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Although flies are conventionally regarded as vectors of infectious agents, increasing 

evidence suggests that their associated microbiota may harbour bioactive secondary 

metabolites with therapeutic potential. In this study, the antimicrobial properties of 

microbial isolates obtained from fly specimens were investigated, with a focus on three 

strains: Bifidobacterium minimum (A2), Bacillus sp. (A3), and Brucella melitensis biovar 

(A4). Secondary metabolites were extracted and partitioned into ethyl acetate-soluble and 

insoluble fractions, followed by chemical characterisation using thin-layer 

chromatography (TLC) to determine relative fluorescence (RF) values and preliminary 

compound classification. Bioactivity screening was conducted via the disk diffusion 

assay on Mueller–Hinton Agar (MHA) against a panel of clinically relevant, drug-

resistant pathogens, including Escherichia coli, Staphylococcus aureus, Klebsiella 

pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella typhi, and 

Candida albicans. Phytochemical analysis revealed the presence of flavonoids, 

terpenoids, phenolics, and alkaloids, compounds known for their antimicrobial 

properties. Differential inhibition profiles were observed: B. minimum exhibited modest 

activity against S. aureus, Bacillus sp. demonstrated inhibitory effects on both E. coli and 

K. pneumoniae, while B. melitensis biovar displayed the broadest spectrum of activity,

with a maximum inhibition zone of 14 mm recorded against A. baumannii. The presence

of bioactive secondary metabolites in fly-derived microbial communities underscores

their underexplored potential as sources of novel antimicrobial agents. These findings

contribute to the growing interest in exploiting symbiotic or commensal microbiota from

unconventional ecological niches for the discovery of compounds active against

multidrug-resistant pathogens, addressing a pressing need in contemporary antimicrobial

drug development.
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1. INTRODUCTION

Microorganisms play a crucial role in maintaining 

ecological balance, both as pathogenic agents and as normal 

microflora that support various organisms [1, 2]. As pathogens, 

microorganisms can cause diseases in plants, animals, and 

humans [3, 4]. Meanwhile, their role as normal microflora is 

vital in digestive processes, vitamin synthesis, and protection 

against infections, thereby contributing to homeostasis [5]. A 

comprehensive understanding of microorganisms is essential 

for designing effective health management strategies [6, 7]. In 

addition, various microbial sources, including those found in 

insects such as flies, offer significant opportunities in the 

discovery of potential bioactive compounds [8, 9]. These 

microorganisms possess a unique ability to produce a wide 

range of chemical compounds that can act as antibiotics, 

anticancer agents, or antimicrobial substances [10, 11]. 

Previous studies have isolated seven bacterial strains capable 

of producing antimicrobial compounds from Musca domestica 

and Chrysomya megacephala [12]. The unique potential of the 

fly microbiome in the development of novel antimicrobial 

agents lies in its highly complex and dynamic microbial 

community, which has adapted to harsh and competitive 

environments, thereby increasing the likelihood of producing 

rare or previously unidentified bioactive metabolites [9, 13]. 

However, the specific characteristics and effectiveness of 

these active compounds against antibiotic-resistant bacteria 

remain largely unknown. Research on microorganisms 

isolated from fly bodies holds great promise for 

pharmaceutical and biotechnological developments [8, 9]. 

Moreover, the diversity of microbial communities within 

insect ecosystems provides a unique environment for 

discovering bioactive compounds that may be absent in 

conventional sources [14]. Recent studies have increasingly 

emphasized the antimicrobial properties of fly-associated 

microbiota, which highlight the isolation of novel 
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antimicrobial peptides and secondary metabolites from fly gut 

symbionts. In addition, research revealed the presence of 

phenolic compounds with strong antibacterial activity 

produced by endosymbiotic bacteria from Lucilia sericata. 

Similarly, a study identified a new group of alkaloid 

compounds from microorganisms isolated from the surface of 

Calliphora vicina, demonstrating potential as inhibitors of 

multidrug-resistant bacteria. These findings reinforce the 

hypothesis that flies are not only vectors of disease but also 

promising biological reservoirs in the search for novel 

antimicrobial compounds [15, 16]. 

