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Lumbar spine disorders are prevalent conditions that can lead to chronic pain and reduced 

quality of life, often requiring accurate diagnosis through magnetic resonance imaging. 

However, manual interpretation of MRI scans is time-intensive and may lead to diagnostic 

errors due to the complexity of spinal anatomy and subtle differences between healthy and 

pathological tissues. This study aims to develop an automated method for segmenting and 

classifying the lumbar spine, including the assessment of lumbar lordosis, using deep 

learning techniques. In the first stage, spinal segmentation is performed using a combination 

of image thresholding and a convolutional neural network based on the U-Net architecture, 

with binary conversion of ground truth images and data augmentation techniques to enhance 

the dataset. The data is divided into training and testing sets, with 80% allocated for model 

training. In the second stage, classification of lumbar lordosis is achieved through a method 

called “Deteclordose” and transfer learning, following the automatic calculation of the Cobb 

angle. Images are then categorized into three classes: hyper lordosis, hypo lordosis, and 

normal lordosis. The method was evaluated on a dataset of MRI images obtained from 

Jordanian hospitals, achieving promising results, including a segmentation accuracy of 

99.30%, a loss value of 0.025, a classification accuracy of 96%, a recall of 94%, and an F1 

score of 93%. These outcomes demonstrate the potential of the proposed approach to 

improve diagnostic accuracy and reduce the burden on radiologists by providing a reliable, 

automated system for analyzing lumbar spine MRI images.  
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1. INTRODUCTION

The spine is the basic pillar of the body and consists of 

intervertebral and vertebral discs that intersect with the spinal 

cord of the central nervous system [1]. 

The structure of the spine can be divided into four parts. The 

upper part of the neck consists of 7 vertebrae called cervical, 

followed by 12 thoracic vertebrae, in the third part we find 5 

lumbar vertebrae, and the fourth part ends at the bottom of the 

spine with the coccyx and sacrum [2]. as shown in Figure 1 

Figure 1. Model of a human spine [3] 

Damage to its components may lead to pain or hemiplegia 

and may even lead to death in the case of late diagnosis. Spinal 

diseases are becoming more common. It is diagnosed using 

different techniques, and one of the most common techniques 

for this disease is using an MRI of the spine [1]. Magnetic 

resonance imaging is used to accurately diagnose pain, 

deformity, or curvature in the spinal canal, and it is required 

before surgery on the nerve axis [4]. MRI is also used to 

examine nerve channels [5]. Magnetic resonance imaging 

(MRI) has helped doctors and surgeons detect spinal diseases 

early and accurately. It is considered one of the most effective 

imaging techniques for diagnosing degenerative spinal 

conditions [6]. However, it requires highly qualified 

specialists to detect the spine, due to the similarity and 

closeness of the structure of the internal tissues in the magnetic 

resonance images. For diagnosis with a large amount of data 

quickly and accurately to avoid any medical error that may 

lead to paralysis and in some cases death, and for early 

treatment such as scoliosis and lumbar lordosis. Lumbar 

lordosis is an inward curvature of the lumbar region of the 

spine with curvature of the intervertebral discs and lumbar 

vertebrae [7]. One of the best solutions is to segment and 

classify the spine from MRI images using segmentation and 

classification techniques [8]. Segmentation of medical images 

is the process of separating them into several non-overlapping 

and homogeneous parts. Thanks to the segmentation of 
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medical images, the diagnosis of most diseases in which 

magnetic resonance imaging or CT is used has become more 

rapid and accurate [9]. Classification of medical images is the 

process of diagnosing a type of disease. In recent years, 

artificial intelligence technologies have brought about a 

scientific revolution in the field of medical imaging. It helped 

specialists and doctors detect various diseases early and 

quickly. And with large amounts of data. However, it lacks 

accuracy and efficiency. The objective of our research is to 

help doctors diagnose lumbar spinal diseases accurately and 

quickly. This is done by developing a platform that segments 

the lumbar spine and classifies lumbar lordosis from MRI 

images using deep learning techniques. 

The current work proposes to explore ways to improve deep 

learning techniques, specifically U-net models, to accurately 

and efficiently segment the lumbar spine from MRI images, 

and the Deteclordose model to classify lumbar lordosis from 

MRI images to aid in early and accurate diagnosis. For 

diseases of the spine. It is guided by the main research question: 

How can deep learning techniques improve spinal 

segmentation and lumbar lordosis classification from MRI 

images, thus helping in early and accurate diagnosis of spinal 

diseases? 

Our contributions include:  

Segmentation of the spine from MRI images 

• The structure of the inspired dataset is modified from 

that in the study by Dong et al. [10], by converting 

the false-color ground truth images into binary 

images using the thresholding method. 

• Augmentation dataset in geometric methods helped 

us increase the accuracy of spine segmentation in 

MRI images. 

• Choosing an appropriate division between training 

and testing the model to reduce the gap in accuracy 

results. 

• Developing a U-net model for segmenting the spine 

from MRI images by increasing the number of layers 

of convolution and deconvolution to extract the 

largest amount of information from images and 

change in the size of the filters. 

Classification of lumbar lordosis from MRI images 

• Calculate the lumbar lordosis angle using the 

Cobb method. 

• Classification of MRI images according to the 

measurement of the lumbar lordosis angle into 

three groups. 

• Building a “Deteclordose” model based on the 

CNN convolutional neural network structure to 

increase classification accuracy. 

Our research is organized according to the following 

approach: Part II contains some previous works on the 

methods used to segment the lumbar spine and methods for 

classifying lumbar lordosis. The third part provides details of 

the different stages of the proposed model with a discussion of 

the data set. we find the interpretation and analysis of the 

results in the fourth part, and our research ends with a 

conclusion found in the fifth section. 
 

