurately 

portray the dynamic coupling relationships among features in 

complex network temporal behaviors, so that the grayscale 

image not only retains the original temporal information but 

also highlights key correlated features for anomaly detection, 

providing more discriminative input data for subsequent deep 

feature extraction based on two-dimensional convolution, 

thereby improving the performance of the complex network 

anomaly behavior recognition model. 
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Figure 3. Similarity between pixel and feature values 

3. PROTOCOL DYNAMIC EVOLUTION PREDICTION

MODEL

This paper constructs a Convolutional Block Attention 

Module – Convolutional Neural Network – Double 

Bidirectional Gated Recurrent Unit – Multi-Task Learning 

(CBAM-CNN-DBiGRU-MTL) network based on a multi-task 

learning framework as the protocol dynamic evolution 

prediction model. Among them, the CBAM-CNN module 

combines CNN and CBAM to achieve efficient extraction of 

spatiotemporal features and key information focus in the 

process of protocol dynamic evolution, meeting the research 

goal of the "protocol dynamic evolution prediction model" in 

capturing protocol temporal dependencies and feature 

importance. 

This module first uses the multi-layer convolutional kernels 

of CNN to extract local spatial features of protocol interaction 

data, converting the protocol state sequence into feature maps 

with hierarchical semantics, capturing spatial associations and 

pattern features among protocol fields. On this basis, the 

CBAM attention mechanism is embedded: the channel 

attention sub-module calculates the importance weights of 

each feature channel, suppresses redundant channels unrelated 

to protocol evolution, and enhances key channels carrying 

dynamic evolution information. Meanwhile, the spatial 

attention sub-module focuses on the spatial positions in the 

feature map that reflect key interaction nodes of the protocol, 

forming an enhanced feature representation that fuses channel 

and spatial dimension attention. Figure 4 shows the schematic 

structure of CBAM. Specifically, let the feature map extracted 

by the 2D convolutional layer be D; the channel attention 

feature map is denoted by LZ(D), and the spatial attention 

feature map by LT(D'). The output feature map D'' is obtained 

by element-wise multiplication of LT(D') and D'. Assuming the 

Sigmoid function is represented by δ, the multi-layer 

perceptron weights by Q0 and Q1, the 7×7 convolution layer 

by d7×7, and element-wise multiplication by ⊗, the whole 

process is expressed as: 

( ) ( ) ( )( )( )

( ) ( )( )( )( )1 0 1 0

' Avgpool MAXpoolZ

Z Z

AVG MAX

L D MLP D D

Q Q D Q Q D





= + =

+
(5) 
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( )( )

7 7
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;

T

T T

MAX AVG

L D d D D

d D D









= =  

  

(6) 

( )'' ' 'TD L D D=  (7) 

Figure 4. Schematic diagram of CBAM structure 

This enhanced feature representation mechanism, which 

fuses channel and spatial dimensional attention, enables the 

CBAM-CNN module to adaptively filter the core evolution 

features in protocol dynamic data, effectively highlighting key 

patterns of protocol state transitions and potential clues of 

abnormal behaviors, providing highly discriminative feature 

inputs for the subsequent DBiGRU module to capture long-

term temporal dependencies of protocol evolution. 

The DBiGRU module in the model serves as the core 

temporal feature processing unit of the protocol dynamic 

evolution prediction model. Its fundamental principle is to 

capture the forward and backward dependencies of temporal 

features in the protocol interaction process through a 

bidirectional gated recurrent mechanism and enhance the 

modeling ability for protocol dynamic evolution patterns 

under the multi-task learning framework. This module consists 
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of forward and backward BiGRU network layers, which 

respectively start from the beginning and end of the protocol 

temporal data and perform bidirectional traversal on the 

enhanced feature sequences extracted by the CBAM-CNN 

module, so that the protocol state feature at each time step can 

integrate both past and future contextual information, 

effectively capturing the long-term dependencies and short-

term fluctuation patterns of state transitions in protocol 

evolution. Through the adaptive adjustment of gate units, 

DBiGRU can dynamically filter historical information critical 

to protocol evolution prediction and suppress interference 

from irrelevant noise, such as enhancing memory weights of 

corresponding features at key time points of protocol version 

upgrades or abnormal interactions. Specifically, assuming the 

Sigmoid function is denoted as δ, the weight matrices of the 

update gate, reset gate, and candidate hidden state are 

represented by Qc, Qe, and Q, the computation formulas for 

each gate unit in the GRU are as follows: 

