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To address the challenges of limited annotated data and the adverse impact of noisy pseudo-

labels on model generalization in cardiac magnetic resonance imaging (MRI) segmentation, 

a novel semi-supervised segmentation framework based on multi-constraint collaborative 

self-training was developed. The proposed approach integrates uncertainty-guided pseudo-

label quality control, prototype-driven inter- and intra-class consistency constraints, and a 

multi-scale adversarial learning mechanism. During each iteration of self-training, a 

dynamic selection of pseudo-labels generated by unlabeled samples was conducted using a 

method that fuses confidence and entropy-based uncertainty quantification, thereby 

enhancing the reliability of the pseudo-supervision signals. Simultaneously, class-specific 

prototype vectors were dynamically maintained to enforce explicit constraints that 

encourage intra-class feature aggregation and inter-class feature separability, improving the 

discriminative capacity of the feature space. In addition, both global and local discriminators 

were introduced to impose dual-level quality constraints on the global morphology and local 

structural details of the segmentation outputs, resulting in refined boundary delineation and 

enhanced structural consistency. Extensive experiments conducted on the publicly available 

ACDC dataset demonstrated that the proposed method achieved an average Dice Similarity 

Coefficient (DSC) of 0.730 with only 5% of the annotations, outperforming existing 

methods such as Deep Co-Training (DCT) (0.711) and Mean Teacher (MT) (0.654) and 

approaching the performance of full supervision (0.891). When the annotation ratio was 

increased to 10%, the average DSC further improved to 0.801, consistently surpassing all 

comparative methods. Ablation studies confirmed the effectiveness of each key module. 

This study provides an efficient and robust solution for automatic segmentation of medical 

images in low-resource scenarios, offering promising potential for real-world clinical 

applications. 
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1. INTRODUCTION

Cardiovascular diseases remain among the leading causes 

of mortality worldwide, underscoring the critical importance 

of accurate diagnosis and treatment assessment for improving 

patient outcomes [1]. Cardiac MRI has been established as the 

gold standard for evaluating cardiac function and structure, 

owing to its high-resolution soft tissue contrast and capacity to 

provide multi-dimensional anatomical information [2]. In 

cardiac MRI analysis, precise segmentation of the left 

ventricle, right ventricle, and myocardium serves as the 

foundation for calculating key cardiac functional parameters, 

including ejection fraction, ventricular volume, and 

myocardial mass. These parameters are essential for clinical 

diagnosis and the formulation of therapeutic strategies [3, 4]. 

However, due to the structural complexity of the heart, 

morphological variability across individuals, and variations in 

image quality, accurate segmentation remains a technically 

challenging task [5]. 

Conventional cardiac MRI segmentation methods primarily 

rely on techniques such as thresholding, region growing, 

active contour models, and graph cuts [6, 7]. Early deformable 

model-based approaches utilized statistical shape modeling to 

delineate cardiac structures, yet these methods were sensitive 

to initialization and struggled to accommodate complex 

morphological changes [8]. Multi-atlas registration methods, 

while capable of incorporating prior anatomical knowledge, 

typically involve high computational complexity and stringent 

requirements for registration accuracy [9]. Overall, these 

traditional approaches have demonstrated limitations in terms 

of sensitivity to image quality, poor generalization capacity, 

and dependence on extensive manual parameter tuning—

factors that hinder their applicability in automated and robust 

clinical workflows [10]. 

Recent advances in deep learning have introduced 

transformative progress in medical image segmentation [11]. 
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Convolutional neural networks (CNNs), particularly U-Net 

and its variants, have shown remarkable performance in 

cardiac MRI segmentation by automatically learning image 

feature representations and enabling end-to-end segmentation 

[12, 13]. As network architectures have evolved—from the 

foundational fully convolutional networks (FCNs) [14], to U-

Net [15], and further to attention mechanisms [16], residual 

connections [17], and Transformer-based architectures [18]—

notable improvements have been achieved in both 

segmentation accuracy and robustness. Supervised learning 

approaches, when trained on sufficiently annotated datasets, 

have been shown to reach expert-level segmentation 

performance, with their efficacy validated across multiple 

cardiac MRI datasets [19, 20]. 

Despite the success of fully supervised deep learning 

methods, their performance is critically dependent on the 

availability of large volumes of high-quality annotated data 

[21]. In cardiac MRI segmentation tasks, pixel-level 

annotations must be meticulously delineated by expert 

radiologists, often requiring several hours to manually label a 

complete cardiac MRI sequence layer by layer [22]. Moreover, 

inter-expert variability, subjectivity in interpreting complex 

anatomical structures, and the difficulty of ensuring annotation 

quality further increase the cost and complexity of acquiring 

reliable training data [23]. This dependence on extensive 

annotations significantly limits the scalability of deep learning 

models in resource-constrained environments and impedes 

their rapid deployment in novel domains and datasets. 

To mitigate the reliance on manual annotations, semi-

supervised learning has emerged as a prominent research 

direction in medical image segmentation [24]. Existing semi-

supervised segmentation strategies generally fall into three 

categories: (a) consistency regularization, which enforces 

consistency under perturbations of the same input to 

encourage the learning of robust feature representations [25]; 

(b) generative adversarial networks (GANs), which employ 

discriminators to distinguish between ground-truth labels and 

predicted results, thereby enhancing segmentation quality 

through adversarial training [26]; and (c) self-training with 

pseudo-labels, in which high-confidence predictions generated 

by the model itself are used as pseudo-labels to expand the 

training dataset [27]. Among these, self-training has gained 

considerable attention due to its conceptual simplicity and ease 

of implementation. However, several critical limitations 

remain in current self-training approaches. First, the quality 

control of pseudo-labels remains inadequate. Most methods 

adopt static thresholds or simple confidence-based filtering 

strategies, which are prone to introducing noisy labels that 

degrade performance through the accumulation of errors [28]. 

