
An Automated Mucilage Detection Model Using Deep Convolutional Neural Network: 
TuncerNeXt 

Mert Gurturk1* , Veysel Yusuf Cambay2 , Rena Hajiyeva3 , Sengul Dogan2 , Turker Tuncer2

1 Civil Engineering Department, Engineering Faculty, Adiyaman University, Adiyaman 02020, Turkey 
2 Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig 23119, Turkey 
3 Department of Information Technologies, Western Caspian University, Baku AZ1001, Azerbaijan 

Corresponding Author Email: sdogan@firat.edu.tr 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 
(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420310 ABSTRACT 

Received: 24 July 2024 
Revised: 23 October 2024 
Accepted: 8 November 2024 
Available online: 30 June 2025 

Convolutional Neural Networks (CNNs) are distinguished for their exceptional performance 
in image classification. A number of these models have been developed, drawing inspiration 
from seminal works. This research introduces an innovative CNN model that integrates 
attention mechanisms specifically tailored for detecting mucilage on the ocean surface. To 
facilitate this research, a comprehensive dataset was assembled from 15 disparate ports, 
segmented into three distinct categories: the presence of mucilage, sea surface without 
waves, and sea waves. The rationale for including the sea wave category is to augment the 
accuracy of the proposed CNN model by accounting for the morphological similarities 
between sea waves and mucilage. The developed model, termed TuncerNeXt, comprises 
four principal components: a stem, TuncerNeXt blocks, downsampling stages, and an output 
phase. The novelty of TuncerNeXt resides in its fusion of attention mechanisms with 
residual blocks, taking cues from the structural design of ConvNeXt's principal block. This 
innovative approach has resulted in TuncerNeXt being a streamlined CNN model, boasting 
approximately 2.1 million adjustable parameters, rendering it an efficacious approach for 
image classification endeavors. Upon evaluation with the compiled dataset, TuncerNeXt 
achieved a validation accuracy of 97.60% and a test accuracy of 98.66%. 
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1. INTRODUCTION

Mucilage, a jelly-like substance produced by various marine 
organisms, poses an ecological problem [1, 2]. Mucilage can 
significantly impact marine ecosystems primarily as a defense 
mechanism against predators or environmental stressors [3]. It 
consists of a complex mixture of organic and inorganic 
substances originating from phytoplankton, zooplankton, and 
bacteria [4]. The formation of mucilage causes clogging of 
fishing nets and boat propellers. It also seriously threatens 
marine life by choking coral reefs and other habitats [5]. For 
example, it can hinder the respiratory function of fish and other 
marine creatures by clogging their gills and depleting oxygen 
levels in marine habitats, thus compromising their survival [6]. 
The formation of mucilage events is complex and not fully 
resolved. However, several contributing factors have been 
identified, including nutrient pollution from excess nitrogen 
and phosphorus, which promotes the growth of mucilage-
producing organisms. Climate change, manifested as higher 
water temperatures and increased ocean acidification, also 
affects the proliferation of these organisms. Overfishing of 
mucilage-consuming species can lead to uncontrolled 
increases in mucilage production [7, 8].  

Monitoring mucilage events poses significant challenges 
due to the laborious and expensive nature of traditional 
methods such as ship-based surveys and satellite image 

analysis [9, 10]. In contrast, automatic mucilage detection 
models are emerging as a more efficient and cost-effective 
solution. With advancing technology, advanced Convolutional 
Neural Networks (CNNs) have made significant progress, 
especially in marine conservation [11]. CNNs can achieve 
great success in image recognition and classification [12-14]. 
In particular, CNNs are used to detect complex natural 
formations such as mucilage on the sea surface [15]. A CNN-
based approach was proposed in this study due to its ability to 
detect complex patterns and structures in images. From simple 
edge detection to increasingly complex object recognition 
features, CNNs can delve deeper into images, performing 
layer-by-layer feature extraction [16]. This approach can even 
distinguish subtle differences between mucilage and other 
natural formations on the water surface, vital for monitoring 
and managing marine pollution. Therefore, a CNN-based 
model provides a powerful, effective, and accurate solution for 
this task [17]. 

In this study, we developed TuncerNeXt to detect mucilage, 
a jelly-like substance found in the oceans produced by some 
marine plants and bacteria that pose problems for marine life 
and human activities. Using advanced Convolutional Neural 
Networks (CNNs), TuncerNeXt analyzes ocean images to 
identify mucilage accurately. To improve TuncerNeXt's 
learning process, a large dataset of ocean images from 15 
different locations was compiled. Our results demonstrate the 
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high accuracy of TuncerNeXt, making it a useful tool for 
researchers and others monitoring ocean health. This advance 
contributes to the conservation of marine ecosystems by 
providing new information on understanding and managing 
mucilage. 