 

2. RELATED WORK 
 

Segmenting and classification of the spine from medical 

images is necessary for early detection and rapid diagnosis of 

various diseases related to it. In recent years, with the 

advancement of technology, various methods for segmenting 

and classifying the vertebrae of the spine have emerged, 

including semi-automatic and automated approaches based on 

deep learning algorithms.  

 

2.1 Semi-automatic methods 

 

We find in the literature that Ben Ayed et al. [11] proposed 

a model for dividing the vertebrae of the spine, based on the 

graph cut method, through two stages. first, placing three 

points on each vertebra, then calculating the model distribution 

to separate the boundaries of each vertebra from its adjacent 

structures. Zukic et al. [12]. developed from the approach of 

Viola and Jones (2001), which relies on identifying the 

vertebrae of the spine and determining the center of the 

vertebrae. from there, the spinal vertebrae were segmented 

frequent inflation method. the results of the division also led 

to the classification of spinal diseases into three diseases. Hille 

et al. [13] developed a hybrid-level method to segment the 

vertebral body. this was done in stages. first, the center and 

size of the vertebrae were determined by placing three marks 

on each vertebra and then defining a vertebra using a cylinder. 

based on filtering by morphological methods and density 

information, the vertebral body was segmented. Altini et al. 

[14] segmentation combined with machine learning 

algorithms k-NN, k-means, and deep learning CNN to identify 

and segment spinal vertebrae. first, v-net [15]. Semantic 

segmentation is used to identify the backbone. then, determine 

the number and type of paragraphs to be divided by placing 

dots in the center of each paragraph. finally, using k-NN, the 

paragraphs are segmented. This approach was applied to the 

verse 2020 dataset and achieved a DSC of 0.90. However, this 

model requires greater precision. 

 

2.2 Automatic methods 

 

We also find some litterateurs rely on automated methods 

using artificial intelligence algorithms 

Janssens et al. [16] proposed an approach to segmenting the 

lumbar spine, which goes through two stages: first, localizing 

the lumbar spine using a three-dimensional FCN, then cutting 

the lumbar region from an image and training it on a second 

FCN network to segment the lumbar spine accurately. Their 

model achieved excellent results of 95%. The FCN method 

was used to tag and segment vertebrae [17]. This combines the 

memory component of the vertebral information with the 

network, and after segmentation, it searches for a neighboring 

vertebra to process it. FCN results were good, with one 

vertebra with a Dice Similarity Coefficient of 93%. Klein et al. 

[18], A method to identify and segment vertebrae from 

computed tomography images using a convolutional neural 

network (CNN) method, based on the graph convolutional 

network (GCN), which identified the vertebrae by marking the 

structure. Möller et al. [19] Their approach is organized into 

two distinct phases. First, the semantic model uses the nnUNet 

architecture to divide the scan into 14 semantic labels. Then, 

using a sliding window technique, a secondary model 

distinguishes semantic labels in vertebrate instances, taking 

advantage of the center of mass placements. The predictions 

are then unified through dice score calculations and organized 

into triplets to mitigate discrepancies. Kawathekar and Aparna 

[20], propose a method for segmenting the spine based on 

three stages: first to determine the center of the spine, then 

develop the Unbalanced-UNet deep learning algorithm, then 
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mark the vertebrae using the Spatial Configuration Network 

(SCN), and finally the U-Net network for segmenting the 

vertebrae. Their approach was applied to the VERSE'19 

database, achieving an accuracy rate of 93.07%. 

As for cases of hyper lordosis / straight back / flat back, both 

were shown by Masood et al. [21] in a smaller area (Ar) 

compared to normal lordosis, while cases of excessive 

lordosis/backswing showed a larger area, consistent with 

previous results. The automated classification system for 

spinal disorders achieved an accuracy rate of 93\% in 

distinguishing these conditions from normal lordosis. 

Furthermore, the study provides an enhanced measure of 

angular deviation for classifying spondylolisthesis and 

suggests the use of centroid-based area calculations instead of 

traditional angular points for spine assessment. 

Maraş et al. [22] used pre-trained deep learning techniques, 

such as DenseNet-201, Resnet-101, VGG-19, and VGG-16, to 

classify cervical normality, mechanical neck diseases, cervical 

degenerative disc disease, and osteoporosis, after performing 

a series of operations on a group of Data from increasing the 

number of data, adjusting the dimensions, and dividing the 

data set into training, validation, and testing. Their study was 

applied to 170 lateral radiographs of osteoporosis with cervical 

osteoporosis and cervical degenerative disc disease. And 161 

lateral radiographs of the normal cervix, and achieved the 

accuracy rate of VGG-16 and VGG-19, Resnet-101, and 

DenseNet-201 are 93.9%, 91.8%, 89.8%, and 85.7%, 

respectively. These are acceptable percentages but need more 

scrutiny. Johnson et al. [5] developed a method that helps in 

diagnosing lordosis by calculating the area of a closed region 

located between S and L1, and the line that connects L1 to L2, 

L2 to L3, L3 to L4, L4 to L5, and L5 to S. He placed an 

obstacle between an angle Lordosis and the area of the closed 

part, to classify lordosis diseases 

 

2.3 Our position 

 

Based on the above review, further research must address 

the need for more efficient and accurate spine segmentation 

and classification techniques, which play a vital role in 

enhancing early disease detection and diagnosis. Despite the 

progress in AI-driven approaches, there remains a need to 

streamline localization processes and improve segmentation 

accuracy to facilitate better clinical outcomes 

 

 

3. MATERIALS AND METHODS 

 

Segmenting the lumbar spine from MRI images is an 

important step in classifying lumbar lordosis in medical 

images. To achieve this, it is necessary to rely on a 

methodology that uses specific methods in a special applied 

environment, which work to segment the lumbar spine and 

classify the type of lumbar lordosis, as shown below: 

 

3.1 Material 

 

The data sets are a set of MRI images collected at Irbid 

Specialist Hospital in Jordan between September 2015 and 

July 2016 [14]. For people suffering from spinal diseases, it 

consists of 514 image sections of the lumbar spine, and this is 

after ignoring some images that were not clear due to noise 

[23]. Published on Mendeley Data [21]. The datasets contain 

514 topics with ground truth labels, containing false color 

segmentation and pixel labels [1]. Ground truth labels are 

denoted by L1, L2, L3, L4, L5, and S [16]. All images have 

dimensions of 320*320. Some images of the data set are 

shown in Figure 2. 