Second, effective consistency constraints are often lacking. 

Existing approaches have not fully exploited the intrinsic 

structure of data or the inter-class relationships, resulting in 

inadequate enforcement of feature space consistency [29]. 

Third, instability during training poses a persistent challenge. 

Confirmation bias often emerges during the self-training 

process, where the model tends to reinforce its own erroneous 

predictions in the absence of effective error correction 

mechanisms [30]. 

To address the limitations of existing self-training-based 

semi-supervised segmentation approaches, a framework for 

semi-supervised cardiac MRI segmentation was proposed 

based on multi-constraint collaborative self-training. This 

framework enhances the effectiveness of semi-supervised 

learning through the coordinated operation of three key 

components. First, uncertainty-guided pseudo-label quality 

control was implemented by integrating prediction confidence 

and entropy-based uncertainty quantification. A dynamic 

thresholding strategy was adopted to perform pixel-level 

refinement of pseudo-label selection, effectively mitigating 

the accumulation of errors caused by low-quality pseudo-

labels. Second, by dynamically maintaining feature prototype 

vectors for each anatomical category, prototype-guided inter- 

and intra-class consistency constraints impose explicit 

constraints in the feature space to encourage intra-class feature 

aggregation and inter-class feature separability. This enables 

the establishment of multi-level consistency constraints 

between labeled and unlabeled samples, thereby improving the 

discriminative power of feature representations. Third, a 

global discriminator and a region-specific discriminator 

designed by the segmentation quality enhancement strategy 

based on adversarial learning impose quality constraints on the 

segmentation output, targeting both overall shape integrity and 

local structural details, thereby encouraging the segmentation 

network to generate more accurate and realistic masks. 

The principal contributions of this study can be summarized 

as follows: 

(a) An uncertainty-guided pseudo-label quality control 

mechanism was proposed, combining confidence and entropy 

with a dynamic thresholding scheme to refine selection and 

enhance the reliability of pseudo-supervision signals. 

(b) A prototype-guided inter- and intra-class consistency 

constraint framework was developed, in which dynamically 

updated category prototypes guide feature learning to improve 

intra-class aggregation and inter-class separability. 

(c) A multi-scale adversarial learning strategy was 

constructed, employing both global and region-specific 

discriminators to jointly enhance the precision of 

segmentation boundaries and the anatomical consistency of 

structures. 

(d) A unified multi-constraint collaborative training 

framework was established by integrating uncertainty 

quantification, prototype learning, and adversarial training, 

wherein all components interact synergistically to improve 

overall model performance. 

 

 

2. MULTI-CONSTRAINT COLLABORATIVE SELF-

TRAINING FRAMEWORK FOR SEMI-SUPERVISED 

CARDIAC MRI SEGMENTATION 
 

2.1 Overall architecture of the multi-constraint 

collaborative self-training framework 

 

To address the challenge of limited annotated data in cardiac 

MRI segmentation, a semi-supervised segmentation 

framework based on a three-stage iterative strategy was 

proposed, as illustrated in Figure 1. In this framework, high-

quality pseudo-labels were progressively incorporated to 

alleviate the error accumulation commonly associated with 

conventional self-training methods. 

Step 1: Fully supervised training under limited annotations 

The segmentation network was initially trained using a 

small set of annotated cardiac MRI data to establish a 

foundational capacity for cardiac structural segmentation. This 

phase provides a reliable model base for subsequent pseudo-

label generation. 

Step 2: Pseudo-label generation for unlabeled samples 

Inference prediction was performed on a large volume of 

1750



 

unlabeled data using the initially trained model. A dual 

uncertainty quantification mechanism—combining prediction 

confidence and entropy—was employed to assess pixel-wise 

prediction reliability. An adaptive selection process was 

implemented using a dynamic thresholding strategy. During 

the early training process, strict criteria were applied to ensure 

quality, which were progressively relaxed as the model 

performance improved, thereby maximizing the utility of 

unlabeled data. 

Step 3: Multi-constraint collaborative self-training 

Labeled data and filtered pseudo-labeled data were jointly 

utilized for collaborative training through a multi-constraint 

scheme. The framework includes several mechanisms: a 

supervised loss ensures the accuracy; prototype-guided 

consistency constraints maintain class-specific prototype 

vectors to enforce intra-class feature aggregation and inter-

class feature separation; and both global and region-specific 

discriminators designed by adversarial learning impose multi-

granularity quality constraints on the segmentation outputs. 

Steps 2 and 3 form a closed-loop iterative mechanism. 

High-quality pseudo-labels were leveraged for multi-

constraint training, and the improved model subsequently 

generated more accurate pseudo-labels. This progressive 

learning paradigm mitigates error accumulation and facilitates 

iterative enhancement of both pseudo-label quality and model 

performance until convergence is achieved. Through the 

proposed three-stage iterative architecture, large-scale 

unlabeled data can be effectively utilized under highly 

constrained annotation conditions, providing an efficient and 

robust solution for semi-supervised cardiac MRI 

segmentation. 

 

2.2 Uncertainty-guided pseudo-label self-training quality 

control 

 

Conventional self-training methods are highly susceptible 

to the influence of low-quality pseudo-labels, often resulting 

in cumulative errors. This issue is particularly pronounced in 

cardiac MRI segmentation due to the complexity of 

anatomical structures and the ambiguity of boundaries. To 

mitigate this challenge, a pixel-wise pseudo-label quality 

control mechanism was proposed, integrating prediction 

confidence and entropy to derive a reliability score. A dynamic 

thresholding strategy was then applied to perform fine-grained 

filtering, thereby ensuring the provision of high-quality 

pseudo-supervision signals during training. 