𝑐𝑠 = 𝛿(𝑄𝑐 ⋅ [𝑔𝑠−1, 𝑎𝑠]) (8) 

𝑒𝑠 = 𝛿(𝑄𝑒 ⋅ [𝑔𝑠−1, 𝑎𝑠]) (9) 

𝑔̃𝑠 = 𝑡𝑎𝑛ℎ(𝑄𝑧 ⋅ [𝑒𝑠 ⋅ 𝑔𝑠−1, 𝑎𝑠]) (10) 

( ) 11s s s s sg c g c g−= −  +  (11) 

Assuming that at time step s, the outputs of the forward 

GRU network, the backward GRU network, and the 

bidirectional GRU network in the η-th hidden layer are 

denoted as xPO
η,s, xRE

η,s, and xJO
η,s respectively, and the number 

of hidden layers is n, then the outputs of each hidden layer of 

the DBiGRU network are obtained by combining the outputs 

of the forward and backward GRU neural networks, with the 

specific expression as: 

 , , ,, , 1,JO PO RE

s s sx x x n    =   (12) 

Figure 5. Complete framework of protocol dynamic evolution prediction model 

The CBAM-CNN-DBiGRU-MTL protocol dynamic 

evolution prediction model constructed in this paper is based 

on the core principle of integrating image-based feature 

representation and temporal dynamic modeling through a 

multi-task learning framework, aiming to deeply explore the 

evolution patterns of complex network protocols. The model 

uses the CBAM-CNN module as the front-end feature 

extractor. The temporally featured grayscale images that have 

been filtered by FCBF-MIC and transformed into image 

format are input into the model. The convolutional neural 

network is used to capture spatial feature patterns in protocol 

interactions, and the CBAM attention mechanism is used to 

adaptively enhance the feature expression of key protocol 

fields while suppressing the interference of redundant 
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information. Then, the DBiGRU module performs 

bidirectional temporal modeling on the extracted spatial 

feature sequences. Through the gated recurrent unit, it captures 

the forward and backward dependencies of protocol state 

transitions, retaining the influence of historical interaction 

information on the current state while incorporating the 

constraints of future context on the current state, forming a 

temporally aware representation of the protocol evolution 

process. This design enables the model to process both the 

spatial correlation and temporal dynamics of protocol features 

simultaneously, which aligns with the actual characteristics of 

protocol operation in complex network environments. In this 

paper, three typical types of grayscale images of network 

abnormal behavior features are used as model inputs according 

to the spatial mapping patterns of temporal features in 

grayscale images, the visualization expression intensity of 

protocol dynamic features, and the semantic correlation 

characteristics of abnormal behaviors: temporal mutation-type 

grayscale image, protocol deviation-type grayscale image, and 

multi-modal association-type grayscale image. Figure 5 shows 

the complete framework of the protocol dynamic evolution 

prediction model. 