 

 
 

Figure 2. (A) Sagittal images of the spine (B) It represents 

ground truth images with colors 

 

3.2 Methods 
 

To segment and classify lumbar spine lordosis in an 

accurate, fast, and simple way. We propose our approach. It 

first relies on segmenting the lumbar spine from MRI images 

based on a deep learning algorithm and thresholding method. 

This is done in two basic steps. First, we prepared the dataset 

by converting ground truth color images into binary images 

using a thresholding method. We applied a set of geometric 

operations to augment the dataset and partition the medical 

MRI dataset to train and test the model. Then, we modified the 

U-Net model by changing the size of the filters and increasing 

the number of layers and obtained the backbone segmentation. 

Second, classify lumbar lordosis using a deep learning model. 

It was built based on CNN and some trained models after 

preparing the dataset through and lumbar lordosis angle (LLA) 

calculation using the Cobb method. Then classify they were 

classified into three categories: hyper lordosis, normal, and 

hypo lordosis. Figure 3 shows a schematic diagram of the 

proposed model. The proposed method for segmenting the 

lumbar spine and classifying the curvature can be summarized 

in Figure 4. 

 

 
 

Figure 3. Techniques used for lumbar spine segmentation and lordosis classification 
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Figure 4. Overview of the approaches proposed for lumbar lumber spine segmentation and classification of lordosis 

 

3.3 Segmentation of lumbar spine data 

 

The stage of segmenting the lumbar spine from MRI images 

is an important step in diagnosing diseases such as lumbar 

lordosis. It is a difficult task due to the similarity of the internal 

structure of the tissues. Therefore, we proposed an approach 

that focuses on the following stages: 

 

3.3.1 Prepare spinal data 

This stage is considered a basic stage in our model. It aims 

to convert ground truth color images into binary. Thresholding 

is the simplest method. The calculation time can be minimized 

a more evaluation of the lumbar spine. This work utilizes a 

threshold for segmenting images [24]. This is done by testing 

each pixel of the image to see if its value is above or below a 

certain threshold and producing a binary image that combines 

the results. There are several ways to automatically detect the 

threshold value to apply. One of the most widely used methods 

is the Otsu method [25]. The automatic threshold value is 

determined using the OTSU method based on the shape of the 

image histogram. This method requires pre-calculation of the 

image histogram to obtain a binary image containing only two 

categories (lumber, spinal and background) [26]. We 

determine the ideal threshold T that separates these two classes 

through an iterative algorithm such that the maximum is the 

variance between the classes, and the minimum is the variance 
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within the class [27]. 

This stage can be summarized in Algorithm 1. 

 

Algorithm1: Segmentation Using Global Thresholding 

• Choose a Threshold Value (Th):  

This value distinguishes the foreground from the 

background in a grayscale image. It can be determined 

either manually or through automated methods such as 

Otsu's algorithm. 

• Apply the Threshold (Th):  

The selected threshold is applied to the grayscale image. 

The outcome is a binary mask M(x,y). defined in Eq. (1), 

which identifies the segmented areas. 

 

𝑀(𝑥, 𝑦) = 𝑓(𝑥) = {
1  𝑖𝑓𝐼(𝑥, 𝑦) > 𝑇ℎ
0     𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒      

  (1) 

                 

I (x,y) is the grayscale intensity at pixel (x,y),  

This is the chosen threshold.  

The binary mask M(x,y) highlights the foreground with 

pixel values of 1, while background areas are assigned a 

value of 0. 

 

3.3.2 Data augmentation 

Deep learning models perform better when trained on large 

datasets. However, when only a small amount of data is 

available, data augmentation can help improve performance 

by increasing the variety of training examples [28]. 

In this work, we applied several geometric transformations 

to expand both the training and testing datasets. These 

transformations, shown in Table 1, include image rotation, 

vertical flipping, and horizontal flipping. This approach helps 

reduce overfitting and improves the model’s ability to 

generalize 

 

Table 1. Geometric operations applied to increase the 

number of data, mentioning the field and unit of 

measurement 

 
Operation  Interval/Valeur Unite 

Rotate [−450, +450] Degré 

Horizontal [−𝜋, +𝜋] 𝑅𝑎𝑑𝑖𝑎𝑛 

Vertical [−𝜋, +𝜋] 𝑅𝑎𝑑𝑖𝑎𝑛 

 

3.3.3 Lumbar spine segmentation 

The method adopted for segmenting the lumbar spine from 

MRI images is based on a Fully Convolutional Network (FCN) 

of the encoder–decoder type, using the U-Net architecture [29]. 