To reduce computational overhead caused by multiple 

inferences, prediction uncertainty was quantified using a 

computationally efficient single forward propagation strategy. 

For each pixel location (𝑖, 𝑗) in the output of the segmentation 

network, a softmax activation function was applied to obtain a 

categorical probability distribution {𝑝𝑖,𝑗
𝑐 }𝑐∈𝐶 , where 𝐶 =

{𝐵𝐺, 𝐿𝑉, 𝑅𝑉, 𝑀𝑌𝑂, } represents the four segmentation classes: 

background, left ventricle, right ventricle, and myocardium.  

Prediction confidence is defined as the probability of the 

model predicting the most likely category: 

 

𝐶(𝑥𝑖,𝑗) = 𝑚𝑎𝑥
𝑐∈𝐶

𝑝𝑖,𝑗
𝑐  (1) 

 

Confidence reflects the model’s certainty in its prediction 

results. A higher confidence value indicates a stronger belief 

in classifying the pixel. Prediction entropy was employed to 

measure the uncertainty of the probability distribution: 

 

𝐻(𝑥𝑖,𝑗) = − ∑ 𝑝𝑖,𝑗
𝑐

𝑐∈𝐶

𝑙𝑜𝑔 𝑝𝑖,𝑗
𝑐  (2) 

 

Lower entropy values indicate a more concentrated 

prediction distribution, whereas higher entropy signifies 

greater uncertainty in the classification of that pixel. 

 

 

 
 

Figure 1. Overall workflow of the multi-constraint collaborative self-training framework 
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To further exploit the complementary characteristics of 

prediction confidence and entropy, a fused scoring mechanism 

was introduced to assess the pixel-level prediction reliability. 

The computation of the pixel-wise reliability score is defined 

as follows: 

 

𝑅(𝑥𝑖,𝑗) = 𝐶(𝑥𝑖,𝑗) ⋅ 𝑒𝑥𝑝 (−𝐻(𝑥𝑖,𝑗)) (3) 

 

The scoring function integrates multiplicatively confidence 

and entropy to ensure that only predictions exhibiting both 

high confidence and low entropy receive high reliability 

scores. The exponential function introduces a nonlinear 

modulation of the entropy component, allowing for finer 

discrimination between high- and low-quality predictions. 

Given the progressive improvement of the model during 

training, a dynamic thresholding strategy was adopted to 

adaptively adjust the selection criteria: 

 

𝜏𝑡 = 𝜏0 ⋅ (1 −
𝑡

𝑇
)

0.5

 (4) 

 

where, 𝜏0 = 0.7, 𝑡 denotes the current training iteration, and 𝑇 

is the total number of training iterations. This strategy enables 

the model to implement strict selection criteria in the early 

training stages. The criteria progressively relax as model 

capacity improves over time, thereby enhancing the utilization 

of unlabeled data. 

Based on the computed reliability score and dynamic 

threshold, a pixel-wise selection mechanism is defined as: 

 

𝑀𝑖,𝑗 = 𝐼[𝑅(𝑥𝑖,𝑗) > 𝜏𝑡] (5) 

 

where, 𝐼[⋅] denotes the indicator function. When 𝑀𝑖,𝑗 = 1, it 

indicates that the pseudo-label of pixel (𝑖, 𝑗) has passed the 

quality check, and the selected pixel region participates in the 

subsequent model training. 

 

2.3 Prototype-guided inter- and intra-class consistency 

constraint 
 

In semi-supervised learning, reliance solely on pixel-wise 

classification loss has been found insufficient for learning 

highly discriminative feature representations. Due to 

morphological and textural similarities among cardiac 

anatomical structures, feature confusion may arise, often 

resulting in blurred segmentation boundaries. To mitigate this 

issue, a prototype-guided inter- and intra-class consistency 

constraint mechanism was introduced. This mechanism 

dynamically maintains and updates class-specific prototype 

vectors to explicitly constrain intra-class feature aggregation 

and inter-class feature separability in the feature space, thereby 

promoting more discriminative representation learning. 

(a) Inter- and intra-class consistency constraint for labeled 

samples 

For labeled samples, reliable class-specific prototypes were 

constructed based on ground truth annotations. The feature 

extractor 𝑔ϕ maps the input image into the feature space. For 

the class 𝑐 ∈ {0,1,2,3}  (corresponding to background, left 

ventricle, right ventricle, and myocardium), the prototype 

vector is defined as: 
 

𝑝𝑐
𝑙 =

1

|𝐹𝑐
𝑙|

∑ 𝑔𝜙(𝑥𝑙)𝑖,𝑗

(𝑖,𝑗)∈𝐹𝑐
𝑙

 (6) 

where, 𝐹𝑐
𝑙 =  {(i, j) | 𝑦𝑖,𝑗

𝑙  =  c}  denotes the set of pixel 

positions belonging to class 𝑐 , and 𝑔𝜙(𝑥𝑙)𝑖,𝑗  represents the 

feature vector at location (𝑖, 𝑗). 