1.1 Related works 

New machine learning models have been proposed in the 
literature to solve problems in different disciplines [18-20]. 
Some machine learning-based mucilage detection models 
developed in the literature are presented as follows. Yilmaz et 
al. [21] employed a cloud-free Sentinel-2 image and 
innovative water-related spectral indices (NDTI, NDWI, and 
AMEI) within a CNN model to detect marine mucilage 
formations in the Dardanelles Strait, Turkey, achieving 
classification accuracies up to 98%. Using the AMEI index 
notably enhanced mucilage detection accuracy, as validated by 
explainable AI techniques such as SHAP and integrated 
gradients, demonstrating the potential of integrating remote 
sensing and deep learning for environmental monitoring. 
Kikaki et al. [22] focused on utilizing the MADOS benchmark 
dataset, which comprised high-resolution multispectral 
Sentinel-2 data collected between 2015 and 2022. Their 
dataset included approximately 1.5 million annotated pixels 
across 174 scenes, encompassing a diverse range of pollutants, 
sea surface features, and global water-related thematic classes 
under various weather conditions. Their deep learning 
framework, MariNeXt, based on recent architectural 
advancements for semantic segmentation, was proposed and 
demonstrated to outperform all baselines by at least 12% in F1 
and mIoU metrics. Colkesen et al. [23] suggested a 
comprehensive approach for mapping floating algal blooms in 
Lake Burdur, Turkey, by analyzing seven Sentinel-2 images 
selected through time series analysis on the Google Earth 
Engine platform. Their methodology integrated both index-
based mapping, using indices like FAI, AFAI, SABI, and 
ABDI, and classification-based mapping with algorithms such 
as RF, XGBoost, and LSTM. This approach successfully 
detected high-density floating algae formations with an 
accuracy exceeding 99% for both methods, highlighting pixel-
based classification's particular efficacy for low-density 
blooms. The findings underscore the utility of merging 
spectral indices and machine learning techniques in 
environmental monitoring tasks, notably for the precise 
mapping of algal blooms in freshwater bodies. Figueroa et al. 
[24] explored phytoplankton detection in freshwater using
deep learning, employing Faster R-CNN and RetinaNet on a
dataset of 293 images capturing diverse species and
conditions. Their study demonstrated Faster R-CNN's
superiority in precision and recall, achieving up to 95.35%
recall and 94.68% precision for specific phytoplankton types.
Tokatlı et al. [25] assessed organic contaminants in the
Çanakkale Strait Basin, Turkey, to understand the mucilage
threat, analyzing water samples for eight parameters in spring
2023. They used indices like NPI, WQI, HQ, and HI for water
quality and health risk assessment. Their research found
increased organic pollution from upstream to downstream,
with Çanakkale Stream being the most polluted, yet indicated
minimal non-carcinogenic health risks for humans.

1.2 Literature gaps 

The identified literature gaps according to the reviewed 

literature are: 
- There is stagnation in proposing new-generation CNN

[26-28] models since many researchers have used
transformers to classify images due to advancements in
large language models, vision transformers [29], and
Swin transformers [30]. Moreover, champion CNNs
already achieve very high classification performances.
Therefore, most researchers have not proposed new-
generation CNNs.

- Mucilage is a global problem for the seas. Some
researchers have proposed mucilage detection models
using deep learning and machine learning, but the number
of these studies is limited.

- Mucilage detection models have generally been applied
with two classes.

1.3 Motivation and study outline 

The objective of this study is twofold: to enhance mucilage 
detection on the ocean's surface and to contribute significantly 
to advancing the domain of image classification within marine 
science. Mucilage, a gelatinous substance secreted by marine 
algae, poses increasing threats to marine ecosystems by 
obstructing the movement of marine organisms, reducing 
sunlight penetration, and decreasing oxygen levels in aquatic 
environments. These adverse effects highlight the critical need 
for effective detection and monitoring strategies, thereby 
motivating the development of a sophisticated model adept at 
identifying mucilage under the complex conditions of the sea 
surface. 