We introduced a set of architectural modifications to the 

original U-Net model by employing an encoder–decoder 

structure composed of 23 layers: 10 in the encoder and 13 in 

the decoder. The network consists of 18 convolutional layers 

and 4 deconvolutional layers. The increase in the number of 

layers was aimed at enabling the network to learn more 

complex and fine-grained features, which is crucial given the 

anatomical intricacies present in MRI images. All 

convolutional and deconvolutional layers used filters of size 

(3×3), a standard choice that offers an optimal balance 

between computational efficiency and the ability to capture 

local spatial patterns in medical images. In the encoder, the 

number of filters was gradually increased: 16 filters in the first 

two layers, followed by 32, then 64, 128, and finally 256 filters 

in the last two layers. This design enables multi-level feature 

abstraction, from low-level details to higher-level semantic 

representations. The decoder mirrored this progression in 

reverse, using blocks that combine convolutional and 

deconvolutional layers: starting with 128 filters, then 64, and 

finally 32 filters in the last block. Deconvolutional layers were 

employed to enhance the spatial resolution of the segmented 

output and better preserve boundary details compared to 

standard upsampling techniques. The ReLU activation 

function was applied throughout to accelerate training, prevent 

the vanishing gradient problem, and promote efficient 

nonlinear learning. The Adam optimizer was chosen for its 

stability and adaptive learning capabilities, with a learning rate 

set to 0.001 and a batch size of 16. These hyperparameters 

were selected after extensive experimentation with different 

data split ratios, epoch counts, and optimizer configurations. 

Overall, the proposed architectural enhancements, including 

the systematic use of 3×3 filters, have proven effective in 

improving segmentation performance for the targeted 

anatomical regions. The various stages of the U-Net 

architecture of our model are represented in Figure 5. 

 

3.4 Prepare spinal data for classification 

 

This stage is considered important before the classification 

of lumbar lordosis from MRI images, is focuses on the 

following stages: 

 

3.4.1 Measurement of lumbar lordosis angle 

After segmenting the lumbar spine from the MRI images, 

we determined the angle LLA between the superior endplate S 

and the superior endplate L1. Using the Cobb method, the 

angle LLA was calculated to calculate the Cobb angle between 

the upper limb S and the upper limb L1, i.e., calculate the LLA.  

We must follow the following steps [29]. 

• Apply a Gaussian blur to the segmented spine image 

to reduce noise. 

• Apply the Canny edge detector and adjust thresholds 

as needed. 

• Find outlines in the image with edges. 

• Draw a blue line over the first edge and draw a red 

line over the first points of the last line as shown in 

Figure 6(A). 

• Calculate the slope of the extension of the blue and 

red lines as shown in Figure 6(B) using the following 

mathematical formula 2: 

 

𝑀(𝐿1,𝑠) =
𝑌2𝑦−𝑌1𝑦

𝑋2𝑦−𝑋1𝑦
  (2) 

 

M represents the slope of the lines, 

Y1y and Y2y: represent the rank on the y-axis 

X1x and X2x: represent a comma on the x-axis. 

• Draw two perpendicular lines along the blue and red 

lines  

• The angle between two perpendicular lines was 

calculated using the Cobb method as shown in Figure 

6(C) using Eq. (3): 

 

𝑎𝑛𝑔𝑙𝑒 = 𝑡𝑎𝑛−1 |
𝑀𝐿1−𝑀𝑆

1+𝑀𝐿1𝑀𝑆
|  (3) 

 

𝑀𝐿1: is the slope of the L1 line, 

• 𝑀𝑆: is the slope of the line S. 
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Figure 5. Model architecture for U-net the lumbar spine segmentation 

 

 
 

Figure 6. Spinal angular cobb measurements 

 

 

3.4.2 Automated lumbar lordosis classification 

After calculating the LLA angle using the Cobb method, 

we classified the data set into three categories based on the 

angle measurement, where the typical range of normal 

lumbar lordosis (LLA) angle extends from 39° to 53° [30]. 

It falls within Category 1, while angles greater than 53 

degrees fall into the category of hyperhidrosis, which is 

classified as Category 2. In contrast, hypohidrosis, for 

angles less than 39 degrees, is classified as Category 1. As 

shown in Algorithm 2. 

 

 

Algorithm 2: Pseudocode for LLA Classification 

Begin 

Set LLA 

If α < 390 then 

      Assign Low_Angles, Cl0, Hypolordosis 

Else 

       If α < 530 

           Assign Medium_Angles, Cl1, Normal lordosis 

       Else 

           Assign High_Angles, Cl2, Hyperlordosis 

        End If 

End If 

end 

 

3.4.3 Augmentation and resizing the dataset 

Given the limited size of our dataset (514 images), we 

applied geometric data augmentation techniques, including 

small-angle rotations (+5°, +7°, +10°) and zooming, to 

expand the dataset to 2056 images, as detailed in Table 2 

and Figure 7. These small rotation angles were not chosen 

arbitrarily. In medical imaging, especially of the lumbar 

spine, large angles (e.g., ±90°, ±180°) often produce 

anatomically implausible images and can confuse the model. 

Conversely, small-angle rotations preserve anatomical 

consistency while introducing beneficial variability for 

training. Our choice is supported by the study by Qin et al. 

[31], which found the best segmentation performance at 10°, 

with smaller angles (5°, 10°) yielding clinically realistic 

results. Larger rotations (20°–30°) led to distortions that 

reduced model accuracy. Therefore, the use of +5°, +7°, and 

+10° angles in our work is both clinically relevant and 

empirically optimal. 
 

Table 2. Augmentation dataset methods 
 

Operation  Itervale/Valeur Unite 

Rotation 10 Degré 

Rotation 5 Degré 

Rotation 7 Degré 

Zoom 10% Pixel 
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Figure 7. Results of data augmentation techniques applied to images 

 

 
 

Figure 8. Normalize and resize images 

 

 
 

Figure 9. Architecture of the model ‘Deteclordose’ 

 

The second part at this stage is normalizing [32] and 

adjusting the size of the data, as the CNN model works on 

grayscale images, meaning that the value of each pixel is from 

0 to 1. That is, the density of the images is limited to between 

0 and 255, so we multiplied each image by 1/255 of the pixel 

value. We also adjusted the data size from 320×320 to 

224×224 in the Figure 8 shows this. 

