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Convolutional Neural Networks (CNNs) are distinguished for their exceptional performance
in image classification. A number of these models have been developed, drawing inspiration
from seminal works. This research introduces an innovative CNN model that integrates
attention mechanisms specifically tailored for detecting mucilage on the ocean surface. To
facilitate this research, a comprehensive dataset was assembled from 15 disparate ports,
segmented into three distinct categories: the presence of mucilage, sea surface without
waves, and sea waves. The rationale for including the sea wave category is to augment the
accuracy of the proposed CNN model by accounting for the morphological similarities
between sea waves and mucilage. The developed model, termed TuncerNeXt, comprises
four principal components: a stem, TuncerNeXt blocks, downsampling stages, and an output
phase. The novelty of TuncerNeXt resides in its fusion of attention mechanisms with
residual blocks, taking cues from the structural design of ConvNeXt's principal block. This
innovative approach has resulted in TuncerNeXt being a streamlined CNN model, boasting
approximately 2.1 million adjustable parameters, rendering it an efficacious approach for
image classification endeavors. Upon evaluation with the compiled dataset, TuncerNeXt

achieved a validation accuracy of 97.60% and a test accuracy of 98.66%.

1. INTRODUCTION

Mucilage, a jelly-like substance produced by various marine
organisms, poses an ecological problem [1, 2]. Mucilage can
significantly impact marine ecosystems primarily as a defense
mechanism against predators or environmental stressors [3]. It
consists of a complex mixture of organic and inorganic
substances originating from phytoplankton, zooplankton, and
bacteria [4]. The formation of mucilage causes clogging of
fishing nets and boat propellers. It also seriously threatens
marine life by choking coral reefs and other habitats [5]. For
example, it can hinder the respiratory function of fish and other
marine creatures by clogging their gills and depleting oxygen
levels in marine habitats, thus compromising their survival [6].
The formation of mucilage events is complex and not fully
resolved. However, several contributing factors have been
identified, including nutrient pollution from excess nitrogen
and phosphorus, which promotes the growth of mucilage-
producing organisms. Climate change, manifested as higher
water temperatures and increased ocean acidification, also
affects the proliferation of these organisms. Overfishing of
mucilage-consuming species can lead to uncontrolled
increases in mucilage production [7, 8].

Monitoring mucilage events poses significant challenges
due to the laborious and expensive nature of traditional
methods such as ship-based surveys and satellite image
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analysis [9, 10]. In contrast, automatic mucilage detection
models are emerging as a more efficient and cost-effective
solution. With advancing technology, advanced Convolutional
Neural Networks (CNNs) have made significant progress,
especially in marine conservation [11]. CNNs can achieve
great success in image recognition and classification [12-14].
In particular, CNNs are used to detect complex natural
formations such as mucilage on the sea surface [15]. A CNN-
based approach was proposed in this study due to its ability to
detect complex patterns and structures in images. From simple
edge detection to increasingly complex object recognition
features, CNNs can delve deeper into images, performing
layer-by-layer feature extraction [16]. This approach can even
distinguish subtle differences between mucilage and other
natural formations on the water surface, vital for monitoring
and managing marine pollution. Therefore, a CNN-based
model provides a powerful, effective, and accurate solution for
this task [17].

In this study, we developed TuncerNeXt to detect mucilage,
a jelly-like substance found in the oceans produced by some
marine plants and bacteria that pose problems for marine life
and human activities. Using advanced Convolutional Neural
Networks (CNNs), TuncerNeXt analyzes ocean images to
identify mucilage accurately. To improve TuncerNeXt's
learning process, a large dataset of ocean images from 15
different locations was compiled. Our results demonstrate the
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high accuracy of TuncerNeXt, making it a useful tool for
researchers and others monitoring ocean health. This advance
contributes to the conservation of marine ecosystems by
providing new information on understanding and managing
mucilage.

