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Lumbar spine disorders are prevalent conditions that can lead to chronic pain and reduced
quality of life, often requiring accurate diagnosis through magnetic resonance imaging.
However, manual interpretation of MRI scans is time-intensive and may lead to diagnostic
errors due to the complexity of spinal anatomy and subtle differences between healthy and
pathological tissues. This study aims to develop an automated method for segmenting and
classifying the lumbar spine, including the assessment of lumbar lordosis, using deep
learning techniques. In the first stage, spinal segmentation is performed using a combination
of image thresholding and a convolutional neural network based on the U-Net architecture,
with binary conversion of ground truth images and data augmentation techniques to enhance
the dataset. The data is divided into training and testing sets, with 80% allocated for model
training. In the second stage, classification of lumbar lordosis is achieved through a method
called “Deteclordose” and transfer learning, following the automatic calculation of the Cobb
angle. Images are then categorized into three classes: hyper lordosis, hypo lordosis, and
normal lordosis. The method was evaluated on a dataset of MRI images obtained from
Jordanian hospitals, achieving promising results, including a segmentation accuracy of
99.30%, a loss value of 0.025, a classification accuracy of 96%, a recall of 94%, and an F1
score of 93%. These outcomes demonstrate the potential of the proposed approach to
improve diagnostic accuracy and reduce the burden on radiologists by providing a reliable,
automated system for analyzing lumbar spine MRI images.

1. INTRODUCTION

The spine is the basic pillar of the body and consists of
intervertebral and vertebral discs that intersect with the spinal

cord of the central nervous system [1].

The structure of the spine can be divided into four parts. The
upper part of the neck consists of 7 vertebrae called cervical,
followed by 12 thoracic vertebrae, in the third part we find 5
lumbar vertebrae, and the fourth part ends at the bottom of the
spine with the coccyx and sacrum [2]. as shown in Figure 1
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Damage to its components may lead to pain or hemiplegia
and may even lead to death in the case of late diagnosis. Spinal
diseases are becoming more common. It is diagnosed using
different techniques, and one of the most common techniques
for this disease is using an MRI of the spine [1]. Magnetic
resonance imaging is used to accurately diagnose pain,
deformity, or curvature in the spinal canal, and it is required
before surgery on the nerve axis [4]. MRI is also used to
examine nerve channels [5]. Magnetic resonance imaging
(MRI) has helped doctors and surgeons detect spinal diseases
early and accurately. It is considered one of the most effective
imaging techniques for diagnosing degenerative spinal
conditions [6]. However, it requires highly qualified

o

CERVICAL specialists to detect the spine, due to the similarity and
closeness of the structure of the internal tissues in the magnetic

A resonance images. For diagnosis with a large amount of data
‘\./r quickly and accurately to avoid any medical error that may
THORACIC lead to paralysis and in some cases death, and for early
: treatment such as scoliosis and lumbar lordosis. Lumbar

- @ lordosis is an inward curvature of the lumbar region of the

VJ spine with curvature of the intervertebral discs and lumbar
—-— vertebrae [7]. One of the best solutions is to segment and
LUMBAR classify the spine from MRI images using segmentation and

classification techniques [8]. Segmentation of medical images

Figure 1. Model of a human spine [3]

1733

is the process of separating them into several non-overlapping
and homogeneous parts. Thanks to the segmentation of
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medical images, the diagnosis of most diseases in which
magnetic resonance imaging or CT is used has become more
rapid and accurate [9]. Classification of medical images is the
process of diagnosing a type of disease. In recent years,
artificial intelligence technologies have brought about a
scientific revolution in the field of medical imaging. It helped
specialists and doctors detect various diseases early and
quickly. And with large amounts of data. However, it lacks
accuracy and efficiency. The objective of our research is to
help doctors diagnose lumbar spinal diseases accurately and
quickly. This is done by developing a platform that segments
the lumbar spine and classifies lumbar lordosis from MRI
images using deep learning techniques.

The current work proposes to explore ways to improve deep
learning techniques, specifically U-net models, to accurately
and efficiently segment the lumbar spine from MRI images,
and the Deteclordose model to classify lumbar lordosis from
MRI images to aid in early and accurate diagnosis. For

diseases of the spine. It is guided by the main research question:

How can deep learning techniques improve spinal
segmentation and lumbar lordosis classification from MRI
images, thus helping in early and accurate diagnosis of spinal
diseases?

Our contributions include:

Segmentation of the spine from MRI images

e  The structure of the inspired dataset is modified from
that in the study by Dong et al. [10], by converting
the false-color ground truth images into binary
images using the thresholding method.
Augmentation dataset in geometric methods helped
us increase the accuracy of spine segmentation in
MRI images.
Choosing an appropriate division between training
and testing the model to reduce the gap in accuracy
results.
Developing a U-net model for segmenting the spine
from MRI images by increasing the number of layers
of convolution and deconvolution to extract the
largest amount of information from images and
change in the size of the filters.
Classification of lumbar lordosis from MRI images

e C(Calculate the lumbar lordosis angle using the

Cobb method.
Classification of MRI images according to the
measurement of the lumbar lordosis angle into
three groups.
Building a “Deteclordose” model based on the
CNN convolutional neural network structure to
increase classification accuracy.