Under the multi-task learning framework, the model 

realizes multi-dimensional prediction of protocol evolution 

through the collaborative design of shared layers and task-

specific layers. The shared layers are responsible for extracting 

the general feature representation of protocol interactions, 

which includes the basic rules and patterns of protocol 

operation. The task-specific layers set up independent fully 

connected networks for different prediction targets and 

adaptively adjust the shared features through task-specific 

parameters ϕi, so as to achieve accurate prediction of each sub-

task. The model adopts a hard parameter sharing mechanism 

ϕtg, which forces different tasks to share low-level features 

during the learning process, thereby enhancing the ability to 

mine complex coupled information of the protocol, and 

alleviating the overfitting problem through the regularization 

effect among tasks, improving the generalization ability of the 

model. For example, when predicting the changes of HTTP 

protocol status codes, the shared layer can learn the general 

temporal patterns of the request-response cycle, while the task-

specific layers respectively optimize the prediction parameters 

for normal state transitions and abnormal state jumps. Finally, 

through joint optimization of multiple tasks, a comprehensive 

and accurate modeling of protocol dynamic evolution is 

achieved. Assuming the weight coefficient is denoted by qi, 

and the loss function is denoted by 𝑀̂𝑖  (ϕtg,ϕi), defined as: 

1/VΣV
u=1M(di(au, ϕtg, ϕi), bi

u), then the loss function expression 

for multi-task learning is: 

( )
1

ˆ ,
I

i i tg i

i

MIN q M  
=

 (13) 

4. MULTIMODAL BEHAVIOR RECOGNITION 

UNDER COMPLEX NETWORK BACKGROUND 

To realize the graph-structured fusion and deep analysis of 

image features and protocol dynamic features through 

hierarchical processing, this paper constructs a detection 

framework based on Graph Attention Network (GAT) to 

achieve multimodal behavior recognition under complex 

network background. Among them, the GAT layer maps 

multimodal inputs as node attributes in the graph structure, 

using the connections between nodes to represent the 

spatiotemporal correlation or protocol interaction logic 

between features. Through a multi-head attention mechanism, 

node vectors are iteratively updated to dynamically capture the 

key dependencies of different modal features within local 

neighborhoods, realizing precise extraction of fine-grained 

behavior features in multimodal data. Secondly, the Readout 

layer aggregates node-level features output by the GAT layer 

through pooling and other operations, generating graph-level 

representations containing fused multimodal information, 

integrating scattered node features into high-level semantics 

reflecting the global structure of network behaviors. Finally, 

the fully connected layer performs classification decisions 

based on the graph-level representation, combining the global 

correlation patterns and local detailed features of multimodal 

features to realize comprehensive discrimination of abnormal 

behaviors in complex networks. This framework unifies the 

spatial features visualized as images and temporal features of 

protocol dynamics through graph structures, and uses attention 

mechanisms to adaptively allocate weights of multimodal 

features, effectively solving the feature heterogeneity problem 

in cross-modal information fusion encountered by traditional 

methods. 

Specifically, let the set of feature vectors of all l nodes in 

the graph be denoted as G~={𝑔̃1 ,𝑔̃2,...,𝑔̃𝑙}. The GAT layer

takes G~ and X as inputs, outputting a new set of node feature 

representations G~'={ 𝑔̃1 , 𝑔̃2 ,..., 𝑔̃𝑉 }, where the set of all

neighbor nodes of node u is denoted by Vu. The GAT layer 

takes the node feature vector set G generated by traffic 

conversion and adjacency matrix X as inputs. First, using the 

shared attention mechanism shown in the following formula, 

it computes the attention coefficient βuk between the center 

node and its neighbor nodes. That is, by applying a learnable 

weight matrix Q for linear transformation on node features, 

concatenating || the features of the center node u and neighbor 

node k, passing through a single-layer feedforward neural 

network x( ) and LeakyReLU activation function, generating 

asymmetric attention scores, and then normalizing by softmax 

to obtain the importance weights between nodes. 

 ( )( )( )softmax LeakyReLU || ,uk u k

u

a Qg Qg

k V

 =


(14) 

The above process enables the model to adaptively focus on 

neighbor nodes that contribute highly to the current node 

feature update, suppressing interference from irrelevant or 

weakly related nodes, thus accurately capturing the local 

dependency relationships between multimodal features in the 

graph structure. For example, coupling the spatially adjacent 

features in temporal behavior grayscale images with the 

temporal correlations of protocol fields through node attention 

weights. 