1.1 Related works

New machine learning models have been proposed in the
literature to solve problems in different disciplines [18-20].
Some machine learning-based mucilage detection models
developed in the literature are presented as follows. Yilmaz et
al. [21] employed a cloud-free Sentinel-2 image and
innovative water-related spectral indices (NDTI, NDWI, and
AMEI) within a CNN model to detect marine mucilage
formations in the Dardanelles Strait, Turkey, achieving
classification accuracies up to 98%. Using the AMEI index
notably enhanced mucilage detection accuracy, as validated by
explainable Al techniques such as SHAP and integrated
gradients, demonstrating the potential of integrating remote
sensing and deep learning for environmental monitoring.
Kikaki et al. [22] focused on utilizing the MADOS benchmark
dataset, which comprised high-resolution multispectral
Sentinel-2 data collected between 2015 and 2022. Their
dataset included approximately 1.5 million annotated pixels
across 174 scenes, encompassing a diverse range of pollutants,
sea surface features, and global water-related thematic classes
under various weather conditions. Their deep learning
framework, MariNeXt, based on recent architectural
advancements for semantic segmentation, was proposed and
demonstrated to outperform all baselines by at least 12% in F1
and mloU metrics. Colkesen et al. [23] suggested a
comprehensive approach for mapping floating algal blooms in
Lake Burdur, Turkey, by analyzing seven Sentinel-2 images
selected through time series analysis on the Google Earth
Engine platform. Their methodology integrated both index-
based mapping, using indices like FAI, AFAI, SABI, and
ABDI, and classification-based mapping with algorithms such
as RF, XGBoost, and LSTM. This approach successfully
detected high-density floating algae formations with an
accuracy exceeding 99% for both methods, highlighting pixel-
based classification's particular efficacy for low-density
blooms. The findings underscore the utility of merging
spectral indices and machine learning techniques in
environmental monitoring tasks, notably for the precise
mapping of algal blooms in freshwater bodies. Figueroa et al.
[24] explored phytoplankton detection in freshwater using
deep learning, employing Faster R-CNN and RetinaNet on a
dataset of 293 images capturing diverse species and
conditions. Their study demonstrated Faster R-CNN's
superiority in precision and recall, achieving up to 95.35%
recall and 94.68% precision for specific phytoplankton types.
Tokatli et al. [25] assessed organic contaminants in the
Canakkale Strait Basin, Turkey, to understand the mucilage
threat, analyzing water samples for eight parameters in spring
2023. They used indices like NP1, WQI, HQ, and HI for water
quality and health risk assessment. Their research found
increased organic pollution from upstream to downstream,
with Canakkale Stream being the most polluted, yet indicated
minimal non-carcinogenic health risks for humans.

1.2 Literature gaps

The identified literature gaps according to the reviewed
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literature are:

- There is stagnation in proposing new-generation CNN
[26-28] models since many researchers have used
transformers to classify images due to advancements in
large language models, vision transformers [29], and
Swin transformers [30]. Moreover, champion CNNs
already achieve very high classification performances.
Therefore, most researchers have not proposed new-
generation CNNs.

- Mucilage is a global problem for the seas. Some
researchers have proposed mucilage detection models
using deep learning and machine learning, but the number
of these studies is limited.

- Mucilage detection models have generally been applied
with two classes.

1.3 Motivation and study outline

The objective of this study is twofold: to enhance mucilage
detection on the ocean's surface and to contribute significantly
to advancing the domain of image classification within marine
science. Mucilage, a gelatinous substance secreted by marine
algae, poses increasing threats to marine ecosystems by
obstructing the movement of marine organisms, reducing
sunlight penetration, and decreasing oxygen levels in aquatic
environments. These adverse effects highlight the critical need
for effective detection and monitoring strategies, thereby
motivating the development of a sophisticated model adept at
identifying mucilage under the complex conditions of the sea
surface.

In response to the limitations of existing detection methods
and the imperative for enhanced accuracy, this research
undertakes the compilation of a comprehensive dataset that
accurately reflects the intricacies of marine settings.
Unparalleled in its breadth and specificity, the dataset
encompasses images of mucilage, unblemished sea surfaces,
and sea waves sourced from 15 distinct ports across the globe.
Such varied data ensures that our TuncerNeXt model benefits
from exposure to a broad spectrum of maritime conditions,
thereby improving its precision and reliability.