Our research is organized according to the following
approach: Part I contains some previous works on the
methods used to segment the lumbar spine and methods for
classifying lumbar lordosis. The third part provides details of
the different stages of the proposed model with a discussion of
the data set. we find the interpretation and analysis of the
results in the fourth part, and our research ends with a
conclusion found in the fifth section.

2. RELATED WORK

Segmenting and classification of the spine from medical
images is necessary for early detection and rapid diagnosis of
various diseases related to it. In recent years, with the
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advancement of technology, various methods for segmenting
and classifying the vertebrae of the spine have emerged,
including semi-automatic and automated approaches based on
deep learning algorithms.

2.1 Semi-automatic methods

We find in the literature that Ben Ayed et al. [11] proposed
a model for dividing the vertebrae of the spine, based on the
graph cut method, through two stages. first, placing three
points on each vertebra, then calculating the model distribution
to separate the boundaries of each vertebra from its adjacent
structures. Zukic et al. [12]. developed from the approach of
Viola and Jones (2001), which relies on identifying the
vertebrae of the spine and determining the center of the
vertebrae. from there, the spinal vertebrae were segmented
frequent inflation method. the results of the division also led
to the classification of spinal diseases into three diseases. Hille
et al. [13] developed a hybrid-level method to segment the
vertebral body. this was done in stages. first, the center and
size of the vertebrae were determined by placing three marks
on each vertebra and then defining a vertebra using a cylinder.
based on filtering by morphological methods and density
information, the vertebral body was segmented. Altini et al.
[14] segmentation combined with machine learning
algorithms k-NN, k-means, and deep learning CNN to identify
and segment spinal vertebrae. first, v-net [15]. Semantic
segmentation is used to identify the backbone. then, determine
the number and type of paragraphs to be divided by placing
dots in the center of each paragraph. finally, using k-NN, the
paragraphs are segmented. This approach was applied to the
verse 2020 dataset and achieved a DSC of 0.90. However, this
model requires greater precision.

2.2 Automatic methods

We also find some litterateurs rely on automated methods
using artificial intelligence algorithms

Janssens et al. [16] proposed an approach to segmenting the
lumbar spine, which goes through two stages: first, localizing
the lumbar spine using a three-dimensional FCN, then cutting
the lumbar region from an image and training it on a second
FCN network to segment the lumbar spine accurately. Their
model achieved excellent results of 95%. The FCN method
was used to tag and segment vertebrae [17]. This combines the
memory component of the vertebral information with the
network, and after segmentation, it searches for a neighboring
vertebra to process it. FCN results were good, with one
vertebra with a Dice Similarity Coefficient of 93%. Klein et al.
[18], A method to identify and segment vertebrae from
computed tomography images using a convolutional neural
network (CNN) method, based on the graph convolutional
network (GCN), which identified the vertebrae by marking the
structure. Mdller et al. [19] Their approach is organized into
two distinct phases. First, the semantic model uses the nnUNet
architecture to divide the scan into 14 semantic labels. Then,
using a sliding window technique, a secondary model
distinguishes semantic labels in vertebrate instances, taking
advantage of the center of mass placements. The predictions
are then unified through dice score calculations and organized
into triplets to mitigate discrepancies. Kawathekar and Aparna
[20], propose a method for segmenting the spine based on
three stages: first to determine the center of the spine, then
develop the Unbalanced-UNet deep learning algorithm, then



mark the vertebrae using the Spatial Configuration Network
(SCN), and finally the U-Net network for segmenting the
vertebrae. Their approach was applied to the VERSE'19
database, achieving an accuracy rate of 93.07%.

As for cases of hyper lordosis / straight back / flat back, both
were shown by Masood et al. [21] in a smaller area (Ar)
compared to normal lordosis, while cases of excessive
lordosis/backswing showed a larger area, consistent with
previous results. The automated classification system for
spinal disorders achieved an accuracy rate of 93\% in
distinguishing these conditions from normal lordosis.
Furthermore, the study provides an enhanced measure of
angular deviation for classifying spondylolisthesis and
suggests the use of centroid-based area calculations instead of
traditional angular points for spine assessment.

Maras et al. [22] used pre-trained deep learning techniques,
such as DenseNet-201, Resnet-101, VGG-19, and VGG-16, to
classify cervical normality, mechanical neck diseases, cervical
degenerative disc disease, and osteoporosis, after performing
a series of operations on a group of Data from increasing the
number of data, adjusting the dimensions, and dividing the
data set into training, validation, and testing. Their study was
applied to 170 lateral radiographs of osteoporosis with cervical
osteoporosis and cervical degenerative disc disease. And 161
lateral radiographs of the normal cervix, and achieved the
accuracy rate of VGG-16 and VGG-19, Resnet-101, and
DenseNet-201 are 93.9%, 91.8%, 89.8%, and 85.7%,
respectively. These are acceptable percentages but need more
scrutiny. Johnson et al. [5] developed a method that helps in
diagnosing lordosis by calculating the area of a closed region
located between S and L1, and the line that connects L1 to L2,
L2 to L3, L3 to L4, L4 to L5, and L5 to S. He placed an
obstacle between an angle Lordosis and the area of the closed
part, to classify lordosis diseases

2.3 Our position

Based on the above review, further research must address
the need for more efficient and accurate spine segmentation
and classification techniques, which play a vital role in
enhancing early disease detection and diagnosis. Despite the
progress in Al-driven approaches, there remains a need to
streamline localization processes and improve segmentation
accuracy to facilitate better clinical outcomes