Based on these class-specific prototypes, the intra-class 

consistency loss for labeled samples encourages feature 

vectors of the same class to aggregate toward their 

corresponding prototype centers, thus enhancing intra-class 

feature compactness. The computation is formulated as: 

 

𝐿𝑖𝑛𝑡𝑟𝑎
𝑙 =

1

𝐶
∑

1

|𝐹𝑐
𝑙|

∑ |𝑔𝜙(𝑥𝑙)𝑖,𝑗

(𝑖,𝑗)∈𝐹𝑐
𝑙

𝐶−1

𝑐=0

− 𝑝𝑐
𝑙 |2

2 (7) 

 

To further improve the separability between different 

classes, an inter-class separation loss was introduced by 

maximizing the distance between class prototypes, promoting 

the separation of inter-class features: 

 

𝐿𝑖𝑛𝑡𝑒𝑟
𝑙 = −

2

𝐶(𝐶 − 1)
∑ ∑ |𝑝𝑐

𝑙

𝐶−1

𝑘=𝑐+1

𝐶−1

𝑐=0

− 𝑝𝑘
𝑙 |2

2 (8) 

 

(b) Inter- and intra-class consistency constraint for 

unlabeled samples 

For unlabeled samples, the absence of ground truth 

annotations necessitates the construction of prototypes based 

on model predictions and the outcomes of pseudo-label quality 

screening. To account for the unreliability of pseudo-labels, 

only high-reliability pixels that satisfy the quality control 

criteria were used to update the prototypes: 

 

𝑝𝑐
𝑢 =

1

|𝐹𝑐
𝑢|

∑ 𝑔𝜙(𝑥𝑢)𝑖,𝑗

(𝑖,𝑗)∈𝐹𝑐
𝑢

 (9) 

 

where, 𝐹𝑐
𝑢  =  {(𝑖, 𝑗) | 𝑦𝑖,𝑗

𝑢  =  𝑐}  denotes the set of pixel 

positions in the unlabeled samples that are predicted as class 𝑐 

and have passed the quality filtering process. The 

corresponding consistency constraint for unlabeled samples is 

then defined as: 

 

𝐿𝑖𝑛𝑡𝑟𝑎
𝑢 =

1

𝐶
∑

1

|ℱ𝒸
𝓊|

∑ |𝑔𝜙(𝑥𝑢)𝑖,𝑗

(𝑖,𝑗)∈ℱ𝒸
𝓊

𝐶−1

𝑐=0

− 𝑝𝑐
𝑢|2

2 (10) 

 

𝐿𝑖𝑛𝑡𝑒𝑟
𝑢 = −

2

𝐶(𝐶 − 1)
∑ ∑ |𝑝𝑐

𝑢

𝐶−1

𝑘=𝑐+1

𝐶−1

𝑐=0

− 𝑝𝑘
𝑢|2

2 (11) 

 

(c) Prototype-guided inter- and intra-class consistency 

constraint across labeled and unlabeled samples 

To further enhance the consistency of feature 

representations, a prototype alignment constraint was 

introduced between labeled and unlabeled samples. This 

constraint was enforced by minimizing the discrepancy 

between the prototypes derived from labeled and unlabeled 

samples for the same class, thereby promoting the uniformity 

of feature distributions in both data domains: 

 

𝐿𝑎𝑙𝑖𝑔𝑛 =
1

𝐶
∑ |𝑝𝑐

𝑙

𝐶−1

𝑐=0

− 𝑝𝑐
𝑢|2

2 (12) 

 

This constraint ensures consistency in feature 
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representations learned across the labeled and unlabeled data, 

thereby mitigating domain shift. To ensure stable prototype 

updates, an exponential moving average (EMA) strategy was 

adopted for smooth updates: 

 

𝑝𝑐
(𝑡+1)

= 𝜇𝑝𝑐
(𝑡)

+ (1 − 𝜇)𝑝𝑐
𝑛𝑒𝑤  (13) 

 

where, 𝜇 ∈ [0.9,0.99] is the momentum parameter, and 𝑝𝑐
𝑛𝑒𝑤  

denotes the prototype vector computed from the current batch. 

The final prototype-guided consistency loss is defined as: 

 

𝐿𝑝𝑟𝑜𝑡𝑜 = λ1(𝐿𝑖𝑛𝑡𝑟𝑎
𝑙 + 𝐿𝑖𝑛𝑡𝑟𝑎

𝑢 ) + λ2(𝐿𝑖𝑛𝑡𝑒𝑟
𝑙 + 𝐿𝑖𝑛𝑡𝑒𝑟

𝑢 )

+ λ3𝐿𝑎𝑙𝑖𝑔𝑛  
(14) 

 

where, λ1 , λ2 , and λ3  are the balancing weights, all 

empirically set to 1 in this study. 

 

2.4 Adversarial learning-based segmentation quality 

enhancement strategy 

 

Conventional semi-supervised segmentation methods often 

lack high-level semantic constraints that ensure both global 

quality and region-specific accuracy in segmentation results. 

Although pixel-level accuracy may be achieved, limitations 

persist in maintaining global morphological consistency and 

achieving fine-grained delineation of anatomical structures. 

To address these issues, an adversarial learning-based 

segmentation quality enhancement strategy was introduced. 

This strategy employs both a global discriminator and a 

region-specific discriminator to assess and constrain 

segmentation outputs at multiple granularity levels, thereby 

encouraging the generation of more realistic and accurate 

segmentation masks. 

(a) Global discriminator loss 

The global discriminator Dg  is designed to evaluate the 

quality of segmentation outputs from a holistic perspective. It 

discriminates between ground truth annotation masks and the 

masks predicted by the model, constraining the segmentation 

network to generate more realistic segmentation results. Let 

y ∈ RH×W×C denote the ground truth segmentation mask and 

ŷ ∈ RH×W×C the predicted mask, with C = 4 representing the 

total number of classes. 

The training objective of the global discriminator is defined 

as: 

 

𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
= −𝐸𝑦∼𝑝𝑟𝑒𝑎𝑙

[𝑙𝑜𝑔 𝐷𝑔 (𝑦)] 

−𝐸𝑦̂∼𝑝𝑝𝑟𝑒𝑑
[𝑙𝑜𝑔 (1 − 𝐷𝑔(𝑦̂))] 

(15) 

 

Correspondingly, the global adversarial loss for the 

segmentation network is defined as: 

 

𝐿𝑎𝑑𝑣𝑔𝑙𝑜𝑏𝑎𝑙
= −𝐸𝑦̂∼𝑝𝑝𝑟𝑒𝑑

[𝑙𝑜𝑔 𝐷𝑔 (𝑦̂)] (16) 

 

This loss encourages the segmentation network to generate 

high-quality masks that can deceive the discriminator, thereby 

improving the realism and coherence of segmentation outputs 

at a global level. 