TuncerNeXt marks an innovation in CNN architecture,
challenging the current stagnation in the field by merging the
robust features of CNNs with the sophisticated capabilities of
transformer models. By integrating a novel attention
mechanism and a modified ConvNeXt block [31],
TuncerNeXt accentuates essential attributes within image data,
leading to markedly accurate classification results. The
model's design emphasizes scalability, allowing adjustments
to meet diverse computational demands without sacrificing
efficacy. This scalability, coupled with the incorporation of
transformer-like features, establishes TuncerNeXt as an avant-
garde approach to addressing the complex challenge of
detecting marine mucilage.

1.4 Novelties and contributions

The innovative aspects and contributions of this research are:
Novelties:

- A comprehensive dataset of mucilage images has
been compiled, serving as a foundational resource for
future endeavors in mucilage detection research.

- An attention-based CNN model has been introduced,
with its classification efficacy validated on the newly
curated mucilage image dataset.



Contributions:

- Recognizing the challenges in computer vision, this study
employs a novel deep-learning strategy to address an
environmental concern: the detection of mucilage. Given
the extensive areas of seas and the limited resolution of
satellite images for accurate mucilage identification, our
investigation presents a specialized detection model
suited for deployment on Unmanned Aerial Vehicles
(UAVs). This approach utilizes a distinctive dataset of
mucilage images acquired through UAVs, incorporating
sea wave images to bolster the model's detection
robustness.

- Additionally, this research contributes a significant
methodological advancement to the field of CNNs by
creating TuncerNeXt, an innovative CNN model. Despite
being designed for minimal computational load, with
roughly 2.1 million parameters, TuncerNeXt showcases
remarkable accuracy, achieving 98.66% on test datasets
and 97.60% on validation datasets utilizing the assembled
mucilage images. This achievement highlights
TuncerNeXt's operational efficiency and its potential
impact on environmental monitoring tasks.

2. MUCILAGE IMAGE DATASET

For this investigation, we developed a unique dataset
consisting of mucilage imagery collected from 15 different
ports with a particular focus on the Sea of Marmara. This focus
was strategically chosen due to the Sea of Marmara's
characteristics as a semi-enclosed sea, where instances of
mucilage have been increasingly reported, largely attributed to
pollution from Istanbul and surrounding urban locales. The
dataset organizes the images into three distinct categories:
mucilage presence, clear sea surfaces, and sea wave scenarios,
aiming to support a thorough examination of mucilage
detection across varied maritime conditions.

This dataset embodies a heterogeneous assortment of
images, systematically classified into the aforementioned
three categories, as detailed in Table 1.

Table 1. The distribution of the collected mucilage image

dataset
No. Class Train Test Total
1 Mucilage 2051 680 2731
2 Clean sea cover 3374 1120 4494
3 Sea wave 1560 515 2075
Total 6985 2315 9300

As shown in Table 1, the dataset displays class imbalance,
a prevalent issue in machine learning research, which our
methodology seeks to mitigate. Additionally, Figure 1
presents exemplary images from each category, visually
representing the dataset's diversity.
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Figure 1. Sample images of the collected dataset

Beyond mere collection and categorization, substantial
effort was expended on the precise segmentation of the images
into their respective classes. This process utilized automated
methodologies and manual validation to guarantee the
dataset's integrity and applicability for training and evaluative
purposes. Focusing on the Sea of Marmara reflects the
geographical significance of mucilage occurrences and
augments the dataset's specificity, facilitating the development
of more effective detection models. The compilation of this
dataset constitutes a pivotal advancement in enhancing both
scientific comprehension and technological proficiency in
tackling the ecological issue of mucilage within marine
settings.

3. THE PROPOSED CNN MODEL: TUNCERNEXT

The principal innovation of this study is the introduction of
TuncerNeXt, a new-generation CNN model. To design
TuncerNeXt, a strategic roadmap was developed, beginning
with inspiration from attention mechanisms known to enhance
classification performance significantly. In the second phase,
we employed a modified ConvNeXt block and integrated it
within an attention framework. Subsequently, the model
incorporates a block inspired by transformer technology,
specifically an inverted bottleneck block, to further refine its
capabilities. To elucidate the architecture of the main block
within TuncerNeXt, Figure 2 provides a graphical
representation, offering a clear visual outline of its structure.