3. MATERIALS AND METHODS

Segmenting the lumbar spine from MRI images is an
important step in classifying lumbar lordosis in medical
images. To achieve this, it is necessary to rely on a
methodology that uses specific methods in a special applied
environment, which work to segment the lumbar spine and
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classify the type of lumbar lordosis, as shown below:
3.1 Material

The data sets are a set of MRI images collected at Irbid
Specialist Hospital in Jordan between September 2015 and
July 2016 [14]. For people suffering from spinal diseases, it
consists of 514 image sections of the lumbar spine, and this is
after ignoring some images that were not clear due to noise
[23]. Published on Mendeley Data [21]. The datasets contain
514 topics with ground truth labels, containing false color
segmentation and pixel labels [1]. Ground truth labels are
denoted by L1, L2, L3, L4, L5, and S [16]. All images have
dimensions of 320*320. Some images of the data set are
shown in Figure 2.

Figure 2. (A) Sagittal images of the spine (B) It represents
ground truth images with colors

3.2 Methods

To segment and classify lumbar spine lordosis in an
accurate, fast, and simple way. We propose our approach. It
first relies on segmenting the lumbar spine from MRI images
based on a deep learning algorithm and thresholding method.
This is done in two basic steps. First, we prepared the dataset
by converting ground truth color images into binary images
using a thresholding method. We applied a set of geometric
operations to augment the dataset and partition the medical
MRI dataset to train and test the model. Then, we modified the
U-Net model by changing the size of the filters and increasing
the number of layers and obtained the backbone segmentation.
Second, classify lumbar lordosis using a deep learning model.
It was built based on CNN and some trained models after
preparing the dataset through and lumbar lordosis angle (LLA)
calculation using the Cobb method. Then classify they were
classified into three categories: hyper lordosis, normal, and
hypo lordosis. Figure 3 shows a schematic diagram of the
proposed model. The proposed method for segmenting the
lumbar spine and classifying the curvature can be summarized
in Figure 4.

Cobb Method
Three Distinct Groups
‘ Deteclordose Model

Convolutional Neural Network

Binary Conversion

Thresholding Method

Figure 3. Techniques used for lumbar spine segmentation and lordosis classification
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Figure 4. Overview of the approaches proposed for lumbar lumber spine segmentation and classification of lordosis

3.3 Segmentation of lumbar spine data

The stage of segmenting the lumbar spine from MRI images
is an important step in diagnosing diseases such as lumbar
lordosis. It is a difficult task due to the similarity of the internal
structure of the tissues. Therefore, we proposed an approach
that focuses on the following stages:

3.3.1 Prepare spinal data

This stage is considered a basic stage in our model. It aims
to convert ground truth color images into binary. Thresholding
is the simplest method. The calculation time can be minimized
a more evaluation of the lumbar spine. This work utilizes a

threshold for segmenting images [24]. This is done by testing
each pixel of the image to see if its value is above or below a
certain threshold and producing a binary image that combines
the results. There are several ways to automatically detect the
threshold value to apply. One of the most widely used methods
is the Otsu method [25]. The automatic threshold value is
determined using the OTSU method based on the shape of the
image histogram. This method requires pre-calculation of the
image histogram to obtain a binary image containing only two
categories (lumber, spinal and background) [26]. We
determine the ideal threshold T that separates these two classes
through an iterative algorithm such that the maximum is the
variance between the classes, and the minimum is the variance
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within the class [27].
This stage can be summarized in Algorithm 1.

Algorithm1: Segmentation Using Global Thresholding

e  Choose a Threshold Value (Th):
This value distinguishes the foreground from the
background in a grayscale image. It can be determined
either manually or through automated methods such as
Otsu's algorithm.
Apply the Threshold (Th):
The selected threshold is applied to the grayscale image.
The outcome is a binary mask M(x,y). defined in Eq. (1),
which identifies the segmented areas.

1 ifI(x,y) >Th
0 othewise

M(x,y) = f(x) = { )

I (x,p) is the grayscale intensity at pixel (x,y),

This is the chosen threshold.

The binary mask M(x,y) highlights the foreground with
pixel values of 1, while background areas are assigned a
value of 0.

3.3.2 Data augmentation

Deep learning models perform better when trained on large
datasets. However, when only a small amount of data is
available, data augmentation can help improve performance
by increasing the variety of training examples [28].

In this work, we applied several geometric transformations
to expand both the training and testing datasets. These
transformations, shown in Table 1, include image rotation,
vertical flipping, and horizontal flipping. This approach helps
reduce overfitting and improves the model’s ability to
generalize

Table 1. Geometric operations applied to increase the
number of data, mentioning the field and unit of

measurement
Operation Interval/Valeur Unite
Rotate [—45°, +45°] Degré
Horizontal [—m, +m] Radian
Vertical [—m, +m] Radian

3.3.3 Lumbar spine segmentation
The method adopted for segmenting the lumbar spine from
MRI images is based on a Fully Convolutional Network (FCN)

of the encoder—decoder type, using the U-Net architecture [29].