(b) Region-specific discriminator loss 

To account for the morphological differences among 

various cardiac anatomical structures, a region-specific 

discriminator 𝐷𝑟  was further designed to individually evaluate 

the quality of the left ventricle (LV), right ventricle (RV), and 

myocardium (MYO). 

For each anatomical region r ∈ {LV, RV, MYO} , the 

corresponding segmented result was first extracted using the 

mask: 

 

𝑀𝑟 = 𝐼[𝑦̂ = 𝑟] ⊙ 𝑦̂ (17) 

 

where, I[⋅] denotes the indicator function, and ⊙ represents 

element-wise multiplication. 

The objective function for the region-specific discriminator 

is formulated as: 

 

𝐿𝐷𝑟
= −𝐸𝑀𝑟

𝑟𝑒𝑎𝑙[𝑙𝑜𝑔 𝐷𝑟 (𝑀𝑟
𝑟𝑒𝑎𝑙)] 

−𝐸
𝑀𝑟

𝑝𝑟𝑒𝑑 [𝑙𝑜𝑔 (1 − 𝐷𝑟(𝑀𝑟
𝑝𝑟𝑒𝑑

))] 
(18) 

 

The corresponding regional adversarial loss is defined as: 

 

𝐿𝑎𝑑𝑣𝑟
= −𝐸

𝑀𝑟
𝑝𝑟𝑒𝑑[𝑙𝑜𝑔 𝐷𝑟 (𝑀𝑟

𝑝𝑟𝑒𝑑
)] (19) 

 

The final region-specific adversarial loss is defined as: 

 

𝐿𝑎𝑑𝑣𝑟𝑒𝑔𝑖𝑜𝑛
= ∑ 𝐿𝑎𝑑𝑣𝑟

r∈{LV,RV,MYO}

 (20) 

 

Finally, the total adversarial loss integrates both the global 

and region-specific constraints: 

 

𝐿𝑎𝑑𝑣 = λg𝐿𝑎𝑑𝑣𝑔𝑙𝑜𝑏𝑎𝑙
+ λr𝐿𝑎𝑑𝑣𝑟𝑒𝑔𝑖𝑜𝑛

 (21) 

 

where, λg and λr are the balancing parameters for the global 

and region-specific adversarial losses, respectively. In this 

study, both coefficients were empirically set to 0.5. 

 

2.5 Overall loss function 

 

The total loss function of the proposed framework consists 

of multiple constraint components, including the supervised 

loss, pseudo-supervised loss, prototype-guided consistency 

loss, and adversarial loss: 
 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑢𝑝 + 𝛼𝐿𝑝𝑠𝑒𝑢𝑑𝑜 + 𝛽𝐿𝑝𝑟𝑜𝑡𝑜 + 𝛾𝐿𝑎𝑑𝑣 (22) 
 

where, 𝐿𝑠𝑢𝑝  denotes the supervised loss of labeled samples, 

and 𝐿𝑝𝑠𝑒𝑢𝑑𝑜  represents the pseudo-supervised loss of 

unlabeled samples. Both were calculated using a combination 

of the standard cross-entropy loss function and the Dice loss 

function. The coefficients 𝛼 , 𝛽 , and 𝛾  are the balancing 

parameters used to control the relative contributions of the 

pseudo-supervised loss of unlabeled samples, prototype-

guided consistency loss, and adversarial loss, respectively. 

 
 

3. EXPERIMENTS AND RESULT ANALYSIS 
 

3.1 Dataset 
 

All experiments and comparative analyses were conducted 

using the publicly available benchmark dataset ACDC [31]. 

The ACDC dataset comprises 200 annotated short-axis cine 

cardiac MRI sequences from 100 patients. Segmentation 

masks are provided for the left ventricle, myocardium, and 

right ventricle, supporting both clinical and algorithmic 

1753



 

research. Each patient contributes two annotated sequences 

corresponding to end-diastole (ED) and end-systole (ES) 

phases. Each sequence originally consists of approximately 10 

images, from which the five central slices were selected in this 

study, yielding a total of 1,000 images for analysis. 

The dataset was partitioned based on patient IDs. A total of 

70 patients (140 sequences, 700 images, comprising 350 ED 

and 350 ES images) were randomly selected for the training 

set, while the remaining 30 patients (60 sequences, 300 

images, comprising 150 ED and 150 ES images) were 

assigned to the validation set. 

To simulate semi-supervised learning conditions, subsets of 

the training data were designated as labeled and unlabeled. 

Specifically, 3 patients (6 sequences, 30 images) and 7 patients 

(14 sequences, 70 images) were randomly selected to form 

labeled datasets corresponding to approximately 5% and 10% 

of the training set, respectively. The remaining 67 patients 

(134 sequences, 670 images) and 63 patients (126 sequences, 

630 images) were treated as unlabeled data. This setting 

reflects the practical clinical scenario in which annotated 

medical data are typically scarce. 

 

3.2 Dataset preprocessing 

 

Given the relatively large inter-slice spacing of the ACDC 

dataset, a 2D segmentation approach was adopted instead of a 

direct 3D segmentation strategy. The preprocessing procedure 

involved the following steps: 

First, all slices were rescaled to a uniform spatial resolution 

of 256 × 256 pixels. The intensity values of each slice were 

normalized to the range [0, 1] to ensure standardized input. To 

enhance the generalization capability of the model and reduce 

the risk of overfitting, standard data augmentation techniques 

were applied to expand the effective size of the training set. 