The mathematical definition of the proposed main block of
the TuncerNeXt is given below:

Att = BN (Sigmoid(C(ln, 1, F)))

1
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Figure 2. Graphical explanation of the presented main block.
Herein, F: Number of filters, Concat: Depth concatenation,
Grouped: Grouped convolution, BN: Batch normalization,

GELU: Gaussian error linear unit



Herein, the attention (Att) output is derived by deploying
1x1 convolutions, batch normalizations, sigmoid functions
(activations), and multiplication operators. Where In: input
data and C(.,.,.): convolution. The convolution function
takes three parameters: (i) input, (ii) filter size, and (iii)
number of filters. After that, we have proposed a modified
ConvNeXt block and to add the ConvNeXt features to these
attention features.

NeXt, = BN(C(In,3,F)) )
NeXt, = GELU(C(NeXty, 1,4F)) (3)
NeXt; = BN(C(NeXt,, 1,F)) 4)
NeXt = NeXt; + In (5)

Out; = Concat(NeXt, Att) (6)

We have used 3%3, 1x1, and 1x1 convolutions to create an
inverted bottleneck. Moreover, we have concatenated the
generated ConvNeXt features (NeX?) to attention features, and
we have created the first output (Out,).

In the third step of the proposed TuncerNeXt block, we have
proposed a transformer-like block and we have been inspired
by the swin transformer to propose this block. This block is a
modified version of the swin transformer block since we have
used 3%3 (depth-wise convolution) and 1x1 (pixel
convolution). Also, we have used a convolution-based residual
block in this step.

Tr, = GELU(BN(Out,) + C(BN(Out,), 3,2F) -
+ Out,)

Out = GELU(BN(C(Try,1,F)) + In) (8)
where, Try: the first transformer output and Out: the output of
the presented main block.

By using this main block, we have proposed a new CNN
model, which is termed TuncerNeXt. The graphical
explanation of the presented TuncerNeXt is depicted in Figure
3.

As illustrated in Figure 3, the architecture of TuncerNeXt
comprises four main blocks and three downsampling blocks to

derive feature vectors. The output block utilizes pixel-wise
convolution, a convolution-based residual layer, global
average pooling, a fully connected layer, and a Softmax
function for classification outcomes. Furthermore, the
mathematical representation of TuncerNeXt is detailed in
Table 2.

Table 2 demonstrates the mathematical definition of the
proposed TuncerNeXt. Per Table 2, the total trainable is
calculated as 2.1 million. The explanation of these phases is
given below.

Stem: This initial layer preprocesses the input image (224 x
224 pixels, RGB). It applies a 7x7 convolution with 64 filters,
followed by batch normalization (BN) and GELU activation,
downsampling the input to 56 x 56 x 64.

224 x224x3

Stride: 4
GELU

7x7,2F

Abbreviation
Grouped: Grouped Convolution
Concat: Depth Concatenation
BN: Batch Normalization
GELU: Gaussian Error Linear Unit
F: Number of filters

GAP: Global Average Pooling
FC: Fully Connected

S
]
o]
(G]

Figure 3. The graphical depiction of the proposed
TuncerNeXt. Here, GAP: Global average pooling

Table 2. The mathematical depiction of the presented TuncerNeXt

Layer Input Operation Output
Stem 224 x 224 x 3 7 x 7,64, BN + GELU, stride: 4 56 X 56 x 64
3 % 3,64
Main 1 56 X 56 x 64 [1 X 1,256] D [(1x1,64)Q (1x1,64)] 56 x 56 x 64
1x 1,64
Downsampling 56 x 56 x 64 3 x 3,128, BN + GELU, stride: 2 28 x 28 x 128
[3 % 3,128
Main 2 28 x 28 x 128 1x1,512 (B [(1x1,128) & (1 x 1,128)] 28 x 28 x 128
11 x 1,128 ]
Downsampling 28 x 28 x 128 3 x 3,256, BN + GELU, stride: 2 14 x 14 x 256
[ 3 X 3,256 ]
Main 3 14 x 14 x 256 1x1,1024| @ [(1 x 1,256) ® (1 x 1,256)] 14 x 14 x 256
|1 X 1,256 |
Downsampling 14 x 14 x 256 3 x 3,512, BN + GELU, stride: 2 7 x7x512
[3X 3,512 ]
Main 4 7 x7x%x512 1x1,2048| @ [(1 x 1,512) ® (1 x 1,512)] 7x7x%x512
11 x 1,512 |
Output size 7x7x512 1x1,1024, BN + GELU, fully connected layer, Softmax, classificationNumber of classes