We introduced a set of architectural modifications to the
original U-Net model by employing an encoder—decoder
structure composed of 23 layers: 10 in the encoder and 13 in
the decoder. The network consists of 18 convolutional layers
and 4 deconvolutional layers. The increase in the number of
layers was aimed at enabling the network to learn more
complex and fine-grained features, which is crucial given the
anatomical intricacies present in MRI images. All
convolutional and deconvolutional layers used filters of size
(3%3), a standard choice that offers an optimal balance
between computational efficiency and the ability to capture
local spatial patterns in medical images. In the encoder, the
number of filters was gradually increased: 16 filters in the first
two layers, followed by 32, then 64, 128, and finally 256 filters
in the last two layers. This design enables multi-level feature
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abstraction, from low-level details to higher-level semantic
representations. The decoder mirrored this progression in
reverse, using blocks that combine convolutional and
deconvolutional layers: starting with 128 filters, then 64, and
finally 32 filters in the last block. Deconvolutional layers were
employed to enhance the spatial resolution of the segmented
output and better preserve boundary details compared to
standard upsampling techniques. The ReLU activation
function was applied throughout to accelerate training, prevent
the vanishing gradient problem, and promote efficient
nonlinear learning. The Adam optimizer was chosen for its
stability and adaptive learning capabilities, with a learning rate
set to 0.001 and a batch size of 16. These hyperparameters
were selected after extensive experimentation with different
data split ratios, epoch counts, and optimizer configurations.
Overall, the proposed architectural enhancements, including
the systematic use of 3x3 filters, have proven effective in
improving segmentation performance for the targeted
anatomical regions. The various stages of the U-Net
architecture of our model are represented in Figure 5.

3.4 Prepare spinal data for classification

This stage is considered important before the classification
of lumbar lordosis from MRI images, is focuses on the
following stages:

3.4.1 Measurement of lumbar lordosis angle

After segmenting the lumbar spine from the MRI images,
we determined the angle LLA between the superior endplate S
and the superior endplate L1. Using the Cobb method, the
angle LLA was calculated to calculate the Cobb angle between
the upper limb S and the upper limb L1, i.e., calculate the LLA.
We must follow the following steps [29].

e Apply a Gaussian blur to the segmented spine image

to reduce noise.
Apply the Canny edge detector and adjust thresholds
as needed.
Find outlines in the image with edges.
Draw a blue line over the first edge and draw a red
line over the first points of the last line as shown in
Figure 6(A).
Calculate the slope of the extension of the blue and
red lines as shown in Figure 6(B) using the following
mathematical formula 2:

Y2y—-Y1y

M) = 2)

X2y—X1y

M represents the slope of the lines,

Y1y and Y2y: represent the rank on the y-axis

X1x and X2x: represent a comma on the x-axis.

e Draw two perpendicular lines along the blue and red
lines

The angle between two perpendicular lines was
calculated using the Cobb method as shown in Figure
6(C) using Eq. (3):

1

My, —Ms |

angle = tan™
1+Mp1Mg

3)
M, 4: is the slope of the L1 line,
Ms: is the slope of the line S.
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3.4.2 Automated lumbar lordosis classification

After calculating the LLA angle using the Cobb method,
we classified the data set into three categories based on the
angle measurement, where the typical range of normal
lumbar lordosis (LLA) angle extends from 39° to 53° [30].
It falls within Category 1, while angles greater than 53
degrees fall into the category of hyperhidrosis, which is
classified as Category 2. In contrast, hypohidrosis, for
angles less than 39 degrees, is classified as Category 1. As
shown in Algorithm 2.

Algorithm 2: Pseudocode for LLA Classification
Begin
Set LLA
If a <39°then
Assign Low_Angles, C10, Hypolordosis
Else
If o <53°
Assign Medium_Angles, Cl1, Normal lordosis
Else
Assign High Angles, C12, Hyperlordosis
End If
End If
end
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3.4.3 Augmentation and resizing the dataset

Given the limited size of our dataset (514 images), we
applied geometric data augmentation techniques, including
small-angle rotations (+5°, +7°, +10°) and zooming, to
expand the dataset to 2056 images, as detailed in Table 2
and Figure 7. These small rotation angles were not chosen
arbitrarily. In medical imaging, especially of the lumbar
spine, large angles (e.g., +90°, +180°) often produce
anatomically implausible images and can confuse the model.
Conversely, small-angle rotations preserve anatomical
consistency while introducing beneficial variability for
training. Our choice is supported by the study by Qin et al.
[31], which found the best segmentation performance at 10°,
with smaller angles (5°, 10°) yielding clinically realistic
results. Larger rotations (20°-30°) led to distortions that
reduced model accuracy. Therefore, the use of +5°, +7°, and
+10° angles in our work is both clinically relevant and
empirically optimal.

Table 2. Augmentation dataset methods

Operation Itervale/Valeur Unite
Rotation 10 Degré
Rotation 5 Degré
Rotation 7 Degré

Zoom 10% Pixel
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Figure 8. Normalize and resize images
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Figure 9. Architecture of the model ‘Deteclordose’

The second part at this stage is normalizing [32] and
adjusting the size of the data, as the CNN model works on
grayscale images, meaning that the value of each pixel is from
0 to 1. That is, the density of the images is limited to between
0 and 255, so we multiplied each image by 1/255 of the pixel
value. We also adjusted the data size from 320%x320 to
224%224 in the Figure 8 shows this.

3.5 Lumbar lordosis classification

The stage of classifying lumbar lordosis from MRI images
after initializing a data set. It is a necessary and basic stage in
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our research. To establish an accurate, excellent, and fast
method, we experimented with some trained deep-learning
models. We also built our model based on CNN, which gave
excellent efficiency and accuracy.