Further, the GAT layer employs the multi-head attention 

mechanism shown in the following formula to enhance the 

robustness and richness of feature extraction. By parallel 

computing node feature updates through J independent 

attention heads, each head generates an independent feature 

representation 𝑔̃𝑗  based on different parameter matrices Qj.

The final node feature 𝑔̃𝑢
′  is aggregated by concatenation or 

averaging operations. 

( )'

1||
u

J j j

u j uk kk V
g Q g = 

=  (15) 
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The above processing allows the model to capture complex 

association patterns in multimodal data from multiple 

perspectives, such as simultaneously learning local texture 

structures of visualized features and state transition paths of 

protocol dynamic features, avoiding feature expression bias 

possibly caused by a single attention head. Additionally, the 

spatial domain characteristics of the GAT layer enable it to 

flexibly handle dynamically changing network 

communication structures by dynamically adjusting attention 

weights to adapt to the spatiotemporal heterogeneity of 

multimodal behaviors in complex networks. This is especially 

suitable for abnormal behavior scenarios with frequent traffic 

interactions and diverse protocol states, ensuring continuous 

and efficient extraction of cross-modal fused features during 

network topology dynamic evolution. 

The Readout layer addresses the need for global feature 

aggregation in multimodal behavior recognition under 

complex networks, realizing high-level semantic modeling of 

traffic graphs through hierarchical feature fusion and cross-

layer information concatenation. This layer takes as input the 

node feature matrices output by multiple GAT layers. First, it 

performs pooling operations on node representations 

generated by each GAT layer separately to obtain 

corresponding graph-level representation vectors, capturing 

graph structural features under different numbers of attention 

heads and different iteration depths. Assuming functions of 

average pooling, max pooling, and sum pooling are denoted as 

d(), the M-th GAT network is denoted by M, and the j-th 

attention computation by j, then: 

( )1 2

1 2, ,...,M j

H Vg d g g g= (16) 

Subsequently, the multi-layer pooling results are 

concatenated along the dimension by Concat operation to form 

the final graph-level representation vector containing multi-

scale and multi-level semantic information: 

1 2|| || ... || M

H H H Hg g g g =   (17) 

The above process enables the Readout layer to preserve the 

detailed features and abstract semantics extracted by the GAT 

at different depths. The lower-level features retain pixel-level 

correlations of the visualized temporal features and fine-

grained interaction patterns of protocol fields, while the 

higher-level features integrate cross-modal global behavior 

patterns, thereby fusing local details and global dependencies 

of multimodal data into a single vector. 

In the detection framework constructed in this paper, the 

fully connected layer serves as the final decision unit for 

multimodal behavior recognition. Its core principle is to map 

the graph-level representation vector output by the Readout 

layer to classification probabilities of complex network 

behaviors through a combination of multilayer perceptron 

(MLP) and Softmax function, achieving semantic 

discrimination of multimodal fused features. This layer takes 

as input a global vector containing visualized temporal 

features, protocol dynamic features, and graph structure 

associations. First, it performs nonlinear mapping of high-

dimensional features through the fully connected 

transformation of the MLP, capturing the complex interaction 

patterns of multimodal information in the abstract semantic 

space. For example, it integrates the pixel correlation features 

of abnormal regions in grayscale images with abnormal 

temporal patterns of protocol state transitions through cross-

modal logical fusion, forming comprehensive discriminative 

clues for malicious or normal traffic. Subsequently, the 

Softmax function normalizes the unnormalized scores output 

by the MLP into probability distributions, generating predicted 

probability vectors for each behavior category, enabling the 

model to quantify the contribution of different modal features 

to the classification decision. Let the predicted label be 

denoted by 𝑏̂, and the learnable weight parameters and biases 

in the MLP be denoted by Q and y, then: 

𝑏̂ = softmax(𝑄𝑔̃𝐻 + 𝑦) (18) 

For the binary classification task of encrypted malicious 

traffic detection, the fully connected layer uses the binary 

cross-entropy loss function as the optimization objective. It 

dynamically adjusts the learnable weights Q and biases y 

through backpropagation to minimize the distribution 

difference between the predicted label 𝑏̂ and the true label b. 