 

3.5 Lumbar lordosis classification 

 

The stage of classifying lumbar lordosis from MRI images 

after initializing a data set. It is a necessary and basic stage in 

our research. To establish an accurate, excellent, and fast 

method, we experimented with some trained deep-learning 

models. We also built our model based on CNN, which gave 

excellent efficiency and accuracy. 

 

3.5.1 Classification of the spinal lumbar with “Deteclordose” 

The proposed model is based on a convolutional neural 

network (CNN) architecture specifically designed for 

classifying images into three categories of lumbar lordosis 

from MRI images. This architecture is optimized to handle 

classification tasks with high precision while maintaining 

computational efficiency. The proposed model consists of six 
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convolutional layers with 3×3 filters and ReLU activation, 

increasing the filters from 32 to 512 and 2×2 pooling layers to 

reduce complexity. The fully connected layer uses a dense 

layer with 128 neurons and Dropout at 50% to prevent 

overfitting. The output layer, with Softmax activation, 

classifies the images into three classes, ensuring high precision 

and computational efficiency. The optimal results were 

achieved after conducting multiple tests that involved 

adjusting the dataset split ratio, epoch size, batch size, learning 

rate, and optimizer. The best configuration included a dataset 

split of 80% training and 20% testing, a batch size of 32, an 

epoch size of 200, a learning rate of 0.001, and using the Adam 

optimizer [33]. The architecture of the proposed ‘Deteclordose’ 

model is illustrated in Figure 9. 

 

3.5.2 Classification of the spinal lumbar with transfer learning 

To know the efficiency and accuracy of the proposed model 

for classifying lumbar lordosis in magnetic imaging images, 

we exploited some pre-trained deep learning models for image 

classification to solve the problem of relatively small data and 

long training time [34], DenseNet121 [35], VGG16 [36], and 

VGG19 [37], were used. Table 3 shows the architectural 

explanation of the different models used. 

 

Table 3. Architecture of some pre-trained models 

 
Models Input Size Output Size No. of Layers 

DenseNe121 [224,224 ,3] [3, 1] 121 

VGG19 [224,224,3] [3, 1] 19 

VGG16 [224,224,3] [3, 1] 16 

 

3.6 Evaluation criteria 

 

Our model is evaluated by calculating the precision (p) and 

loss error (ME), where p is the matching ratio between the 

segmentation regions and the ground truth images used as 

reference. The accuracy (precision) is calculated according to 

the following Eq. (4): 

 

𝑃 =
𝑟𝑒𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  (4) 

 

The accuracy value is limited to [0,1]. The better the 

segmentation and classification, the greater the accuracy. 

ME represents the loss error between the expected ground 

and truth values. The lower the ME percentage, the more 

accurate the result will be. 

ME is calculated by Eq. (5): 

 

𝑀𝐸 =
1

𝐿
∑ |(𝑌𝑖) ̂ − 𝑌𝐼|𝐿−1

𝑖=0   (5) 

 

L = total number of images 

i: the expected lumbar spine segment 

Y: the ground truth of the lumbar spine 

Precision (p) is the ratio of true positives to the total number 

of positive predictions. It is calculated using the formula Eq. 

(6): 

 

𝑝 =
True Positives

Total Positive Predictions
  (6) 

 

Recall (R), also known as the true positive rate or sensitivity, 

is the quotient of the true positives by the sum of the true 

positive and false negatives. It is calculated using the relation 

Eq. (7): 

𝑅 =
True Positives

True Positives+False Negatives
  (7) 

 

F1score is the harmonic average of recall and precision. 

Thanks to it a scale is provided that weighs between both 

scales. It is calculated by the relation Eq. (8): 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2×(P×R)

P + R
  (8) 

 

3.7 Overfitting mitigation strategies 

 

Given the relatively small size of the dataset (514 images), 

several strategies were employed to reduce the risk of 

overfitting and ensure the model’s generalization capability. 

Thèse include: 

• Data Augmentation: Techniques such as small-angle 

rotations and zooming were applied to artificially 

increase the diversity of training images and 

introduce realistic variations, thereby improving 

generalization. 

• Train/Test Split: A carefully considered split was 

used to ensure balanced and fair evaluation between 

the training and testing phases. 

• Early Stopping: Training was monitored on a 

validation set, and the process was halted when 

performance ceased to improve, preventing the 

model from over-adapting to the training data. 

• Dropout Regularization: A dropout rate of 0.5 was 

used in the classification stage to deactivate random 

neurons during training, helping to prevent over-

reliance on specific features. 

While these measures help mitigate overfitting. 

 

3.8 Environment experimental 

 

Our model was implemented in Python, using TensorFlow, 

which is an image-processing library. First, in the stage of 

preparing the spinal data, we used Jupyter, and to divide the 

database, we used Spyder in Anaconda, and this was on a 

laptop equipped with a fast Intel(R) Core (TM) i7-6500U 

processor. 2.50 GHz, 2601 MHz core, 4 logical processors, 

and RAM. 8.00 GB installed. Train U-Net was done on a colab 

platform with a type of processor GPU. 

 

 

4. RESULTS AND DISCUSSION 

 

Different deep-learning methods were used to segment and 

classify the lumbar spine in a dataset to improve and increase 

the accuracy of diagnosis. 

 

4.1 Segmentation spine lumbar 

 

Deep learning technology was applied to the dataset. This is 

after converting the color ground images into binary images 

using the thresholding method, where the threshold value was 

set to 82.08, which was determined by Otsu, which is the 

dividing value between the two categories: the lumbar spine 

and the background of the image. We then applied geometric 

techniques to increase the Amount of data. Finally, we trained 

the model to segment the lumbar spine. 

Figure 10 represents some of the colored ground truth 

images and their conversion into binary images. This is after 

setting the threshold value of 82.08 so that we obtain an image 
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with two categories; the value greater than the threshold value 

represents the lumbar spine, and the value less than the 

threshold value represents the background of the image. 