3.5.1 Classification of the spinal lumbar with “Deteclordose”

The proposed model is based on a convolutional neural
network (CNN) architecture specifically designed for
classifying images into three categories of lumbar lordosis
from MRI images. This architecture is optimized to handle
classification tasks with high precision while maintaining
computational efficiency. The proposed model consists of six



convolutional layers with 3x3 filters and ReLLU activation,
increasing the filters from 32 to 512 and 2x2 pooling layers to
reduce complexity. The fully connected layer uses a dense
layer with 128 neurons and Dropout at 50% to prevent
overfitting. The output layer, with Softmax activation,
classifies the images into three classes, ensuring high precision
and computational efficiency. The optimal results were
achieved after conducting multiple tests that involved
adjusting the dataset split ratio, epoch size, batch size, learning
rate, and optimizer. The best configuration included a dataset
split of 80% training and 20% testing, a batch size of 32, an
epoch size 0f 200, a learning rate of 0.001, and using the Adam
optimizer [33]. The architecture of the proposed ‘Deteclordose’
model is illustrated in Figure 9.

3.5.2 Classification of the spinal lumbar with transfer learning

To know the efficiency and accuracy of the proposed model
for classifying lumbar lordosis in magnetic imaging images,
we exploited some pre-trained deep learning models for image
classification to solve the problem of relatively small data and
long training time [34], DenseNet121 [35], VGG16 [36], and
VGG19 [37], were used. Table 3 shows the architectural
explanation of the different models used.

Table 3. Architecture of some pre-trained models

Models Input Size Output Size No. of Layers
DenseNel2l [224,224 3] [3, 1] 121

VGGI19 [224,224,3] [3, 1] 19

VGGI16 [224,224,3] [3, 1] 16

3.6 Evaluation criteria

Our model is evaluated by calculating the precision (p) and
loss error (ME), where p is the matching ratio between the
segmentation regions and the ground truth images used as
reference. The accuracy (precision) is calculated according to
the following Eq. (4):

real positive

“4)

~ total expected positive

The accuracy value is limited to [0,1]. The better the
segmentation and classification, the greater the accuracy.

ME represents the loss error between the expected ground

and truth values. The lower the ME percentage, the more

accurate the result will be.
ME is calculated by Eq. (5):

1 _ —
= X5 -1 (5)
L = total number of images
i: the expected lumbar spine segment
Y: the ground truth of the lumbar spine
Precision (p) is the ratio of true positives to the total number

of positive predictions. It is calculated using the formula Eq.

(6):

True Positives

" Total Positive Predictions

P (6)

Recall (R), also known as the true positive rate or sensitivity,
is the quotient of the true positives by the sum of the true
positive and false negatives. It is calculated using the relation

Eq. (7):
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True Positives

" True Positives+False Negatives

(7

Flscore is the harmonic average of recall and precision.
Thanks to it a scale is provided that weighs between both
scales. It is calculated by the relation Eq. (8):

2x(PxR)
P+R

Flscore =

®)
3.7 Overfitting mitigation strategies

Given the relatively small size of the dataset (514 images),
several strategies were employed to reduce the risk of
overfitting and ensure the model’s generalization capability.
These include:

e Data Augmentation: Techniques such as small-angle
rotations and zooming were applied to artificially
increase the diversity of training images and
introduce realistic variations, thereby improving
generalization.

Train/Test Split: A carefully considered split was
used to ensure balanced and fair evaluation between
the training and testing phases.

Early Stopping: Training was monitored on a
validation set, and the process was halted when
performance ceased to improve, preventing the
model from over-adapting to the training data.
Dropout Regularization: A dropout rate of 0.5 was
used in the classification stage to deactivate random
neurons during training, helping to prevent over-
reliance on specific features.

While these measures help mitigate overfitting.

3.8 Environment experimental

Our model was implemented in Python, using TensorFlow,
which is an image-processing library. First, in the stage of
preparing the spinal data, we used Jupyter, and to divide the
database, we used Spyder in Anaconda, and this was on a
laptop equipped with a fast Intel(R) Core (TM) i7-6500U
processor. 2.50 GHz, 2601 MHz core, 4 logical processors,
and RAM. 8.00 GB installed. Train U-Net was done on a colab
platform with a type of processor GPU.

4. RESULTS AND DISCUSSION

Different deep-learning methods were used to segment and
classify the lumbar spine in a dataset to improve and increase
the accuracy of diagnosis.

4.1 Segmentation spine lumbar

Deep learning technology was applied to the dataset. This is
after converting the color ground images into binary images
using the thresholding method, where the threshold value was
set to 82.08, which was determined by Otsu, which is the
dividing value between the two categories: the lumbar spine
and the background of the image. We then applied geometric
techniques to increase the Amount of data. Finally, we trained
the model to segment the lumbar spine.

Figure 10 represents some of the colored ground truth
images and their conversion into binary images. This is after
setting the threshold value of 82.08 so that we obtain an image



with two categories; the value greater than the threshold value
represents the lumbar spine, and the value less than the
threshold value represents the background of the image.

Figure 10. Normalize the images

After applying operations to the augmentation dataset, 2036
images were obtained out of 509 images. Figure 11 shows
some of the images to which geometric operations to
augmentation.