These included random cropping of 224 × 224 patches, 

random rotations within the range of –10° to 10°, and random 

horizontal and vertical flipping. 

During inference, segmentation predictions were generated 

in a slice-by-slice manner. The resulting prediction outputs 

were then stacked to reconstruct the complete 3D volume. To 

ensure the fairness of experimental comparisons, no post-

processing techniques were applied. 

 

3.3 Experimental environment and training settings 

 

The experimental environment was configured as follows: 

an Intel Core i9-14900KF @ 3.20GHz CPU, Ubuntu 22.04 

LTS operating system, a single NVIDIA GeForce RTX 4090 

GPU with CUDA 11.7, Python 3.10, and PyTorch 1.7 as the 

deep learning framework. 

Considering the imbalance of various anatomical structure 

categories in cardiac MRI segmentation, a combined loss 

function comprising cross-entropy loss and Dice loss was 

employed to suppress the impact of sample imbalance on 

model performance. The segmentation network was based on 

the DeepLabV3+ architecture, with ResNetV1c-50 serving as 

the backbone network. To accelerate the training speed of the 

model and enhance its generalization and training stability, the 

DeepLabV3+ backbone network was initialized with 

ResNet50 weights pre-trained on the ImageNet dataset, while 

the parameters of the atrous spatial pyramid pooling (ASPP) 

decoder and auxiliary head were randomly initialized. Model 

parameters were optimized using stochastic gradient descent 

(SGD) with a weight decay of 5e-4 and a momentum of 0.9. 

The batch size was set to 8, comprising an equal number of 

labeled and unlabeled samples (4 each). The training process 

was conducted over 100 epochs with an initial learning rate of 

0.002, which was scheduled to decay according to a 

polynomial learning rate decay policy with a power of 0.9. 

During semi-supervised training, two annotation ratios were 

examined: 5% labeled data with 95% unlabeled data, and 10% 

labeled data with 90% unlabeled data. The pseudo-label 

weight 𝛼 was set to 0.5, while the weights for the prototype-

guided consistency loss and adversarial loss, denoted as 𝛽 and 

𝛾, were set to 1.0 and 0.1, respectively. The initial confidence 

threshold 𝜏0 was set to 0.7 and adjusted dynamically using a 

decay strategy. Class prototypes were updated using an EMA 

scheme with a momentum parameter 𝜇 of 0.95. 

 

3.4 System evaluation method 

 

Two widely used metrics were employed to quantitatively 

evaluate the segmentation performance: DSC and Intersection 

over Union (IoU). DSC measures the overlap between the 

predicted segmentation and the ground truth annotation. It is 

defined as: 

 

𝐷𝑆𝐶 =
2|𝑃 ∩ 𝐺|

|𝑃| + |𝐺|
 (23) 

 

where, 𝑃  and 𝐺  denote the predicted and ground truth 

segmentation regions, respectively. DSC ranges from 0 to 1, 

with higher values indicating greater segmentation accuracy. 

IoU assesses the similarity between the predicted 

segmentation and the ground truth annotation. It is defined as: 

 

𝐼𝑂𝑈 =
|𝑃 ∩ 𝐺|

|𝑃 ∪ 𝐺|
 (24) 

 

Similar to DSC, IoU values range from 0 to 1, with higher 

scores reflecting better segmentation quality. 
 

3.5 Comparative analysis 
 

To validate the effectiveness of the proposed semi-

supervised medical image segmentation strategy based on 

auxiliary localization and dual-level consistency, comparative 

experiments were conducted against several state-of-the-art 

semi-supervised segmentation methods on the polyp dataset. 

As shown in Table 1, the methods included DCT [32], Entropy 

Minimization (EM) [33], MT [34], Uncertainty-Aware Mean 

Teacher (UAMT) [35], and Cross Pseudo Supervision (CPS) 

[36]. All models were trained and evaluated under identical 

experimental configurations to ensure fair and reliable 

comparison. 

Under extremely low annotation conditions (5%, 

corresponding to only 3 patients and 30 images), the proposed 

method achieved the best performance in segmenting the left 

ventricle, right ventricle, and myocardium. As presented in 

Table 2, the DSC for the left ventricle reached 0.851, 

approaching the fully supervised benchmark of 0.946 and 

substantially outperforming mainstream methods such as DCT 

(0.801) and MT (0.787). For the right ventricle, a DSC of 

0.663 was achieved, which, although slightly lower than that 

of DCT (0.679), was accompanied by an IoU of 0.496—

surpassing DCT's 0.514—indicating that the model not only 

maintained high segmentation accuracy of main structures but 

also exhibited stronger region overlap consistency. For the 
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myocardium, a DSC of 0.676 was obtained, significantly 

outperforming DCT (0.653) and MT (0.621), demonstrating 

superior discrimination in segmenting complex and boundary-

ambiguous structures. Overall, the proposed method attained 

an average DSC of 0.730, which exceeded DCT (0.711) and 

MT (0.654), and markedly outperformed EM and CPS. These 

results confirm the effectiveness and advantage of the 

proposed tri-fold mechanism—uncertainty-guided filtering, 

prototype-driven consistency, and adversarial 

discrimination—under extremely limited annotation 

scenarios. 

 

Table 1. Comparison of different semi-supervised methods and their core principles 

 

Method Core Principle 

DCT Enforces inter-model consistency and employs adversarial learning to enhance sample diversity 

EM Combines pixel-level entropy with adversarial loss for semi-supervised training 

MT Trains using consistency between “student” and “teacher” model outputs 

UAMT Enhances MT with uncertainty estimation for optimized update 

CPS Models use each other’s pseudo-labels for learning 

Proposed method Integrates uncertainty quantification, prototype learning, and adversarial training 

 

Table 2. Quantitative comparison of semi-supervised methods under 5% labeled data condition 

 

Method 
Left ventricle Right ventricle Myocardium Avg. 