 

 
 

Figure 10. Normalize the images 

 

After applying operations to the augmentation dataset, 2036 

images were obtained out of 509 images. Figure 11 shows 

some of the images to which geometric operations to 

augmentation. 

 

 
 

Figure 11. Normalize and resize images 

 

The curves of Figure 12 and Figure 13 show a graphical 

representation of the change in the training accuracy result and 

the validation training loss result, respectively, as a function of 

20 epochs divided into 30% testing and 70% training. 

We notice that the accuracy percentage increases to 99.20%, 

and starting from the eighth epoch, the two curves begin to 

match, as shown in Figure 12. We notice that the loss rate 

decreases to 0.02% in Figure 13, and the two curves match 

starting from the eighth epoch. 

 

 
 

Figure 12. Training and validation accuracy result (30% 

testing and 70% training) 

 

The curves of Figure 14 and Figure 15 show a graphical 

representation of the change in the training accuracy result and 

the validation training loss result, respectively, as a function of 

20 epochs divided into 20% testing and 80% training. We 

notice that the accuracy percentage increases to 99.30% 

accuracy, and starting from the Third epoch, the two curves 

begin to match, as shown in Figure 14. We notice that the loss 

rate decreases to 0.025% in Figure 15, and the two curves 

match starting from the third epoch. These are good results 

compared to the results of the division (30% testing and 70% 

training), which showed an overfit in the results, which led to 

the loss of some information about the shape of the spinal 

vertebrae, in contrast to the results of the division (20% testing 

and 80% training). 

 

 
 

Figure 13. Training and validation loss result (30% testing 

and 70% training) 

 

 
 

Figure 14. Training and validation accuracy result (20% 

testing and 80% training) 

 

 
 

Figure 15. Training and validation loss result (20% testing 

and 80% training) 

 

We noticed in Figure 16 that there was overfitting in the 

results, which led to the loss of some information, which 

appeared in the form of a missing part in the spine 

segmentation image, as shown by the circle in Figure 16(a), in 

contrast to the results of u_net, where the results were good 

and appear This is due to the accuracy of the segmentation of 
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the spinal vertebrae, which appeared clearly as shown in 

Figure 16(b).  

 

   
Input image (a) (b) 

 

Figure 16. (a) prediction with 30% test and 70% training, (b) 

prediction resulting with 20% test and 80% training 

 

4.2 Comparison of the model’s segmentation 

 

The comparison between our proposed methodology and 

previous approaches demonstrates its superior effectiveness. 

Our method relies on converting color ground truth images 

into binary masks using thresholding and the Otsu method, 

followed by accurate segmentation of the lumbar spine region 

from MRI images. In contrast, Sudirman et al. [1] employed a 

hybrid model combining YOLOv5, HED, and U-Net for 

vertebrae detection and segmentation. Meanwhile, Wang et al. 

[38] introduced an enhanced strategy based on U-Net++ to 

improve U-Net performance in spinal segmentation from MRI 

scans, with their results detailed in Table 4, and U-Net [39] 

stands out as one of the most effective architectures for 

biomedical image segmentation, due to its encoder–decoder 

structure and skip connections that preserve spatial 

information. 

To assess the impact of our structural modifications, we 

restructured the baseline U-Net model to include 24 layers, 

among which 18 are convolutional, while keeping other 

parameters, such as kernel size, unchanged, and using the 

ReLU activation function in all convolutional layers. After 

retraining the modified model on the same dataset with a 

learning rate of 0.001 and a batch size of 16, it achieved an 

accuracy of 94.29%, which is significantly lower than that of 

our proposed model. 

This considerable performance gap highlights the 

effectiveness of the architectural improvements we introduced 

and confirms their essential contribution to enhancing 

segmentation quality. Based on these results, our proposed 

method offers practical and valuable benefits to physicians and 

medical specialists by supporting diagnostic processes and 

facilitating the early detection of spinal disorders. 
 

Table 4. Comparison of the results of different segmentation 

methods 
 

Year Authors Category Approach Accuracy 

2022 Sudirman et 

al. [1] 

MRI YOLOv5-

HED-UNet 

74.5% 

2023 Wang et al. 

[38] 

MRI U-Net 86.2% 

2023 Wang et al. 

[38] 

MRI U-Net++ 88% 

2025 This work MRI Modified U-

Net 

94.29% 

2025 This work 

(Proposed) 

MRI Threshold + 

U-Net 

99.3% 

 

4.3 Classification of lordosis lumbar  

 

Figure 17 shows the results obtained for DenseNet121, 

VGG19, and VGG16 in terms of accuracy and loss as a 

function of the number of epochs. In Figure 17(a), we see the 

results for DenseNet121, where training stopped after 34 

epochs due to early stopping and the accuracy reached 87%. 

In Figure 17(c), for VGG19, training stopped after 40 epochs 

out of 200, with an accuracy rate of 83%. For the VGG16 

model, as shown in Figure 17(e), the accuracy reached 90% 

after 50 epochs. 

Figure 17(b) shows the loss results as a function of the 

number of epochs for DenseNet121, which reached 0.5%. For 

VGG19, as shown in Figure 17(d), the loss was 0.45%. For the 

VGG16 model, as shown in Figure 17(f), the loss percentage 

was 0.25%. 

After training the Deteclordose model, the accuracy and 

loss results were obtained, as shown in Figure 18. In Figure 

18(a), the accuracy results are shown, where the accuracy rate 

reached 96% after 100 epochs, which is a significant 

improvement compared to the previous models. In Figure 

18(b), the loss rate was 0.25%, while in the Deteclordose 

model, the loss rate was 0.1%, which is the best result 

compared to the previous models. 
 