In response to the limitations of existing detection methods 
and the imperative for enhanced accuracy, this research 
undertakes the compilation of a comprehensive dataset that 
accurately reflects the intricacies of marine settings. 
Unparalleled in its breadth and specificity, the dataset 
encompasses images of mucilage, unblemished sea surfaces, 
and sea waves sourced from 15 distinct ports across the globe. 
Such varied data ensures that our TuncerNeXt model benefits 
from exposure to a broad spectrum of maritime conditions, 
thereby improving its precision and reliability. 

TuncerNeXt marks an innovation in CNN architecture, 
challenging the current stagnation in the field by merging the 
robust features of CNNs with the sophisticated capabilities of 
transformer models. By integrating a novel attention 
mechanism and a modified ConvNeXt block [31], 
TuncerNeXt accentuates essential attributes within image data, 
leading to markedly accurate classification results. The 
model's design emphasizes scalability, allowing adjustments 
to meet diverse computational demands without sacrificing 
efficacy. This scalability, coupled with the incorporation of 
transformer-like features, establishes TuncerNeXt as an avant-
garde approach to addressing the complex challenge of 
detecting marine mucilage.  

1.4 Novelties and contributions 

The innovative aspects and contributions of this research are: 
Novelties: 

- A comprehensive dataset of mucilage images has
been compiled, serving as a foundational resource for
future endeavors in mucilage detection research.

- An attention-based CNN model has been introduced,
with its classification efficacy validated on the newly
curated mucilage image dataset.
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Contributions: 
- Recognizing the challenges in computer vision, this study

employs a novel deep-learning strategy to address an
environmental concern: the detection of mucilage. Given
the extensive areas of seas and the limited resolution of
satellite images for accurate mucilage identification, our
investigation presents a specialized detection model
suited for deployment on Unmanned Aerial Vehicles
(UAVs). This approach utilizes a distinctive dataset of
mucilage images acquired through UAVs, incorporating
sea wave images to bolster the model's detection
robustness.

- Additionally, this research contributes a significant
methodological advancement to the field of CNNs by
creating TuncerNeXt, an innovative CNN model. Despite
being designed for minimal computational load, with
roughly 2.1 million parameters, TuncerNeXt showcases
remarkable accuracy, achieving 98.66% on test datasets
and 97.60% on validation datasets utilizing the assembled
mucilage images. This achievement highlights
TuncerNeXt's operational efficiency and its potential
impact on environmental monitoring tasks.

2. MUCILAGE IMAGE DATASET

For this investigation, we developed a unique dataset
consisting of mucilage imagery collected from 15 different 
ports with a particular focus on the Sea of Marmara. This focus 
was strategically chosen due to the Sea of Marmara's 
characteristics as a semi-enclosed sea, where instances of 
mucilage have been increasingly reported, largely attributed to 
pollution from Istanbul and surrounding urban locales. The 
dataset organizes the images into three distinct categories: 
mucilage presence, clear sea surfaces, and sea wave scenarios, 
aiming to support a thorough examination of mucilage 
detection across varied maritime conditions. 

This dataset embodies a heterogeneous assortment of 
images, systematically classified into the aforementioned 
three categories, as detailed in Table 1. 

Table 1. The distribution of the collected mucilage image 
dataset 

No. Class Train Test Total 
1 Mucilage 2051 680 2731 
2 Clean sea cover 3374 1120 4494 
3 Sea wave 1560 515 2075 

Total 6985 2315 9300 

As shown in Table 1, the dataset displays class imbalance, 
a prevalent issue in machine learning research, which our 
methodology seeks to mitigate. Additionally, Figure 1 
presents exemplary images from each category, visually 
representing the dataset's diversity.  

(a) Mucilage (b) Clean sea cover (c) Sea wave

Figure 1. Sample images of the collected dataset

Beyond mere collection and categorization, substantial 
effort was expended on the precise segmentation of the images 
into their respective classes. This process utilized automated 
methodologies and manual validation to guarantee the 
dataset's integrity and applicability for training and evaluative 
purposes. Focusing on the Sea of Marmara reflects the 
geographical significance of mucilage occurrences and 
augments the dataset's specificity, facilitating the development 
of more effective detection models. The compilation of this 
dataset constitutes a pivotal advancement in enhancing both 
scientific comprehension and technological proficiency in 
tackling the ecological issue of mucilage within marine 
settings. 