This mechanism enables the fully connected layer to 

adaptively strengthen the weights of key discriminative 

information in multimodal features while suppressing 

interference from redundant or noisy features. For example, 

when processing encrypted traffic, the fully connected layer 

can focus on abnormal node connection patterns captured by 

the GAT layer and the global traffic temporal anomalies 

integrated by the Readout layer, transforming these cross-

modal abnormal clues into high-confidence predictions of 

malicious traffic through nonlinear transformations. 

Ultimately, the fully connected layer acts as the "decision 

center" of the detection framework, converting the hierarchical 

abstract representation of multimodal features into precise 

behavior recognition results, achieving efficient classification 

of encrypted malicious and benign traffic in complex network 

environments. The objective function expression is: 

( ) ( )( )ˆ ˆlog 1 log 1LOSS b b b b= − + − − (19) 

5. EXPERIMENTAL RESULTS AND ANALYSIS

From the ablation experiment results in Table 1, the 

complete model proposed in this paper performs best on all 

performance indicators: accuracy reaches 98.78%, precision 

98.11%, recall 98.21%, and F1 score 98.24%, significantly 

higher than other ablation models, such as the MIC replacing 

model with accuracy 97.25%, the model without MIC-gamma 

enhancement with accuracy 96.32%, the CBAM replacing 

model with accuracy 98.41%, and the BiGRU replacing model 

with accuracy 98.23%. This result verifies the effectiveness of 

the research content in this paper: first, the network temporal 

behavior feature visualization effectively improves the 

discriminability of image features; second, the protocol 

dynamic evolution modeling enhances the ability to capture 

abnormal protocol state transitions; finally, multimodal 

behavior recognition achieves precise discrimination of 

complex network anomalies by integrating visual and 

semantic information. Experimental data shows that the 

method in this paper significantly improves the accuracy and 

robustness of anomaly behavior recognition through the 

collaborative design of image-based mapping, protocol 

dynamic prediction, and multimodal fusion, verifying the 

effectiveness of the technical route of "image processing + 

protocol dynamic modeling + multimodal fusion." 
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Table 1. Ablation experiment results 

 

Model Accuracy (%) Precision (%) Recall (%) F1-measure (%) 

MIC replacing FCBF-MIC 97.25 97.56 97.56 97.58 

Without MIC-gamma image enhancement 96.32 95.32 93.21 94.25 

CBAM replacing CBAM-CNN module 98.41 97.89 94.56 96.32 

BiGRU replacing DBiGRU module 98.23 98.31 98.23 98.41 

Complete model 98.78 98.11 98.21 98.24 

 

 
1) Before image enhancement 

 
2) After image enhancement 

 

Figure 6. Grayscale images and histograms of network abnormal behavior temporal features before and after image enhancement 

 

Table 2. Comparison of different network abnormal behavior recognition methods 

 
Model Behavior Type Accuracy (%) Precision (%) Recall (%) F1-measure (%) 