Rotate(limit=45)

Horizontal Vertical

Image Original

Figure 11. Normalize and resize images

The curves of Figure 12 and Figure 13 show a graphical
representation of the change in the training accuracy result and
the validation training loss result, respectively, as a function of
20 epochs divided into 30% testing and 70% training.

We notice that the accuracy percentage increases to 99.20%,
and starting from the eighth epoch, the two curves begin to
match, as shown in Figure 12. We notice that the loss rate
decreases to 0.02% in Figure 13, and the two curves match
starting from the eighth epoch.

Training and Validation Accuracy Curve

—&— Tain Accuracy
Validation Accuracy

v

— e
— ¥

Accuracy

50 75 10.0

Epoch

12.5

Figure 12. Training and validation accuracy result (30%
testing and 70% training)

The curves of Figure 14 and Figure 15 show a graphical
representation of the change in the training accuracy result and
the validation training loss result, respectively, as a function of
20 epochs divided into 20% testing and 80% training. We
notice that the accuracy percentage increases to 99.30%
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accuracy, and starting from the Third epoch, the two curves
begin to match, as shown in Figure 14. We notice that the loss
rate decreases to 0.025% in Figure 15, and the two curves
match starting from the third epoch. These are good results
compared to the results of the division (30% testing and 70%
training), which showed an overfit in the results, which led to
the loss of some information about the shape of the spinal
vertebrae, in contrast to the results of the division (20% testing
and 80% training).

Training and Validation Loss Curve
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&~ Tain Loss

Validation Loss
0.175

0.150

0125

0.100

Loss

0075
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0.025

0.000

50 75 175 0.0

Figure 13. Training and validation loss result (30% testing
and 70% training)

Accuracy per Epoch - u_net
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Figure 14. Training and validation accuracy result (20%
testing and 80% training)
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Figure 15. Training and validation loss result (20% testing
and 80% training)

We noticed in Figure 16 that there was overfitting in the
results, which led to the loss of some information, which
appeared in the form of a missing part in the spine
segmentation image, as shown by the circle in Figure 16(a), in
contrast to the results of u_net, where the results were good
and appear This is due to the accuracy of the segmentation of



the spinal vertebrae, which appeared clearly as shown in
Figure 16(Db).

Input image

(b)

Figure 16. (a) prediction with 30% test and 70% training, (b)
prediction resulting with 20% test and 80% training

4.2 Comparison of the model’s segmentation

The comparison between our proposed methodology and
previous approaches demonstrates its superior effectiveness.
Our method relies on converting color ground truth images
into binary masks using thresholding and the Otsu method,
followed by accurate segmentation of the lumbar spine region
from MRI images. In contrast, Sudirman et al. [1] employed a
hybrid model combining YOLOvS, HED, and U-Net for
vertebrae detection and segmentation. Meanwhile, Wang et al.
[38] introduced an enhanced strategy based on U-Net++ to
improve U-Net performance in spinal segmentation from MRI
scans, with their results detailed in Table 4, and U-Net [39]
stands out as one of the most effective architectures for
biomedical image segmentation, due to its encoder—decoder
structure and skip connections that preserve spatial
information.

To assess the impact of our structural modifications, we
restructured the baseline U-Net model to include 24 layers,
among which 18 are convolutional, while keeping other
parameters, such as kernel size, unchanged, and using the
ReLU activation function in all convolutional layers. After
retraining the modified model on the same dataset with a
learning rate of 0.001 and a batch size of 16, it achieved an
accuracy of 94.29%, which is significantly lower than that of
our proposed model.

This considerable performance gap highlights the
effectiveness of the architectural improvements we introduced

Training and Validation Accuracy for DenseNet121

and confirms their essential contribution to enhancing
segmentation quality. Based on these results, our proposed
method offers practical and valuable benefits to physicians and
medical specialists by supporting diagnostic processes and
facilitating the early detection of spinal disorders.

Table 4. Comparison of the results of different segmentation

methods
Year Authors Category Approach Accuracy
2022 Sudirman et MRI YOLOVS- 74.5%
al. [1] HED-UNet

2023 Wang et al. MRI U-Net 86.2%
[38]

2023 Wang et al. MRI U-Net++ 88%
[38]

2025 This work MRI Modified U- 94.29%

Net
2025 This work MRI Threshold + 99.3%
(Proposed) U-Net

4.3 Classification of lordosis lumbar

Figure 17 shows the results obtained for DenseNetl21,
VGG19, and VGG16 in terms of accuracy and loss as a
function of the number of epochs. In Figure 17(a), we see the
results for DenseNetl21, where training stopped after 34
epochs due to early stopping and the accuracy reached 87%.
In Figure 17(c), for VGG19, training stopped after 40 epochs
out of 200, with an accuracy rate of 83%. For the VGG16
model, as shown in Figure 17(e), the accuracy reached 90%
after 50 epochs.

Figure 17(b) shows the loss results as a function of the
number of epochs for DenseNet121, which reached 0.5%. For
VGG19, as shown in Figure 17(d), the loss was 0.45%. For the
VGG16 model, as shown in Figure 17(f), the loss percentage
was 0.25%.

After training the Deteclordose model, the accuracy and
loss results were obtained, as shown in Figure 18. In Figure
18(a), the accuracy results are shown, where the accuracy rate
reached 96% after 100 epochs, which is a significant
improvement compared to the previous models. In Figure
18(b), the loss rate was 0.25%, while in the Deteclordose
model, the loss rate was 0.1%, which is the best result
compared to the previous models.