Bioactive compounds produced by microorganisms exhibit 

significant antimicrobial activity, indicating their potential for 

the development of new therapeutic agents [17-19]. This 

activity is derived from various classes of compounds, 

including peptides, alkaloids, and fatty acids, each with 

distinct mechanisms of inhibiting pathogenic microorganisms 

[20]. The application of these bioactive compounds in 

healthcare is especially relevant in light of the growing global 

challenge of antibiotic resistance [21]. Several fly species are 

recognized as vectors of various pathogens, making them 

valuable subjects in microbiological and public health research 

[7, 22, 23]. Their role in transmitting bacteria, viruses, and 

parasites contributes to the spread of infectious diseases 

among humans and animals [24-26]. Understanding the role of 

flies in pathogen ecosystems can inform the development of 

more effective and sustainable strategies to prevent disease 

transmission [27-29]. 

The potential of microorganisms found on flies as sources 

of active compounds remains largely underexplored [21, 30]. 

This knowledge gap may be attributed to the challenges in 

isolating and characterizing the complex microbial 

communities inhabiting fly bodies, as well as limited 

understanding of their ecological interactions [14, 21]. 

Therefore, a focused exploration of the fly microbiome may 

reveal novel antimicrobial agents that are overlooked in 

conventional environments, especially given the increasing 

urgency to address multidrug-resistant pathogens [31]. An 

interdisciplinary approach that integrates microbiology, 

biochemistry, and analytical technologies is essential to 

thoroughly investigate this potential [32, 33]. This study aims 

to isolate and characterize the active compounds produced by 

these microorganisms and to evaluate their antibacterial 

activity against both pathogenic and antibiotic-resistant 

bacteria. The findings are expected to contribute to the 

development of new antimicrobial agents to combat antibiotic 

resistance and to highlight the promise of microbe-derived 

compounds as viable alternatives to conventional antibiotics. 

 

 

2. METHODOLOGY 

 

2.1 Processing of the sample and bacterial isolates 

 

This study utilized bacterial isolates from flies known for 

their potential to produce antimicrobial compounds, as 

identified in prior research. The sample comprised three 

bacterial isolates: Bifidobacterium minimum [NR 044692.2] 

(A2), Bacillus sp. [MH071158.1] (A3), and Brucella 

melitensis bv [NR_076080.2] (A4). Additionally, pathogenic 

bacterial isolates were included as targets for antimicrobial 

testing, specifically clinically significant microorganisms such 

as Escherichia coli, Staphylococcus aureus MRSA, Klebsiella 

pneumoniae, Pseudomonas aeruginosa, Acinetobacter 

baumannii, Salmonella typhi, and Candida albicans. 

 

2.2 Rejuvenation of bacterial isolates 

 

To prepare Nutrient Agar (NA) medium, dissolve the NA 

powder in distilled water and heat the solution to boiling. 

Sterilize the medium in an autoclave at 121℃ for 15 minutes, 

then pour it into sterile Petri dishes and allow it to solidify. 

Bacterial isolates known for producing antimicrobial 

compounds, specifically B. minimum, Bacillus sp., and B. 

melitensis bv, were inoculated onto the surface of the Nutrient 

Agar using sterilized inoculation loops under aseptic 

conditions. Following inoculation, the Petri dishes were 

incubated at 37℃ for 24 hours, a temperature conducive to the 

growth of various bacteria and the development of bacterial 

colonies. Subsequently, the isolates were fermented to 

facilitate the production of antimicrobial compounds. 

  

2.3 Production of antimicrobial compounds 

 

The production of antimicrobial compounds begins with the 

preparation of the Nutrient Broth (NB) media. This involves 

dissolving NB powder in distilled water according to the 

specified composition on the packaging, followed by 

sterilization in an autoclave at 121℃ for 15 minutes. Once 

sterilization is complete, the media is cooled to room 

temperature to ensure it is ready for use. The fermenter is then 

sterilized to maintain aseptic conditions. After all preparations 

are finalized, bacterial isolates are inoculated into the sterile 

Nutrient Broth. This medium is incubated at 37℃ for 24 hours. 

Following incubation, the inoculum is transferred to the 

fermenter at a ratio of 5-10% of the total media volume. This 

inoculation is a critical step in the production process, as it 

initiates the bacteria's production of antimicrobial compounds 

once introduced into the fermenter. 

 

2.4 Fermentation process 

 

The fermentation process commenced with the 

establishment of parameters in the fermenter, setting the 

temperature to 37℃, agitation to 100-200 rpm, and continuous 

aeration at a rate of 1-2 L/min for aerobic bacteria. These 

conditions are designed to optimize bacterial growth and 

activity throughout the seven-day fermentation period. After 

this duration, the fermenter was deactivated, and aeration 

ceased. At this point, bacterial biomass was separated from the 

fermentation medium via centrifugation, with the resulting 

supernatant containing the antimicrobial compounds produced 

during fermentation.  