3. THE PROPOSED CNN MODEL: TUNCERNEXT

The principal innovation of this study is the introduction of
TuncerNeXt, a new-generation CNN model. To design 
TuncerNeXt, a strategic roadmap was developed, beginning 
with inspiration from attention mechanisms known to enhance 
classification performance significantly. In the second phase, 
we employed a modified ConvNeXt block and integrated it 
within an attention framework. Subsequently, the model 
incorporates a block inspired by transformer technology, 
specifically an inverted bottleneck block, to further refine its 
capabilities. To elucidate the architecture of the main block 
within TuncerNeXt, Figure 2 provides a graphical 
representation, offering a clear visual outline of its structure. 

The mathematical definition of the proposed main block of 
the TuncerNeXt is given below: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵 �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐶𝐶(𝐼𝐼𝐼𝐼, 1,𝐹𝐹)��

× 𝐵𝐵𝐵𝐵 �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐶𝐶(𝐼𝐼𝐼𝐼, 1,𝐹𝐹)�� 
(1) 

Figure 2. Graphical explanation of the presented main block. 
Herein, F: Number of filters, Concat: Depth concatenation, 
Grouped: Grouped convolution, BN: Batch normalization, 

GELU: Gaussian error linear unit 
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Herein, the attention (𝐴𝐴𝐴𝐴𝐴𝐴) output is derived by deploying 
1×1 convolutions, batch normalizations, sigmoid functions 
(activations), and multiplication operators. Where 𝐼𝐼𝐼𝐼: input 
data and 𝐶𝐶(. , . , . ) : convolution. The convolution function 
takes three parameters: (i) input, (ii) filter size, and (iii) 
number of filters.  After that, we have proposed a modified 
ConvNeXt block and to add the ConvNeXt features to these 
attention features.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡1 = 𝐵𝐵𝐵𝐵�𝐶𝐶(𝐼𝐼𝐼𝐼, 3,𝐹𝐹)� (2) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡2 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐶𝐶(𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡1, 1,4𝐹𝐹)� (3) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡3 = 𝐵𝐵𝐵𝐵�𝐶𝐶(𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡2, 1,𝐹𝐹)� (4) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡3 + 𝐼𝐼𝐼𝐼 (5) 

𝑂𝑂𝑂𝑂𝑡𝑡1 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝐴𝐴𝐴𝐴𝐴𝐴) (6) 

We have used 3×3, 1×1, and 1×1 convolutions to create an 
inverted bottleneck. Moreover, we have concatenated the 
generated ConvNeXt features (NeXt) to attention features, and 
we have created the first output (𝑂𝑂𝑂𝑂𝑡𝑡1).  

In the third step of the proposed TuncerNeXt block, we have 
proposed a transformer-like block and we have been inspired 
by the swin transformer to propose this block. This block is a 
modified version of the swin transformer block since we have 
used 3×3 (depth-wise convolution) and 1×1 (pixel 
convolution). Also, we have used a convolution-based residual 
block in this step. 

𝑇𝑇𝑟𝑟1 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐵𝐵𝐵𝐵(𝑂𝑂𝑂𝑂𝑡𝑡1) + 𝐶𝐶(𝐵𝐵𝐵𝐵(𝑂𝑂𝑂𝑂𝑡𝑡1), 3,2𝐹𝐹)
+ 𝑂𝑂𝑂𝑂𝑡𝑡1) (7) 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐵𝐵𝐵𝐵�𝐶𝐶(𝑇𝑇𝑟𝑟1, 1,𝐹𝐹)� + 𝐼𝐼𝐼𝐼� (8) 

where, 𝑇𝑇𝑟𝑟1: the first transformer output and Out: the output of 
the presented main block.  

By using this main block, we have proposed a new CNN 
model, which is termed TuncerNeXt. The graphical 
explanation of the presented TuncerNeXt is depicted in Figure 
3. 

As illustrated in Figure 3, the architecture of TuncerNeXt 
comprises four main blocks and three downsampling blocks to 

derive feature vectors. The output block utilizes pixel-wise 
convolution, a convolution-based residual layer, global 
average pooling, a fully connected layer, and a Softmax 
function for classification outcomes. Furthermore, the 
mathematical representation of TuncerNeXt is detailed in 
Table 2.  

Table 2 demonstrates the mathematical definition of the 
proposed TuncerNeXt. Per Table 2, the total trainable is 
calculated as 2.1 million. The explanation of these phases is 
given below.  

Stem: This initial layer preprocesses the input image (224 × 
224 pixels, RGB). It applies a 7×7 convolution with 64 filters, 
followed by batch normalization (BN) and GELU activation, 
downsampling the input to 56 × 56 × 64. 