Total learnable parameters

2.1 million
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Main 1: This layer processes the output of the Stem layer
(56 x 56 x 64). It employs a complex operation with two
branches:

Branch 1: It is a modified version of the ConvNeXt (3x3
with 64 filters, 1x1 with 256 filters, 1x1 with 64 filters).

Branch 2: A single 1x1 convolution with 64 filters.

The results of these branches are combined using element-
wise addition (@) and multiplication (). The output
maintains the input dimensions (56 x 56 x 64).

Downsampling: This layer focuses on reducing the image's
spatial size while increasing the number of feature channels. It
processes the output of Main 1, applying a 3x3 convolution
with 128 filters, BN, GELU activation, and a stride of 2. This
results in a smaller output (28 x 28 x 128).

Main 2: Structurally similar to Main 1, this layer operates
on the downsampled output. It maintains the input dimensions
of 28 x 28 x 128, adjusting filter sizes in its complex operation
accordingly.

Downsampling (Repeated): These layers progressively
reduce spatial dimensions further, following the pattern of the
first downsampling layer, and prepare the data for subsequent
Main blocks.

Main 3 & Main 4: These layers mirror the structure of the
earlier Main blocks, operating on the increasingly
downsampled feature maps.

Output size: This final phase processes the output of Main
4 for classification. It includes a 1x1 convolution (1024 filters),
BN, GELU, a fully connected layer, and Softmax activation.
Output dimensions are based on the number of classes in your
dataset.

The design of the TuncerNeXt model is inspired by
systematic experimentation and the latest generation of CNN
and transformer architectures. We began with a modified
ConvNeXt block and gradually integrated attention
mechanisms inspired by vision transformers in a fully
convolutional manner to build the architecture. Each design
choice, including the number of filters and blocks, was
validated through ablation studies to maximize classification
accuracy on a challenging multi-class mucilage detection
dataset. In the stem and main blocks, 3%3 convolutions with
varying filter sizes were used to efficiently capture spatial
information while keeping computational requirements low.
The choice of filter size and the inclusion of residual
connections across these blocks were informed by
performance evaluations on validation data and insights from
the ConvNeXt architecture. Specifically, the model uses 1x1
convolution within attention blocks to selectively emphasize
features, optimizing focus on regions of interest. Our primary
goal with this model is to achieve high performance using a
small number of learnable parameters. As a result of the
ablation studies, we improved feature extraction compared to
traditional CNN blocks by employing bottleneck and attention
mechanisms, while maintaining computational efficiency with
only 2.1 million learnable parameters.

4. EXPERIMENTAL RESULTS

In this study, we introduce a novel Convolutional Neural
Network (CNN) model, TuncerNeXt, and detail its training
process using the MATLAB Deep Network Designer. The
training was conducted on a personal computer equipped with
128 gigabytes of main memory, a 3.6 GHz processor, and an
NVIDIA GeForce RTX 4090 graphics processing unit. The
design of our model was from scratch, incorporating 121
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operations (including convolution, batch normalization (BN),
activations, global average pooling (GAP), etc.) and 149
connections. Additionally, the code for TuncerNeXt is
provided in the appendix.

The dataset utilized in this research was divided into two
main directories: train and test. We trained TuncerNeXt on the
training dataset using the default parameters provided by the
MATLAB Deep Network Designer, without performing any
fine-tuning  operations.  Specifically, the following
hyperparameters were chosen:

Solver: Stochastic Gradient Descent with Momentum
(SGDM) was selected for its balance between convergence
speed and stability, enabling the model to avoid local minima
effectively.

Initial Learning Rate: Set to 0.01, this value allowed for
gradual learning without overshooting the minima. It is a
moderate rate commonly used for models that incorporate
complex architectures, ensuring that learning occurs steadily.

Maximum Epochs: The number of epochs was capped at 30
to avoid overfitting while allowing the model sufficient
exposure to the data.