Training and Validation Loss for DenseNet121
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(a) Training and validation accuracy DenseNet121 result
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(b) Curve histogram of training and validation loss for
DenseNet121 result
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Figure 17. The accuracy and loss results obtained for: DenseNet121, VGG19, and VGG16
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Figure 18. Results accuracy and loss from Deteclordose
The confusion matrix evaluates the performance of the “Hyper” and “Hypo” classes. VGG19 has notable difficulties

classification models “DenseNet121,” “VGG16,” “VGG19,” with the “Hypo” class, as shown in Figure 19(c). The Detect
and “Detect LORDOSE” for three classes: “Hyper,” “Hypo,” LORDOSE model works better overall, but still has some

and “Normal.” In Figure 19(a), DenseNet121 has difficulty issues, especially in the “Normal” category. In general, as
with accuracy, especially in distinguishing between classes. In shown in Figure 19(d), it achieved the best performance
Figure 19(b), the VGG16 confusion matrix shows significant compared to its predecessors.

misclassifications, especially in distinguishing between the
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Figure 19. Confusion matrices for each DenseNet121, VGG16, VGG19, Deteclordose

4.4 Comparison of the model’s classification

Model Performance Comparison shows the performance of
four different models for a classification task, evaluated on
several metrics: accuracy, loss, precision, recall, and F1 score
(Table 5). Here is a brief commentary on the results:

Table 5. Model performance comparison

Model Accuracy Loss Precision Recall F1 Score
DenseNet121 87% 50% 56% 56% 55%

VGGI19 83% 45% 51% 52% 50%

VGG16 90% 25% 52% 53% 53%

DeteclLordose 96% 10% 92% 94% 93%

DenseNet121: Shows a good accuracy of 87%, but its other
performance metrics (precision, recall, and F1 score) are quite
low (around 55-56%), indicating poor overall performance
despite good accuracy. VGG19: Shows overall lower
performance with an accuracy of 83% and precision, recall,
and F1 score scores around 50-52%. The loss is 45%,
suggesting moderate effectiveness. VGG16: Obtains a better
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accuracy of 90% with precision, recall, and F1 score scores
slightly higher than those of VGG19 but still low (around 52-
53%). The loss is relatively low at 25%.

DetecLordose: Stands out significantly from other models
with an accuracy of 96%, very high precision, recall, and F1
scores (92-94%, 93% respectively), and a very low loss of
10%, indicating superior performance in all aspects assessed.

Here we analyze and compare the results of the confusion
matrix for the classification model, where:
e TP (True Positives): Number of patients with
lumbar lordosis correctly classified as positive.
o FP (False Positives): Number of healthy cases
incorrectly classified as having lordosis.
e FN (False Negatives): Number of lordosis cases
incorrectly classified as healthy.
e TN (True Negatives): Number of healthy cases
correctly classified as negative.
The confusion matrices for the DenseNetl21, VGGI16,
VGG19, and Deteclordose models are shown in Figure 19.
After analyzing the confusion matrix results presented in



Table 6, it is evident that the proposed model, DetectLordose,
significantly outperforms the baseline models (DenseNet121,
VGG19, and VGGI16) in classifying the three categories:
Hyperlordosis, Normal lordosis, and Hypolordosis. The model
demonstrated very high accuracy, achieving high true positive
(TP) rates and notably low false positive (FP) and false
negative (FN) rates, particularly for the Hyperlordosis class,
where no FP cases were recorded. In contrast, the
DenseNet121 model struggled to distinguish between classes,
with high FP and FN values, especially in the Hyper and Hypo
categories. VGG19 performed slightly worse, exhibiting
higher misclassification rates, likely due to overlapping visual
features across classes. VGG16 showed a relative
improvement over VGG19 and DenseNetl21, but still
suffered from notable classification errors.

These classification errors are primarily due to class
imbalance in the dataset, visual and anatomical similarity
between the different lordosis categories, and structural
limitations of conventional models in extracting
discriminative features. The error rate can be reduced through
several possible solutions, such as data augmentation, class
rebalancing, and improving the model architecture, to enhance
classification accuracy and minimize misclassification rates.
The outstanding performance of the proposed DetectLordose
model is mainly attributed to its specialized design, enhanced
architecture, advanced training configuration, and optimal
tuning of training parameters, all of which contributed to
achieving strong results.

Table 6. Detailed model performance

Normal-

Hyperlordosis lordosis Hypolordosis
Model TP FP FN TP FP TP FP FN
N FN TN N
91 48 101 87 85 37 52 53 48
Densenet121 176 207 263
87 56 105 84 91 41 57 59
VGGI9 168 40 201 259
109 62 83 63 65 52 65 48
VGGl6 162 61 227 251
172 0 20 120 23 9% 5 4
Detectlordose 274 4 269 311

Although model accuracy is a key performance indicator,
the comparison also considered computational and practical
aspects relevant to clinical deployment. Table 7 summarizes
the performance and efficiency metrics of the proposed
Deteclordose model compared to widely used pre-trained
models (VGG16, VGG19, and DenseNet121).