Figure 3. The graphical depiction of the proposed 
TuncerNeXt. Here, GAP: Global average pooling 

Table 2. The mathematical depiction of the presented TuncerNeXt 

Layer Input Operation Output 
Stem 224 × 224 × 3 7 × 7, 64, BN + GELU, stride: 4 56 × 56 × 64 

Main 1 56 × 56 × 64 �
3 × 3,64

1 × 1,256
1 × 1,64 

� ⊕ [(1 × 1,64) ⊗ (1 × 1,64)] 56 × 56 × 64 

Downsampling 56 × 56 × 64 3 × 3, 128, BN + GELU, stride: 2 28 × 28 × 128 

Main 2 28 × 28 × 128 �
3 × 3,128
1 × 1,512
1 × 1,128 

�⊕ [(1 × 1,128) ⊗ (1 × 1,128)] 28 × 28 × 128 

Downsampling 28 × 28 × 128 3 × 3, 256, BN + GELU, stride: 2 14 × 14 × 256 

Main 3 14 × 14 × 256 �
3 × 3,256

1 × 1,1024
1 × 1,256 

� ⊕ [(1 × 1,256)⊗ (1 × 1,256)] 14 × 14 × 256 

Downsampling 14 × 14 × 256 3 × 3, 512, BN + GELU, stride: 2 7 × 7 × 512 

Main 4 7 × 7 × 512 �
3 × 3,512

1 × 1,2048
1 × 1,512 

�⊕ [(1 × 1,512) ⊗ (1 × 1,512)] 7 × 7 × 512 

Output size 7 × 7 × 512 1 × 1, 1024, BN + GELU, fully connected layer, Softmax, classification  Number of classes 
Total learnable parameters 2.1 million 
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Main 1: This layer processes the output of the Stem layer 
(56 × 56 × 64). It employs a complex operation with two 
branches: 

Branch 1: It is a modified version of the ConvNeXt (3×3 
with 64 filters, 1×1 with 256 filters, 1×1 with 64 filters). 

Branch 2: A single 1×1 convolution with 64 filters. 
The results of these branches are combined using element-

wise addition (⊕) and multiplication (⊗). The output 
maintains the input dimensions (56 × 56 × 64). 

Downsampling: This layer focuses on reducing the image's 
spatial size while increasing the number of feature channels. It 
processes the output of Main 1, applying a 3x3 convolution 
with 128 filters, BN, GELU activation, and a stride of 2. This 
results in a smaller output (28 × 28 × 128). 

Main 2:  Structurally similar to Main 1, this layer operates 
on the downsampled output.  It maintains the input dimensions 
of 28 × 28 × 128, adjusting filter sizes in its complex operation 
accordingly. 

Downsampling (Repeated): These layers progressively 
reduce spatial dimensions further, following the pattern of the 
first downsampling layer, and prepare the data for subsequent 
Main blocks. 

Main 3 & Main 4: These layers mirror the structure of the 
earlier Main blocks, operating on the increasingly 
downsampled feature maps. 

Output size: This final phase processes the output of Main 
4 for classification. It includes a 1×1 convolution (1024 filters), 
BN, GELU, a fully connected layer, and Softmax activation. 
Output dimensions are based on the number of classes in your 
dataset. 

The design of the TuncerNeXt model is inspired by 
systematic experimentation and the latest generation of CNN 
and transformer architectures. We began with a modified 
ConvNeXt block and gradually integrated attention 
mechanisms inspired by vision transformers in a fully 
convolutional manner to build the architecture. Each design 
choice, including the number of filters and blocks, was 
validated through ablation studies to maximize classification 
accuracy on a challenging multi-class mucilage detection 
dataset. In the stem and main blocks, 3×3 convolutions with 
varying filter sizes were used to efficiently capture spatial 
information while keeping computational requirements low. 
The choice of filter size and the inclusion of residual 
connections across these blocks were informed by 
performance evaluations on validation data and insights from 
the ConvNeXt architecture. Specifically, the model uses 1×1 
convolution within attention blocks to selectively emphasize 
features, optimizing focus on regions of interest. Our primary 
goal with this model is to achieve high performance using a 
small number of learnable parameters. As a result of the 
ablation studies, we improved feature extraction compared to 
traditional CNN blocks by employing bottleneck and attention 
mechanisms, while maintaining computational efficiency with 
only 2.1 million learnable parameters. 