L2 Regularization: The weight decay was set to 0.0001 to
prevent overfitting by penalizing large weights while still
allowing the model to learn significant features from the
dataset.

Training and Validation Split Ratio: A 70:30 split ensured a
balanced dataset division.

Augmentation: No data augmentation was applied to show
TuncerNeXt’s raw performance on real-world data.

This configuration provided a strong baseline for training
without extensive fine-tuning, highlighting TuncerNeXt's
capability to achieve high accuracy on mucilage detection
tasks with minimal adjustments to default settings. Utilizing
these parameters, the training and validation performance of
the model is illustrated in Figure 4.

Training Accuracy Training Loss

Validation Accuracy Validation Loss

0.8

0.6

Accuracy/Loss

0.4

02 [

10 25 30

Epoch

Figure 4. Training and validation curves of the presented
TuncerNeXt on the collected mucilage image dataset

Based on the training outcomes, the final validation
accuracy achieved by the model is 97.80%, with a final loss
value recorded at 0.2915.

As depicted in Figure 5, the computed results are
summarized in Table 3.

Table 3 illustrates that the model achieved an overall
classification accuracy of 98.66%, an unweighted average



recall of 98.46%, an unweighted average precision of 98.33%,
and an overall Fl-score of 98.38%. Notably, the Clean Sea
class exhibited the highest accuracy across recall, precision,
and F1-score metrics.

Metrics such as classification accuracy, recall, precision,
and Fl-score were employed to evaluate the classification
performance of the proposed model. These metrics were
calculated using the test image dataset to derive the test results.
The computations for these metrics were facilitated by the
confusion matrix presented in Figure 5.

Furthermore, we explored the transfer learning capabilities
of the proposed model through deep feature engineering.
Utilizing the pretrained TuncerNeXt, we extracted features
using its Global Average Pooling (GAP) layer, yielding 1024
features per image. For feature selection, the Iterative
Neighborhood Component Analysis (INCA) [32] feature
selector was employed, an advanced version of the NCA
feature selector that utilizes a range of iterations (100-1024)
and a loss value computation function (SVM classifier [33, 34]
with 10-fold cross-validation). The classification was
performed using an SVM classifier. This deep feature
engineering approach was applied to the test images. Figure 6
graphically represents the deep feature engineering model
employing the advanced TuncerNeXt.

Table 3. The computed test classification results

No. Class Accuracy Recall Precision F1-Score
1 Mucilage - 96.62 99.10 97.84
2 Clean sea - 99.73 99.47 99.60
3 Sea wave - 99.03 96.41 97.70

Overall 98.66 98.46 98.33 98.38
1 657 5 18
E 2 2 1
?
g
3 4 1 510
1 2 3

Predicted Class

Figure 5. The computed test confusion matrix. Herein, 1:
Mucilage, 2: Clean sea, 3: Sea wave

+“Feature extraction s T
4 v Feature™,
Test images i
~estimages e — . selection |
. Feature ! 1
extraction e 1
deploying GAP : :
1 I
GAP layer I I
1 1
| I
\

PP

-

( Results

Figure 6. The presented deep feature engineering model
based on the recommended TuncerNeXt
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In the deep feature engineering approach, the INCA feature
selector was implemented to enhance the performance of
TuncerNeXt. The iterative process of feature selection
employed by INCA is illustrated in Figure 7.

According to Figure 7, the optimal feature vector comprises
751 features. These features were classified using an SVM
classifier with the following parameters:

Kernel Function: Cubic (third-degree polynomial),

Kernel Scale: Automatic,

Box Constraint: 1,

Coding Scheme: One-vs-all,

Validation Method: 10-fold cross-validation.

Utilizing this configuration (Cubic SVM [35]), the resulting
confusion matrix and classification outcomes are presented in
Figure 8 and summarized in Table 4.

As illustrated in Figure 8, the derived classification results
of the presented TuncerNeXt-based deep feature engineering
model are summarized in Table 4.