DSC IOU DSC IOU DSC IOU DSC IOU 

DCT 0.801 0.668 0.679 0.514 0.653 0.485 0.711 0.556 

EM 0.728 0.572 0.353 0.215 0.483 0.318 0.521 0.368 

MT 0.787 0.649 0.554 0.383 0.621 0.450 0.654 0.494 

UAMT 0.784 0.644 0.562 0.391 0.619 0.448 0.655 0.492 

CPS 0.611 0.440 0.590 0.418 0.605 0.434 0.602 0.431 

Proposed method 0.851 0.741 0.663 0.496 0.676 0.511 0.730 0.582 

Fully supervised 0.946 0.897 0.866 0.764 0.861 0.755 0.891 0.805 

 

Table 3. Quantitative comparison of semi-supervised methods under 10% labeled data condition 

 

Method 
Left ventricle Right ventricle Myocardium Avg. 

DSC IOU DSC IOU DSC IOU DSC IOU 

DCT 0.875 0.778 0.760 0.613 0.698 0.536 0.778 0.642 

EM 0.857 0.750 0.672 0.506 0.631 0.461 0.720 0.572 

MT 0.872 0.772 0.690 0.527 0.667 0.500 0.743 0.600 

UAMT 0.871 0.771 0.684 0.520 0.666 0.499 0.740 0.597 

CPS 0.746 0.594 0.671 0.505 0.646 0.477 0.688 0.523 

Proposed method 0.908 0.832 0.785 0.646 0.710 0.550 0.801 0.676 

Fully supervised 0.946 0.897 0.866 0.764 0.861 0.755 0.891 0.805 

 

When the proportion of labeled data was increased to 10% 

(7 patients, 70 images), performance improvements were 

observed across all methods, as detailed in Table 3. 

Nevertheless, the proposed approach consistently achieved 

superior performance across all metrics. DSC for the left 

ventricle improved to 0.908, while the right ventricle and 

myocardium attained DSC values of 0.785 and 0.710, 

respectively. The average DSC reached 0.801, representing a 

marked improvement over DCT (0.778) and MT (0.743). 

Similar advantages were also observed in IoU scores, 

reflecting enhanced structural awareness and boundary 

localization capabilities. In comparison with fully supervised 

segmentation, the proposed method yielded segmentation 

accuracy that was already highly comparable, despite the 

limited annotation. This outcome underscores the 

effectiveness of the proposed framework in leveraging a small 

quantity of labeled data in conjunction with high-quality 

pseudo-labels for collaborative training. 

Further comparative analysis revealed that the proposed 

method consistently achieved high segmentation accuracy 

across all three cardiac anatomical structures—namely, the left 

ventricle, right ventricle, and myocardium—under both 5% 

and 10% annotation settings. These structures differ 

substantially in segmentation difficulty: the left ventricle is 

morphologically distinct and relatively easier to segment; the 

right ventricle exhibits significant anatomical variability and 

irregular boundaries; and the myocardium presents with 

narrow, complex geometry. The ability to maintain robust 

performance across all categories demonstrates the strong 

generalization capability and robustness of the proposed 

framework. In general, as the proportion of labeled data 

increased, not only was a notable improvement in 

segmentation performance observed, but the performance gain 

achieved by the proposed method exceeded that of competing 

approaches. These findings strongly support the unique 

advantage of the proposed multi-constraint collaborative self-

training framework in enhancing medical image segmentation 

and promoting semi-supervised small sample learning. 

Figure 2 presents a visual comparison of segmentation 

results produced by different semi-supervised methods under 

the 10% annotation setting (7 patients, 70 images), including 

DCT, EM, MT, UAMT, CPS, and the proposed method. 

Segmentation results for two representative cases (Case 1 and 

Case 2) are shown. Notable differences in segmentation 

quality across methods and anatomical regions can be clearly 

observed. In terms of structural completeness and boundary 

delineation, the proposed method demonstrated superior 

fidelity in reconstructing the morphology of key anatomical 

regions, including the left ventricle (blue), right ventricle (red), 

and myocardium (green). The predicted segmentations were 
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highly consistent with the ground truth, exhibiting smooth and 

well-closed contours. In contrast, methods such as DCT and 

CPS frequently suffered from under-segmentation and 

discontinuities, particularly in the right ventricle region, as 

evident in Case 1 where red segments were fragmented or 

incomplete. Similarly, methods such as MT, EM, and UAMT 

exhibited blurred or fused boundaries in the myocardium 

region, impairing their ability to distinguish adjacent tissues. 

With respect to fine-grained and small-volume anatomical 

structures, the proposed method demonstrated particularly 

precise segmentation performance.  

 

 
 

Figure 2. Visual comparison of segmentation results from 

different semi-supervised methods 
 

For example, in Case 2, the myocardium region (green) was 

incompletely segmented or underestimated in most competing 

methods. In contrast, the proposed method succeeded in 

accurately reconstructing the myocardial contours and 

comprehensively covering the target region. Furthermore, the 

right ventricle boundaries segmented by the proposed method 

were continuous and intact, substantially outperforming the 

fragmented or artifact-laden outputs produced by other 

methods. In terms of cross-case generalization, the proposed 

method maintained consistently high segmentation quality 

across both Case 1 and Case 2, demonstrating superior 

adaptability and robustness to variations in anatomical 

morphology and structure. Conversely, competing methods 

showed significant variability in performance across cases—

some achieving moderate success in one instance but failing 

under more complex structural conditions—indicating inferior 

generalization ability. 