4. EXPERIMENTAL RESULTS

In this study, we introduce a novel Convolutional Neural
Network (CNN) model, TuncerNeXt, and detail its training 
process using the MATLAB Deep Network Designer. The 
training was conducted on a personal computer equipped with 
128 gigabytes of main memory, a 3.6 GHz processor, and an 
NVIDIA GeForce RTX 4090 graphics processing unit. The 
design of our model was from scratch, incorporating 121 

operations (including convolution, batch normalization (BN), 
activations, global average pooling (GAP), etc.) and 149 
connections. Additionally, the code for TuncerNeXt is 
provided in the appendix. 

The dataset utilized in this research was divided into two 
main directories: train and test. We trained TuncerNeXt on the 
training dataset using the default parameters provided by the 
MATLAB Deep Network Designer, without performing any 
fine-tuning operations. Specifically, the following 
hyperparameters were chosen: 

Solver: Stochastic Gradient Descent with Momentum 
(SGDM) was selected for its balance between convergence 
speed and stability, enabling the model to avoid local minima 
effectively. 

Initial Learning Rate: Set to 0.01, this value allowed for 
gradual learning without overshooting the minima. It is a 
moderate rate commonly used for models that incorporate 
complex architectures, ensuring that learning occurs steadily. 

Maximum Epochs: The number of epochs was capped at 30 
to avoid overfitting while allowing the model sufficient 
exposure to the data.  

L2 Regularization: The weight decay was set to 0.0001 to 
prevent overfitting by penalizing large weights while still 
allowing the model to learn significant features from the 
dataset. 

Training and Validation Split Ratio: A 70:30 split ensured a 
balanced dataset division. 

Augmentation: No data augmentation was applied to show 
TuncerNeXt’s raw performance on real-world data. 

This configuration provided a strong baseline for training 
without extensive fine-tuning, highlighting TuncerNeXt's 
capability to achieve high accuracy on mucilage detection 
tasks with minimal adjustments to default settings. Utilizing 
these parameters, the training and validation performance of 
the model is illustrated in Figure 4.  

Figure 4. Training and validation curves of the presented 
TuncerNeXt on the collected mucilage image dataset 

Based on the training outcomes, the final validation 
accuracy achieved by the model is 97.80%, with a final loss 
value recorded at 0.2915. 

As depicted in Figure 5, the computed results are 
summarized in Table 3.  

Table 3 illustrates that the model achieved an overall 
classification accuracy of 98.66%, an unweighted average 
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recall of 98.46%, an unweighted average precision of 98.33%, 
and an overall F1-score of 98.38%. Notably, the Clean Sea 
class exhibited the highest accuracy across recall, precision, 
and F1-score metrics. 

Metrics such as classification accuracy, recall, precision, 
and F1-score were employed to evaluate the classification 
performance of the proposed model. These metrics were 
calculated using the test image dataset to derive the test results. 
The computations for these metrics were facilitated by the 
confusion matrix presented in Figure 5. 

Furthermore, we explored the transfer learning capabilities 
of the proposed model through deep feature engineering. 
Utilizing the pretrained TuncerNeXt, we extracted features 
using its Global Average Pooling (GAP) layer, yielding 1024 
features per image. For feature selection, the Iterative 
Neighborhood Component Analysis (INCA) [32] feature 
selector was employed, an advanced version of the NCA 
feature selector that utilizes a range of iterations (100-1024) 
and a loss value computation function (SVM classifier [33, 34] 
with 10-fold cross-validation). The classification was 
performed using an SVM classifier. This deep feature 
engineering approach was applied to the test images. Figure 6 
graphically represents the deep feature engineering model 
employing the advanced TuncerNeXt.  

Table 3. The computed test classification results 

No. Class Accuracy Recall Precision F1-Score 
1 Mucilage - 96.62 99.10 97.84 
2 Clean sea - 99.73 99.47 99.60 
3 Sea wave - 99.03 96.41 97.70 

Overall 98.66 98.46 98.33 98.38 

Figure 5. The computed test confusion matrix. Herein, 1: 
Mucilage, 2: Clean sea, 3: Sea wave 

Figure 6. The presented deep feature engineering model 
based on the recommended TuncerNeXt 

In the deep feature engineering approach, the INCA feature 
selector was implemented to enhance the performance of 
TuncerNeXt. The iterative process of feature selection 
employed by INCA is illustrated in Figure 7.  