0.1 -
0.08

0.06

Loss value

0.04 |

0.0082 |

0 I I I I I L I

P P & O 19" ¥

A o @

Number of features

Figure 7. Iterative feature selection process

1 672 1 7
»
17}
S 2 1 2
o
©
2
[
3 7 1 507
1 2 3

Predicted Class

Figure 8. The confusion matrix of the presented deep feature
engineering model

Table 4. The computed test classification results of the deep
feature engineering model

No. Class Accuracy Recall Precision F1-Score
1 Mucilage - 98.82 98.82 98.82
2 Clean sea - 99.73 99.82 99.78
3 Sea wave - 98.45 98.26 98.35
Overall 99.18 99.00 98.97 98.98




The deep feature engineering model achieved a
classification accuracy of 99.18%, an overall recall of 99%, an
overall precision of 98.97%, and an overall Fl-score of
98.98%.

5. DISCUSSIONS

In this study, we introduced a novel dataset of mucilage
images and proposed a new Convolutional Neural Network
(CNN) model named TuncerNeXt, an original contribution to
deep learning models. The proposed TuncerNeXt model
achieved a test classification accuracy of 98.66% and a
validation accuracy of 97.80% on the collected dataset.
Furthermore, we developed a new deep feature engineering
approach to enhance the test classification performance of
TuncerNeXt. This approach employs INCA and SVM to
improve classification performance. INCA was utilized to
select the optimal 751 features out of the generated 1024
features, and the best-performing classifier, SVM, was chosen
for classification. To establish a benchmark for comparison
with other classifiers, we presented the classification
accuracies of Decision Tree (DT) [36], Linear Discriminant
Analysis (LDA) [37], Naive Bayes (NB) [38], SVM [33, 34],
k-nearest neighbors (kNN) [39], Bagged Tree (BT) [40],
Multilayer Perceptron (MLP) [41, 42], and Logistic
Regression Kernel (LRK) [43]. The classification accuracies
of these classifiers are illustrated in Figure 9.

Based on the findings illustrated in Figure 9, the SVM
emerged as the superior classifier, achieving the highest
classification accuracy of 99.18% on the test image dataset.
Conversely, Naive Bayes (NB) was identified as the least
effective classifier with a classification accuracy of 97.54%.
The Logistic Regression Kernel (LRK) classifier was the
second most effective, attaining a classification accuracy of
98.83%.

The implementation of the deep feature engineering
approach significantly enhanced the test classification
performance of the TuncerNeXt model. This approach
achieved a classification accuracy of 99.18%, compared to the
98.66% classification accuracy obtained by the TuncerNeXt
model without deep feature engineering.

Furthermore, the performance of the presented model was
evaluated against other models, with comparative results
detailed in Table 5.

100 .
99 | /<>\\
&/ <>*<> \
_-TWA /
< 98 <> AN // \ //
= SN \ /
) <> \ /
g \ |/
< VY
96 | \\ //
95 L. | |
NP I S A P
Q 9 S B @ 2 M &
Classifier

Figure 9. The classification performances of the shallow
classifiers
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Table 5. Comparative results

Number of . . Acc
Study Method Samples Split Ratio (%)
Haciefendioglu ResNet-50 1 635 satellite 80:20 100.0
et al. [44] images
Kavza&gsl]“ ctal NN Unspecified  60:20:20  99.49
Sanver and .
Yesildirek [46] ResNet-50 2250 60:40 96.09
Our study TuncerNeXt 9300 52.5:22.5:25 98.66
TuncerNeXt- . 2315 test 10-fold CV for
based deep  image out of .
Our study test images 99.18
feature the 9300 .
. . . (2315 images)
engineering images

Satellite images have been analyzed, but differences
between waves and sea snot have not been calculated. The
places they have identified may also have waves. At this stage,
clearer images need to be used, and these images are necessary
for detecting waves and sea snot. Our dataset contains three
classes (while others have two), which is larger than other
datasets. Additionally, we have proposed deep learning and
deep feature engineering models, which have achieved test
accuracies of over 98.5% in classification. Table 5 indicates
that the proposed TuncerNeXt model achieved satisfactory
outcomes in mucilage detection. It is important to note that our
dataset encompasses three classes, whereas other datasets
utilized for comparison comprise only two classes.

Further discussions on the findings, advantages, limitations,
and future research directions are presented in the subsequent
sections.