  

(a) Training and validation accuracy DenseNet121 result 
(b) Curve histogram of training and validation loss for 

DenseNet121 result 
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(c) Training and validation accuracy VGG19 result 
(d) Curve histogram of training and validation loss for 

VGG19 result 

  

  

(e) Training and validation accuracy VGG16 result 
(f) Curve histogram of training and validation loss for VGG16 

result 

  

Figure 17. The accuracy and loss results obtained for: DenseNet121, VGG19, and VGG16 

 

 
 

(a) Training and validation accuracy Deteclordose result (b) Training and validation Deteclordose loss result 

  

Figure 18. Results accuracy and loss from Deteclordose 

 

The confusion matrix evaluates the performance of the 

classification models “DenseNet121,” “VGG16,” “VGG19,” 

and “Detect LORDOSE” for three classes: “Hyper,” “Hypo,” 

and “Normal.” In Figure 19(a), DenseNet121 has difficulty 

with accuracy, especially in distinguishing between classes. In 

Figure 19(b), the VGG16 confusion matrix shows significant 

misclassifications, especially in distinguishing between the 

“Hyper” and “Hypo” classes. VGG19 has notable difficulties 

with the “Hypo” class, as shown in Figure 19(c). The Detect 

LORDOSE model works better overall, but still has some 

issues, especially in the “Normal” category. In general, as 

shown in Figure 19(d), it achieved the best performance 

compared to its predecessors.
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(a) Confusion matrix DenseNet121 (b) Confusion matrix VGG16 

  

  

(c) Confusion matrix VGG19 (d) Confusion matrix Deteclordose 

 

Figure 19. Confusion matrices for each DenseNet121, VGG16, VGG19, Deteclordose 

 

4.4 Comparison of the model’s classification 

 

Model Performance Comparison shows the performance of 

four different models for a classification task, evaluated on 

several metrics: accuracy, loss, precision, recall, and F1 score 

(Table 5). Here is a brief commentary on the results: 

 

Table 5. Model performance comparison 

 
Model Accuracy Loss Precision Recall F1 Score 

DenseNet121 87%  50%  56%  56% 55% 

VGG19 83%  45%  51%  52%  50% 

VGG16 90%  25%  52%  53%  53%  

DetecLordose 96%  10%  92%  94%  93%  

 

DenseNet121: Shows a good accuracy of 87%, but its other 

performance metrics (precision, recall, and F1 score) are quite 

low (around 55-56%), indicating poor overall performance 

despite good accuracy. VGG19: Shows overall lower 

performance with an accuracy of 83% and precision, recall, 

and F1 score scores around 50-52%. The loss is 45%, 

suggesting moderate effectiveness. VGG16: Obtains a better 

accuracy of 90% with precision, recall, and F1 score scores 

slightly higher than those of VGG19 but still low (around 52-

53%). The loss is relatively low at 25%. 

DetecLordose: Stands out significantly from other models 

with an accuracy of 96%, very high precision, recall, and F1 

scores (92-94%, 93% respectively), and a very low loss of 

10%, indicating superior performance in all aspects assessed. 

 

Here we analyze and compare the results of the confusion 

matrix for the classification model, where: 

• TP (True Positives): Number of patients with 

lumbar lordosis correctly classified as positive. 

• FP (False Positives): Number of healthy cases 

incorrectly classified as having lordosis. 

• FN (False Negatives): Number of lordosis cases 

incorrectly classified as healthy. 

• TN (True Negatives): Number of healthy cases 

correctly classified as negative. 

The confusion matrices for the DenseNet121, VGG16, 

VGG19, and Deteclordose models are shown in Figure 19. 

After analyzing the confusion matrix results presented in 
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Table 6, it is evident that the proposed model, DetectLordose, 

significantly outperforms the baseline models (DenseNet121, 

VGG19, and VGG16) in classifying the three categories: 

Hyperlordosis, Normal lordosis, and Hypolordosis. The model 

demonstrated very high accuracy, achieving high true positive 

(TP) rates and notably low false positive (FP) and false 

negative (FN) rates, particularly for the Hyperlordosis class, 

where no FP cases were recorded. In contrast, the 

DenseNet121 model struggled to distinguish between classes, 

with high FP and FN values, especially in the Hyper and Hypo 

categories. VGG19 performed slightly worse, exhibiting 

higher misclassification rates, likely due to overlapping visual 

features across classes. VGG16 showed a relative 

improvement over VGG19 and DenseNet121, but still 

suffered from notable classification errors. 

These classification errors are primarily due to class 

imbalance in the dataset, visual and anatomical similarity 

between the different lordosis categories, and structural 

limitations of conventional models in extracting 

discriminative features. The error rate can be reduced through 

several possible solutions, such as data augmentation, class 

rebalancing, and improving the model architecture, to enhance 

classification accuracy and minimize misclassification rates. 

The outstanding performance of the proposed DetectLordose 

model is mainly attributed to its specialized design, enhanced 

architecture, advanced training configuration, and optimal 

tuning of training parameters, all of which contributed to 

achieving strong results. 

 

Table 6. Detailed model performance 

 

 Hyperlordosis 
Normal-

lordosis 
Hypolordosis 

Model 
TP    FP   FN    

TN 

TP    FP   

FN    TN 

TP    FP   FN    

TN 

Densenet121 
91    48   101   

176 

87   85   37   

207 

52   53   48   

263 

VGG19 
87      56    105   

168 

84     91    

40   201 

41     57    59    

259 

VGG16 
109    62   83     

162 

63     65     

61    227 

52     65     48    

251 

Detectlordose 
172    0      20     

224 

120   23     

4    269 

96      5       4    

311 

 

Although model accuracy is a key performance indicator, 

the comparison also considered computational and practical 

aspects relevant to clinical deployment. Table 7 summarizes 

the performance and efficiency metrics of the proposed 

Deteclordose model compared to widely used pre-trained 

models (VGG16, VGG19, and DenseNet121). 