DySAT 

Temporal Mutation 95.26±1.23 95.12±1.18 95.21±1.58 95.36±1.69 

Protocol Deviation 96.54±1.28 96.32±1.32 96.32±0.97 96.69±1.14 

Multimodal Correlation 96.58±4.58 96.89±1.66 96.34±1.56 96.87±1.87 

DHHNN 

Temporal Mutation 96.32±1.18 95.36±1.03 95.68±1.07 95.36±1.17 

Protocol Deviation 96.87±0.78 96.36±0.85 96.36±0.78 96.57±0.82 

Multimodal Correlation 97.58±1.48 97.56±1.69 97.56±0.91 97.56±1.12 

APAN 

Temporal Mutation 96.32±0.92 96.35±0.44 96.32±0.71 96.36±0.38 

Protocol Deviation 96.32±0.68 96.12±0.62 96.34±0.55 96.34±0.72 

Multimodal Correlation 97.25±0.71 98.36±0.34 97.88±0.57 97.56±0.52 

LA-DGNN 

Temporal Mutation 94.25±1.58 93.58±0.98 94.56±1.68 94.56±1.28 

Protocol Deviation 94.23±1.52 94.56±1.89 94.56±1.55 94.58±1.69 

Multimodal Correlation 95.32±1.89 95.36±1.17 95.36±1.23 95.36±1.57 

The Proposed Method 

Temporal Mutation 97.26±0.35 97.56±0.38 97.56±0.58 97.56±0.42 

Protocol Deviation 97.88±0.24 97.32±0.11 97.58±0.33 98.36±0.28 

Multimodal Correlation 98.69±0.12 98.69±0.15 98.69±0.19 98.36±0.22 
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From Figure 6, it can be seen that before image 

enhancement, the grayscale images of temporal features show 

low contrast between abnormal regions and normal regions, 

and the histogram distribution is relatively dispersed; the pixel 

values of abnormal features do not form significant clusters. 

After enhancement, the dark blocks in abnormal regions of the 

grayscale image are denser and boundaries are clearer; the 

frequency of high grayscale value samples in the histogram 

significantly increases, indicating that the MIC-gamma 

enhancement technique effectively strengthens the visual 

representation of abnormal features. Through image mapping 

and enhancement processing, the local high-contrast pixel 

clusters of network abnormal behaviors become easier for 

subsequent models to capture. The enhanced grayscale images 

not only improve the recognizability of abnormal features but 

also provide higher quality visual inputs for multimodal fusion. 

Combined with the performance decline in the ablation 

experiment model "without MIC-gamma enhancement," this 

further verifies the key role of image enhancement in feature 

extraction. By optimizing the pixel distribution of the 

grayscale image, it enhances the visual differences between 

abnormal and normal behaviors, laying the foundation for 

subsequent GAT layers to capture cross-modal associations 

among nodes. 

From the comparative experimental results in Table 2, it can 

be seen that this paper’s method demonstrates significant 

advantages in recognizing the three types of network abnormal 

behaviors: temporal mutation type, protocol deviation type, 

and multimodal correlation type. Specifically, for temporal 

mutation behavior, this method achieves accuracy 

(97.26%±0.35), precision (97.56%±0.38), recall 

(97.56%±0.58), and F1 score (97.56%±0.42) all higher than 

comparison models, indicating that the image mapping 

effectively captures abnormal patterns of local high-contrast 

pixel clusters; in protocol deviation behavior recognition, this 

method’s accuracy (97.88%±0.24) and F1 score 

(98.36%±0.28) significantly outperform DHHNN 

(96.87%±0.78, 96.57%±0.82), reflecting the protocol dynamic 

evolution model’s precise discrimination of global semantic 

anomalies; for multimodal correlation behavior, this method’s 

accuracy (98.69%±0.12) and F1 score (98.36%±0.22) far 

exceed APAN (97.25%±0.71, 97.56%±0.52), verifying the 

superiority of the multimodal fusion architecture in integrating 

cross-modal correlation “fingerprints.” Experimental data 

show that the method’s technical route of "image mapping 

enhancing visual feature recognition → protocol dynamic 

modeling capturing semantic anomaly trends → multimodal 

fusion realizing cross-modal information complementarity" 

successfully breaks through the limitations of single-modal 

features and achieves the current best performance in 

recognizing the three types of abnormal behaviors. 

1) Accuracy

2) Precision

3) Recall

4) F1-measure

Figure 7. Network abnormal behavior recognition 

performance under different proportions of behaviors 

In summary, the effectiveness of this method is fully 

validated through comparative experiments with mainstream 

models. Its leading performance indicators directly reflect the 

innovation and practicality of the "image processing + 

protocol dynamic modeling + multimodal fusion" technical 

system in complex network abnormal behavior recognition, 

providing a more accurate and robust solution for network 

security detection. 