Overall, the proposed multi-constraint collaborative self-

training method substantially improved the segmentation 

accuracy and boundary detail capture for all anatomical 

structures of the heart under limited annotation conditions. The 

visual results provided strong evidence that the proposed 

approach not only achieved high overall segmentation 

precision but also exhibited superior capability in recovering 

fine-grained structures and complex regions. These findings 

highlight the practical effectiveness and significant potential 

for clinical application of the proposed framework. 

 

3.6 Ablation study 

 

To confirm the contribution of each core module to the 

overall segmentation performance, a series of ablation 

experiments was conducted under a 10% annotation ratio 

(corresponding to 7 patients and 70 annotated images). Four 

configurations were designed for comparison: (a) a 

conventional self-training strategy without uncertainty 

quantification, prototype learning, or adversarial training; (b) 

incorporation of uncertainty quantification alone; (c) 

integration of prototype learning in addition to uncertainty 

quantification; and (d) the full model with all three modules 

included. The quantitative results of the ablation study are 

summarized in Table 4. 

 

Table 4. Quantitative results of the ablation study on module effectiveness 

 

Uncertainty 

Quantification 

Prototype 

Learning 

Adversarial 

Training 

Left Ventricle Right Ventricle Myocardium Avg. 

DSC IOU DSC IOU DSC IOU DSC IOU 

- - - 0.78 0.64 0.50 0.33 0.21 0.12 0.49 0.36 

√ - - 0.835 0.717 0.695 0.533 0.657 0.489 0.729 0.580 

√ √ - 0.893 0.807 0.757 0.609 0.683 0.519 0.778 0.645 

√ √ √ 0.908 0.832 0.785 0.646 0.710 0.550 0.801 0.676 

 

The conventional self-training strategy yielded the weakest 

performance. DSCs of only 0.780, 0.500, and 0.210 were 

observed for the left ventricle, right ventricle, and 

myocardium, respectively, with a mean DSC of 0.490 and a 

mean IoU of merely 0.360. These results indicate that, in the 

absence of any quality control or consistency constraints, 

noisy pseudo-labels severely compromised model 

performance, especially in structures such as the right ventricle 

and myocardium where segmentation results were very 

limited. 

Significant improvements were achieved upon the 

integration of uncertainty quantification. The mean DSC 

increased to 0.729, and the mean IoU reached 0.580. 

Specifically, DSC values of 0.835, 0.695, and 0.657 were 

recorded for the left ventricle, right ventricle, and 

myocardium, respectively. These enhancements suggest that 

the use of dynamic confidence and entropy filtering effectively 

suppressed low-quality pseudo-labels, thereby improving the 

reliability of the pseudo-supervision signals and significantly 

boosting segmentation performance across all structures. 

Further incorporation of the prototype learning module led 

to additional gains, with the mean DSC rising to 0.778 and the 

mean IoU to 0.645. Notably, DSC values for the right ventricle 

and myocardium increased to 0.757 and 0.683, respectively. 

These results affirm that prototype learning, through enforcing 

intra- and inter-class consistency constraints within the feature 

space, enhanced the discriminative power of features and 

improved the model’s learning ability for complex 

morphologies and boundary details. The full configuration, 

combining uncertainty quantification, prototype learning, and 
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adversarial training, produced the highest performance across 

all metrics. The mean DSC reached 0.801 and the mean IoU 

reached 0.676. The DSC values for the left ventricle, right 

ventricle, and myocardium improved to 0.908, 0.785, and 

0.710, respectively. The inclusion of adversarial training 

further refined boundary delineation and structural coherence, 

enabling the model to align closely with ground truth 

annotations not only at a global level but also in local details. 

In summary, the ablation study demonstrates that each 

individual component contributes substantially to 

performance enhancement. Uncertainty quantification was 

found to be foundational in improving pseudo-label quality; 

prototype learning strengthened feature discriminability; and 

adversarial training further optimized both global and fine-

grained segmentation results. The synergistic integration of 

these modules enabled the proposed framework to surpass 

conventional approaches and achieve superior segmentation 

performance and generalization under limited annotations. 

 

 

4. CONCLUSION 

 

To address the critical challenge of severely limited 

annotated data in cardiac MRI segmentation, a multi-

constraint collaborative self-training framework was 

proposed, integrating uncertainty quantification, prototype 

learning, and adversarial training. Through the synergistic 

combination of dynamic pseudo-label filtering, prototype-

based consistency constraints, and multi-granularity 

adversarial discrimination, the proposed framework 

substantially enhanced segmentation performance and 

generalization under small sample scenarios. Experimental 

results on the publicly available ACDC dataset demonstrated 

that, under annotation ratios of 5% and 10%, mean DSCs of 

0.730 and 0.801, respectively, were achieved for the left 

ventricle, right ventricle, and myocardium. These values 

significantly exceeded those obtained by state-of-the-art semi-

supervised methods such as DCT (0.778), EM, MT (0.743), 

UAMT, and CPS, and approached the performance of fully 

supervised models (0.891). Ablation studies further confirmed 

that each module—uncertainty-based selection, prototype 

learning, and adversarial discrimination—contributed 

substantially to performance enhancement and that their 

integration yielded optimal improvements in both 

segmentation accuracy and robustness. Visual assessments 

additionally revealed clear advantages in structural 

completeness and boundary fidelity. Future research will focus 

on extending the generalizability of the proposed framework 

to multi-center and multi-modality medical image 

segmentation tasks. Strategies such as adaptive learning and 

domain adaptation will be explored to improve adaptation 

across varying imaging devices, populations, and pathological 

conditions. Moreover, efforts will be made to apply the 

proposed multi-constraint self-training framework to 

additional clinical tasks, including multi-organ segmentation 

and lesion detection, with the goal of advancing intelligent and 

efficient computer-aided diagnosis in medical imaging. 
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