The results demonstrate that Deteclordose outperforms the 

other models in terms of accuracy, achieving 96%, compared 

to 90% for VGG16 and 87% for DenseNet121. While the 

number of parameters in Deteclordose (23.91 million) is not 

the lowest, it remains within an acceptable range and is 

significantly lower than that of DenseNet121 (32.79 million). 

Furthermore, the model size (91.14 MB) is moderate—larger 

than VGG16 but smaller than DenseNet121—making it 

suitable for integration into clinical systems without requiring 

substantial computational resources. 

In light of these findings, Deteclordose can be considered 

the most balanced solution, combining high accuracy with 

computational efficiency. This balance makes it a strong 

candidate for clinical applications that require reliable 

precision, quick response times, and deployment in 

environments with limited hardware capacity. 

 

Table 7. Comparison of deep learning models based on 

accuracy, parameters, and model size 

 

Model Accuracy  
Paramètres 

(Millions) 

Model Size 

(MB) 

VGG16 90% 17.93  68.38 

VGG19 83% 23,23 88.58  

DenseNet121 87% 32,79 125.10 

Deteclordose 96% 23.91 91.14 

 

4.5 Discuss the classification results 

 

The results indicate that the Detect model, especially with a 

dropout of 0.5, outperforms the other models in terms of all 

performance metrics. This superiority is visible in the higher 

values of precision, recall, and F1 score, as well as in the 

confusion tables, which show minimal errors. The 

DenseNet121, VGG19, and VGG16 models, while performing 

well in some metrics like accuracy, exhibit significant 

weaknesses in precision, recall, and F1 score, as well as higher 

rates of FP and FN. 

 

4.6 Limitations and future work 

 

Despite the promising outcomes achieved in this study, 

several limitations must be acknowledged. A major limitation 

is that the dataset was collected from a single medical 

institution—namely, Irbid Specialist Hospital in Jordan. This 

raises concerns about potential demographic bias and limits 

the generalizability of the findings to broader and more diverse 

populations. Moreover, the study did not account for 

variations in MRI scanner types, imaging protocols, or clinical 

and demographic characteristics of patients that may differ 

across healthcare institutions.  

In addition, the proposed method has not yet been evaluated 

within real-world clinical workflows, such as integration with 

Picture Archiving and Communication Systems (PACS) or 

assessment by practicing radiologists. Practical 

implementation barriers, such as processing time and 

hardware requirements, were also not addressed, yet they are 

essential for the deployment of AI-based systems in clinical 

environments. 

Future work should aim to incorporate multi-center datasets 

from diverse geographical and institutional contexts, validate 

the model in actual clinical settings, and optimize 

computational performance to ensure efficiency and real-time 

applicability. Furthermore, collaboration with healthcare 

professionals will be critical to assess the system’s clinical 

utility and to guide its integration into existing radiological 

workflows 
 

 

5. CONCLUSION 
 

In our research, we proposed a model that segments the 

lumbar spine and classifies lumbar lordosis from MRI images. 

This is to help doctors and specialists in the early and rapid 

detection of lumbar spine diseases using deep learning 

algorithms. First, in order to segment the lumbar spine, we 

relied on the deep learning architecture of the programmer and 

decoder, which we designed by increasing the depth of the 

layer. Additionally, leveraging the Threshed and Otsu 

methods, we carefully prepared the dataset, converting color 
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ground truth images into binary representations to serve as 

segmentation masks during model training. To enhance the 

accuracy, we expanded the dataset using geometric techniques 

applied to the images. It is worth noting that our model 

underwent rigorous testing on the dataset of a patient with 

spinal diseases, resulting in commendable effectiveness in 

terms of accuracy and loss, achieving an impressive result of 

99.3%. To classify lumbar lordosis, we calculated the lumbar 

angle using the Cobb method, and then we classified the data 

set into three groups: hyperhidrosis/hyperhidrosis / normal 

lordosis, according to the angle measurement. Then we trained 

our proposed model called Deteclordose to classify lumbar 

lordosis from MRI images. Achieved an impressive score of 

96%. Moving forward, our research methods extend to the 

segmentation and classification of pelvic, thoracic, and 

cervical spine pathology from MRI images, providing 

potential applications in the early identification of spinal 

deformities to alleviate the necessity of invasive surgical 

interventions. However, future endeavors should address 

limitations such as scalability and generalizability to diverse 

patient populations while exploring ways to improve 

computational efficiency and robustness in real-world clinical 

settings. 

 

 

ETHICAL APPROVAL AND DATA AVAILABILITY 

 

The MRI dataset used in this study was obtained from an 

open-access source and contains no personally identifiable 

patient information. Therefore, by the data provider’s terms of 

use, ethical approval and prior patient consent were not 

required. 

The dataset [21] is freely available at the following link: 

https://data.mendeley.com/datasets/k3b363f3vz/2. 

We reaffirm our full commitment to scientific ethics and 

internationally recognized standards in the use of medical 

imaging data. 
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NOMENCLATURE 

 

MRI Magnetic Resonance Imaging 

CT Computed Tomography 

LLA Lumbar Lordosis Angle 

FCN Fully Convolutional Network 

CNN Convolutional Neural Network 

ReLU Rectified Linear Unit (activation function) 

Th Threshold 

VGG19 Visual Geometry Group 19-layer network 

VGG16 Visual Geometry Group 16-layer network 

DenseNet121 Densely Connected Convolutional Network 

with 121 layers 

YOLOv5 You Only Look Once, version 5 – a real-
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time object detection model known for 

speed and accuracy 

HED Holistically-Nested Edge Detection – a 

deep network for detecting semantic edges 

in images 

U-Net Convolutional network architecture for 

biomedical image segmentation with 

encoder-decoder structure and skip 

connections 

U-Net++ Enhanced version of U-Net with nested and 

dense skip connections for better feature 

fusion 
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