From Figure 7, it can be seen that under different abnormal 

behavior proportions, the model after protocol dynamic 

evolution significantly outperforms the model before 

evolution in accuracy, precision, recall, and F1 score. When 

the abnormal proportion is 10%, the accuracy after evolution 

approaches 1, while before evolution it is slightly lower; as the 

abnormal proportion increases to 60%, the F1 score after 

evolution still remains above 0.75, far exceeding the 0.7 before 

evolution. This indicates that the protocol dynamic evolution 

prediction model proposed in the second part of the paper 

effectively improves the early warning ability for abnormal 

behaviors by capturing the dynamic trend of protocol state 

transitions, enhancing the model's semantic anomaly 

discrimination capability. Meanwhile, combined with the 

image mapping in the first part and the multimodal fusion in 
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the third part, the model achieves complementary cross-modal 

information: visual features capture local temporal mutations, 

protocol dynamic features identify global semantic deviations, 

and their synergy allows the model to maintain high robustness 

under fluctuations in abnormal proportions. Experimental data 

verify the superiority of the "image processing + protocol 

dynamic modeling + multimodal fusion" technical route. The 

model's lead in all performance indicators after protocol 

dynamic evolution directly reflects the method's precise 

recognition capability for complex network abnormal 

behaviors. 

 

 

6. CONCLUSION 

 

The "complex network abnormal behavior recognition 

method combining image processing and protocol dynamic 

evolution modeling" proposed in this paper systematically 

solves the problems of insufficient utilization of temporal 

features, lack of protocol semantic analysis, and low 

multimodal fusion efficiency in complex network 

environments through the technical chain design of "network 

temporal behavior feature imaging — protocol dynamic 

evolution prediction — multimodal behavior recognition." 

This method breaks through the limitations of traditional 

single-modal recognition and constructs a trinity framework of 

"visual feature perception — protocol semantic understanding 

— multimodal reasoning," providing a solution with both 

theoretical innovation and engineering value for the network 

security field. Its core values are: 1) methodological 

innovation: for the first time deeply integrating image 

processing technology and protocol dynamic modeling, 

realizing hierarchical representation of abnormal behaviors 

through grayscale image classification, providing a new 

visualization paradigm for complex network feature analysis; 

2) technical feasibility: designed FCBF-MIC feature selection, 

MIC-gamma image enhancement, and multitask learning 

mechanisms effectively balance model accuracy and 

computational efficiency, and experimental results 

demonstrate its feasibility for engineering deployment; 3) 

scenario universality: the three types of grayscale image 

classification systems cover a wide range of scenarios from 

single-feature mutations to multi-protocol coordinated attacks, 

providing a generalized framework for abnormal detection in 

security-sensitive fields such as industrial internet and 

financial networks. 

Although this method performs excellently in multiple 

abnormal scenarios, there remain areas for improvement: 1) 

generalization in extreme abnormal scenarios: the current 

model’s recognition of very low-frequency abnormal 

behaviors relies on historical data features, with limitations in 

detecting completely unknown anomalies; 2) dynamic graph 

scale adaptability: when the number of network nodes 

dramatically increases, the computational complexity of the 

GAT layer significantly rises, requiring further optimization 

of sparse strategies for graph attention mechanisms; 3) deep 

mining of protocol semantics: existing protocol dynamic 

models have limited field parsing capability for encrypted 

traffic and lack effective modeling of encrypted content 

semantics. Future research can proceed in the following 

directions: 1) introducing contrastive learning or generative 

adversarial networks to build unsupervised anomaly 

representation learning models to enhance detection ability for 

unknown anomalies; 2) studying efficient GAT variants based 

on subgraph sampling or attention weight pruning to reduce 

computational costs in large-scale network scenarios; 3) 

combining natural language processing technology to 

semantically reconstruct encrypted traffic payloads, 

overcoming the limitations of encrypted content on protocol 

dynamic modeling. 

In summary, this research provides a new technical path for 

complex network abnormal behavior recognition. Its three-

category grayscale image classification system and 

multimodal fusion framework have significant scalability, and 

the related results can further promote the development of 

network security detection technology toward intelligence and 

precision. 
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