According to Figure 7, the optimal feature vector comprises 
751 features. These features were classified using an SVM 
classifier with the following parameters: 

Kernel Function: Cubic (third-degree polynomial), 
Kernel Scale: Automatic, 
Box Constraint: 1, 
Coding Scheme: One-vs-all, 
Validation Method: 10-fold cross-validation. 
Utilizing this configuration (Cubic SVM [35]), the resulting 

confusion matrix and classification outcomes are presented in 
Figure 8 and summarized in Table 4.  

As illustrated in Figure 8, the derived classification results 
of the presented TuncerNeXt-based deep feature engineering 
model are summarized in Table 4. 

Figure 7. Iterative feature selection process 

Figure 8. The confusion matrix of the presented deep feature 
engineering model 

Table 4. The computed test classification results of the deep 
feature engineering model 

No. Class Accuracy Recall Precision F1-Score 
1 Mucilage - 98.82 98.82 98.82 
2 Clean sea - 99.73 99.82 99.78 
3 Sea wave - 98.45 98.26 98.35 

Overall 99.18 99.00 98.97 98.98 
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The deep feature engineering model achieved a 
classification accuracy of 99.18%, an overall recall of 99%, an 
overall precision of 98.97%, and an overall F1-score of 
98.98%.  

5. DISCUSSIONS

In this study, we introduced a novel dataset of mucilage
images and proposed a new Convolutional Neural Network 
(CNN) model named TuncerNeXt, an original contribution to 
deep learning models. The proposed TuncerNeXt model 
achieved a test classification accuracy of 98.66% and a 
validation accuracy of 97.80% on the collected dataset. 
Furthermore, we developed a new deep feature engineering 
approach to enhance the test classification performance of 
TuncerNeXt. This approach employs INCA and SVM to 
improve classification performance. INCA was utilized to 
select the optimal 751 features out of the generated 1024 
features, and the best-performing classifier, SVM, was chosen 
for classification. To establish a benchmark for comparison 
with other classifiers, we presented the classification 
accuracies of Decision Tree (DT) [36], Linear Discriminant 
Analysis (LDA) [37], Naïve Bayes (NB) [38], SVM [33, 34], 
k-nearest neighbors (kNN) [39], Bagged Tree (BT) [40],
Multilayer Perceptron (MLP) [41, 42], and Logistic
Regression Kernel (LRK) [43]. The classification accuracies
of these classifiers are illustrated in Figure 9.

Based on the findings illustrated in Figure 9, the SVM 
emerged as the superior classifier, achieving the highest 
classification accuracy of 99.18% on the test image dataset. 
Conversely, Naïve Bayes (NB) was identified as the least 
effective classifier with a classification accuracy of 97.54%. 
The Logistic Regression Kernel (LRK) classifier was the 
second most effective, attaining a classification accuracy of 
98.83%. 

The implementation of the deep feature engineering 
approach significantly enhanced the test classification 
performance of the TuncerNeXt model. This approach 
achieved a classification accuracy of 99.18%, compared to the 
98.66% classification accuracy obtained by the TuncerNeXt 
model without deep feature engineering. 

Furthermore, the performance of the presented model was 
evaluated against other models, with comparative results 
detailed in Table 5.  

Figure 9. The classification performances of the shallow 
classifiers 

Table 5. Comparative results 

Study Method Number of 
Samples Split Ratio Acc

(%) 
Hacıefendioglu 

et al. [44] ResNet-50 1635 satellite 
images 80:20 100.0 

Kavzaoglu et al. 
[45] CNN Unspecified 60:20:20 99.49 

Sanver and 
Yesildirek [46] ResNet-50 2250 60:40 96.09 

Our study TuncerNeXt 9300 52.5:22.5:25 98.66 

Our study 

TuncerNeXt-
based deep 

feature 
engineering 

2315 test 
image out of 

the 9300 
images 

10-fold CV for 
test images

(2315 images) 
99.18 

Satellite images have been analyzed, but differences 
between waves and sea snot have not been calculated. The 
places they have identified may also have waves. At this stage, 
clearer images need to be used, and these images are necessary 
for detecting waves and sea snot. Our dataset contains three 
classes (while others have two), which is larger than other 
datasets. Additionally, we have proposed deep learning and 
deep feature engineering models, which have achieved test 
accuracies of over 98.5% in classification. Table 5 indicates 
that the proposed TuncerNeXt model achieved satisfactory 
outcomes in mucilage detection. It is important to note that our 
dataset encompasses three classes, whereas other datasets 
utilized for comparison comprise only two classes. 