The results demonstrate that Deteclordose outperforms the
other models in terms of accuracy, achieving 96%, compared
to 90% for VGG16 and 87% for DenseNetl21. While the
number of parameters in Deteclordose (23.91 million) is not
the lowest, it remains within an acceptable range and is
significantly lower than that of DenseNet121 (32.79 million).
Furthermore, the model size (91.14 MB) is moderate—larger
than VGG16 but smaller than DenseNetl21—making it
suitable for integration into clinical systems without requiring
substantial computational resources.

In light of these findings, Deteclordose can be considered
the most balanced solution, combining high accuracy with
computational efficiency. This balance makes it a strong
candidate for clinical applications that require reliable
precision, quick response times, and deployment in

environments with limited hardware capacity.

Table 7. Comparison of deep learning models based on
accuracy, parameters, and model size

Paramétres Model Size
Model Accuracy (Millions) (MB)
VGGl6 90% 17.93 68.38
VGGI19 83% 23,23 88.58
DenseNet121 87% 32,79 125.10
Deteclordose 96% 23.91 91.14

1745

4.5 Discuss the classification results

The results indicate that the Detect model, especially with a
dropout of 0.5, outperforms the other models in terms of all
performance metrics. This superiority is visible in the higher
values of precision, recall, and F1 score, as well as in the
confusion tables, which show minimal errors. The
DenseNet121, VGG19, and VGG16 models, while performing
well in some metrics like accuracy, exhibit significant
weaknesses in precision, recall, and F1 score, as well as higher
rates of FP and FN.

4.6 Limitations and future work

Despite the promising outcomes achieved in this study,
several limitations must be acknowledged. A major limitation
is that the dataset was collected from a single medical
institution—namely, Irbid Specialist Hospital in Jordan. This
raises concerns about potential demographic bias and limits
the generalizability of the findings to broader and more diverse
populations. Moreover, the study did not account for
variations in MRI scanner types, imaging protocols, or clinical
and demographic characteristics of patients that may differ
across healthcare institutions.

In addition, the proposed method has not yet been evaluated
within real-world clinical workflows, such as integration with
Picture Archiving and Communication Systems (PACS) or
assessment by  practicing  radiologists.  Practical
implementation barriers, such as processing time and
hardware requirements, were also not addressed, yet they are
essential for the deployment of Al-based systems in clinical
environments.

Future work should aim to incorporate multi-center datasets
from diverse geographical and institutional contexts, validate
the model in actual clinical settings, and optimize
computational performance to ensure efficiency and real-time
applicability. Furthermore, collaboration with healthcare
professionals will be critical to assess the system’s clinical
utility and to guide its integration into existing radiological
workflows

5. CONCLUSION

In our research, we proposed a model that segments the
lumbar spine and classifies lumbar lordosis from MRI images.
This is to help doctors and specialists in the early and rapid
detection of lumbar spine diseases using deep learning
algorithms. First, in order to segment the lumbar spine, we
relied on the deep learning architecture of the programmer and
decoder, which we designed by increasing the depth of the
layer. Additionally, leveraging the Threshed and Otsu
methods, we carefully prepared the dataset, converting color



ground truth images into binary representations to serve as
segmentation masks during model training. To enhance the
accuracy, we expanded the dataset using geometric techniques
applied to the images. It is worth noting that our model
underwent rigorous testing on the dataset of a patient with
spinal diseases, resulting in commendable effectiveness in
terms of accuracy and loss, achieving an impressive result of
99.3%. To classify lumbar lordosis, we calculated the lumbar
angle using the Cobb method, and then we classified the data
set into three groups: hyperhidrosis/hyperhidrosis / normal
lordosis, according to the angle measurement. Then we trained
our proposed model called Deteclordose to classify lumbar
lordosis from MRI images. Achieved an impressive score of
96%. Moving forward, our research methods extend to the
segmentation and classification of pelvic, thoracic, and
cervical spine pathology from MRI images, providing
potential applications in the early identification of spinal
deformities to alleviate the necessity of invasive surgical
interventions. However, future endeavors should address
limitations such as scalability and generalizability to diverse
patient populations while exploring ways to improve
computational efficiency and robustness in real-world clinical
settings.

ETHICAL APPROVAL AND DATA AVAILABILITY

The MRI dataset used in this study was obtained from an
open-access source and contains no personally identifiable
patient information. Therefore, by the data provider’s terms of
use, ethical approval and prior patient consent were not
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The dataset [21] is freely available at the following link:
https://data.mendeley.com/datasets/k3b363f3vz/2.

We reaffirm our full commitment to scientific ethics and
internationally recognized standards in the use of medical
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NOMENCLATURE

MRI Magnetic Resonance Imaging

CT Computed Tomography

LLA Lumbar Lordosis Angle

FCN Fully Convolutional Network

CNN Convolutional Neural Network

ReLU Rectified Linear Unit (activation function)

Th Threshold

VGG19 Visual Geometry Group 19-layer network

VGG16 Visual Geometry Group 16-layer network

DenseNetl121  Densely Connected Convolutional Network
with 121 layers

YOLOVS You Only Look Once, version 5 — a real-



HED

U-Net

time object detection model known for
speed and accuracy

Holistically-Nested Edge Detection — a
deep network for detecting semantic edges
in images

Convolutional network architecture for

1748

U-Net++

biomedical image segmentation with
encoder-decoder  structure and  skip
connections

Enhanced version of U-Net with nested and
dense skip connections for better feature
fusion