Findings:
The proposed TuncerNeXt-based mucilage detection
model achieved remarkable performance with a validation
accuracy of 97.60% and a test accuracy of 98.66%.
The model's integration of attention mechanisms and
residual blocks proved effective in enhancing
classification efficacy, showcasing its potential for real-
world applications in environmental monitoring and
marine science.
The sea wave class achieved the highest accuracy because
it has the most distinct features and the largest number of
training images.
We have proposed a deep feature engineering model
based on the presented TuncerNeXt, and the presented
deep feature engineering model achieved 99.18%
classification accuracy.
For the deep feature engineering model, the length of the
selected best feature combination is 751.
The SVM classifier is the best classifier among the tested
shallow classifiers for the presented deep feature
engineering model.

Advantages:
TuncerNeXt is a novel CNN architecture that seamlessly

integrates attention mechanisms and residual blocks,
offering a sophisticated approach to image classification.
The model is trained and evaluated on a meticulously
curated dataset comprising diverse images of sea waves
and mucilage. This ensures comprehensive coverage of
real-world scenarios and enhances the model's
adaptability.

By incorporating sea wave images alongside mucilage
data, TuncerNeXt demonstrates robust performance in



distinguishing mucilage amidst challenging maritime
conditions, facilitating accurate detection even in
dynamic ocean environments.

- TuncerNeXt exhibits strong transfer learning capabilities,
enabling the extraction and utilization of valuable features
from pre-trained models. This enhances the model's
versatility and efficiency in adapting to new datasets or
domains with minimal additional training data.

- The proposed TuncerNeXt has 2.1 million parameters but
attained high classification (over 98.5% test classification
accuracies) performances. In this aspect, our model is
lighter than that of MobileNetV2.

- The proposed TuncerNeXt-based model attained
satisfactory classification results on the collected three
classes dataset.

Limitations:

- Explainable results can be given.

- A larger and more diverse dataset could enhance the
model's applicability in ocean engineering. However, we
tested the TuncerNeXt model on the largest possible
image dataset specifically curated for this study. Unlike
most other research, which typically utilizes satellite
images, we assembled a high-resolution dataset to
maximize the model's capability.

- The TuncerNeXt model could also be evaluated on widely
recognized datasets such as ImageNet or CIFAR-10 to
assess its generalization performance on broader image
classification tasks.

Future directions:

- We plan to use techniques like attention visualization and
saliency maps to illuminate the presented TuncerNeXt's
decision-making process.

- Expanding and diversifying the training dataset with
images from varied geographical locations and
environmental conditions is expected to enhance the
model's ability to adapt to real-world scenarios and
provide more reliable detection.

- It can be beneficial to incorporate additional data sources,
such as oceanographic data, satellite imagery, or
environmental sensor readings, to provide valuable
complementary information that may improve detection
accuracy and resilience to environmental changes.

- Techniques like neural network pruning, feature
attribution methods, or model distillation are planned for
investigation to increase the interpretability of the
TuncerNeXt-based  model without sacrificing
performance.

- Addressing challenges related to real-time processing,
resource constraints, and integration with existing
systems will be crucial for transitioning TuncerNeXt to
real-world monitoring on UAVs or marine platforms,
enabling continuous surveillance of mucilage outbreaks.

6. CONCLUSIONS

The proposed TuncerNeXt-based mucilage detection model
demonstrates high classification performance in classificatiin
mucilage under challenging maritime conditions. The model
achieves high classification performance, with a validation
accuracy of 97.60% and a test accuracy of 98.66%, facilitated
by the integration of attention mechanisms and residual blocks
across its 2.1 million parameters. Including sea wave images

alongside mucilage data strengthens the model's adaptability
and accuracy, even in dynamic ocean/sea environments.
Moreover, the recommended TuncerNeXt-based deep feature
engineering model achieves an improved classification
accuracy of 99.18% by selecting an optimal combination of
751 features and this high classification performance
highlights the introduced TuncerNeXt model’s capacity for
developed feature extraction.

Although these findings indicate the TuncerNeXt model’s
effectiveness as a potential tool for automated mucilage
detection, further validation is required. Our research provides
a foundational/pioneering step towards automated mucilage
monitoring, with applications for environmental monitoring
and marine science.
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