Further discussions on the findings, advantages, limitations, 
and future research directions are presented in the subsequent 
sections.  

Findings: 
- The proposed TuncerNeXt-based mucilage detection

model achieved remarkable performance with a validation 
accuracy of 97.60% and a test accuracy of 98.66%.

- The model's integration of attention mechanisms and
residual blocks proved effective in enhancing
classification efficacy, showcasing its potential for real-
world applications in environmental monitoring and
marine science.

- The sea wave class achieved the highest accuracy because
it has the most distinct features and the largest number of
training images.

- We have proposed a deep feature engineering model
based on the presented TuncerNeXt, and the presented
deep feature engineering model achieved 99.18%
classification accuracy.

- For the deep feature engineering model, the length of the
selected best feature combination is 751.

- The SVM classifier is the best classifier among the tested
shallow classifiers for the presented deep feature
engineering model.

Advantages: 
- TuncerNeXt is a novel CNN architecture that seamlessly

integrates attention mechanisms and residual blocks,
offering a sophisticated approach to image classification.

- The model is trained and evaluated on a meticulously
curated dataset comprising diverse images of sea waves
and mucilage. This ensures comprehensive coverage of
real-world scenarios and enhances the model's
adaptability.

- By incorporating sea wave images alongside mucilage
data, TuncerNeXt demonstrates robust performance in
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distinguishing mucilage amidst challenging maritime 
conditions, facilitating accurate detection even in 
dynamic ocean environments. 

- TuncerNeXt exhibits strong transfer learning capabilities,
enabling the extraction and utilization of valuable features
from pre-trained models. This enhances the model's
versatility and efficiency in adapting to new datasets or
domains with minimal additional training data.

- The proposed TuncerNeXt has 2.1 million parameters but
attained high classification (over 98.5% test classification
accuracies) performances. In this aspect, our model is
lighter than that of MobileNetV2.

- The proposed TuncerNeXt-based model attained
satisfactory classification results on the collected three
classes dataset.

Limitations: 
- Explainable results can be given.
- A larger and more diverse dataset could enhance the

model's applicability in ocean engineering. However, we
tested the TuncerNeXt model on the largest possible
image dataset specifically curated for this study. Unlike
most other research, which typically utilizes satellite
images, we assembled a high-resolution dataset to
maximize the model's capability.

- The TuncerNeXt model could also be evaluated on widely 
recognized datasets such as ImageNet or CIFAR-10 to
assess its generalization performance on broader image
classification tasks.

Future directions: 
- We plan to use techniques like attention visualization and

saliency maps to illuminate the presented TuncerNeXt's
decision-making process.

- Expanding and diversifying the training dataset with
images from varied geographical locations and
environmental conditions is expected to enhance the
model's ability to adapt to real-world scenarios and
provide more reliable detection.

- It can be beneficial to incorporate additional data sources,
such as oceanographic data, satellite imagery, or
environmental sensor readings, to provide valuable
complementary information that may improve detection
accuracy and resilience to environmental changes.

- Techniques like neural network pruning, feature
attribution methods, or model distillation are planned for
investigation to increase the interpretability of the
TuncerNeXt-based model without sacrificing
performance.

- Addressing challenges related to real-time processing,
resource constraints, and integration with existing
systems will be crucial for transitioning TuncerNeXt to
real-world monitoring on UAVs or marine platforms,
enabling continuous surveillance of mucilage outbreaks.

6. CONCLUSIONS

The proposed TuncerNeXt-based mucilage detection model
demonstrates high classification performance in classificatiın 
mucilage under challenging maritime conditions. The model 
achieves high classification performance, with a validation 
accuracy of 97.60% and a test accuracy of 98.66%, facilitated 
by the integration of attention mechanisms and residual blocks 
across its 2.1 million parameters. Including sea wave images 

alongside mucilage data strengthens the model's adaptability 
and accuracy, even in dynamic ocean/sea environments. 
Moreover, the recommended TuncerNeXt-based deep feature 
engineering model achieves an improved classification 
accuracy of 99.18% by selecting an optimal combination of 
751 features and this high classification performance 
highlights the introduced TuncerNeXt model’s capacity for 
developed feature extraction. 

Although these findings indicate the TuncerNeXt model’s 
effectiveness as a potential tool for automated mucilage 
detection, further validation is required. Our research provides 
a foundational/pioneering step towards automated mucilage 
monitoring, with applications for environmental monitoring 
and marine science.  
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