  

2.5 Extraction of active compounds 

 

The extraction of active compounds begins with separating 

the fermented bacterial culture from the media through 

centrifugation. The resulting supernatant containing the active 

compounds is then subjected to further extraction. This 

supernatant is mixed with ethyl acetate in a separatory funnel 

at a ratio of 1:1 to 1:2 and shaken for 5-10 minutes to ensure 

thorough mixing. The ethyl acetate phase is subsequently 

separated, and this extraction process is repeated 2-3 times to 

enhance the recovery of active compounds. Once the ethyl 

acetate phase is collected, it is transferred to a round flask for 

evaporation using a rotary evaporator, which removes the 

solvent and leaves a concentrated extract of active compounds. 
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This thick extract is stored in sterile vials at low temperatures 

(4℃ or -20℃) to prevent degradation. The next step involves 

purifying the active compounds.  

 

2.6 Purification of active compounds 

 

The fermentation products from isolates A2, A3, and A4 

were placed into separate separatory funnels, into which ethyl 

acetate and water were added at a 1:1 ratio. This ratio was 

adjusted depending on the volume of the fermentation mixture. 

The mixture was gently stirred and allowed to stand until two 

distinct layers formed, with the ethyl acetate phase rising to 

the top due to its lower density than that of water. The tap on 

the separatory funnel was then opened to separate the two 

phases, which were collected into containers. The ethyl 

acetate-soluble (upper phase) and ethyl acetate-insoluble 

(lower phase) extracts from A2, A3, and A4 were evaporated 

in a water bath at 60℃ to obtain concentrated extracts. The 

concentrated ethyl acetate-soluble extracts from A2, A3, and 

A4 were dissolved in a chloroform:methanol (1:1, v/v) mixture, 

while the ethyl acetate-insoluble extracts were dissolved in 

methanol. A small volume of each ethyl acetate-soluble and -

insoluble extract was applied to a TLC plate using a capillary 

tube. The TLC chamber was prepared with an eluent of n-

hexane and ethyl acetate in a 9:1 ratio. The TLC plate was then 

inserted vertically into the chamber, which was sealed tightly 

to allow the eluent to ascend the silica gel plate. After removal 

from the chamber, the plate was allowed to dry at room 

temperature and then examined under UV light at 254 and 366 

nm to visualize the spots. 

 

2.7 Antibacterial activity test 

 

Antibacterial effectiveness was assessed using the agar 

diffusion method in sterile Petri dishes. Test bacterial isolates, 

including E. coli, S. aureus, K. pneumoniae, P. aeruginosa, A. 

baumannii, S. typhi, and C. albicans, were cultured on MHA 

using the swab technique. Sterile paper disks were then 

immersed in the compound fractions and placed on the surface 

of the solidified MHA. The plates were incubated at 37℃ for 

24 hours. Ethyl acetate was used as the negative control. After 

incubation, the antibacterial activity was determined by 

measuring the diameter of the inhibition zones around the 

disks using a digital caliper or millimeter ruler. The absence or 

presence and size of these clear zones indicated the level of 

antimicrobial effectiveness of the tested fractions compared to 

the negative control. Each experiment was performed in 

triplicate (n = 3), and data analysis was conducted without 

statistical testing. 

 

 

3. RESULTS  

 

3.1 Visualization and characterization of active 

compounds 

 

Observation of the TLC plate under a UV lamp at 254 nm 

revealed dark patches of compounds against a green 

background (Figure 1(A)). This indicates that the detected 

compounds can absorb UV light at this wavelength. These 

findings provide crucial preliminary insights into the presence 

and characteristics of the compounds in the sample, serving as 

an initial step for further analysis of the active compounds 

produced.  

Observation of the TLC plate under a UV lamp at 366 nm 

revealed that the separated compound patches appeared 

luminous or fluorescent, providing further insights into their 

properties (Figure 1(B)). This fluorescence confirms the 

compounds' presence and offers clues regarding their chemical 

characteristics and molecular structure. Spraying the TLC 

plate with FeCl3 solution elicited a notable reaction with 

phenolic compounds, resulting in blue or purple coloration in 

the detected spots, indicating their presence (Figure 1(C)). The 

application of Citroborate solution produced a specific color 

reaction that aids in identifying flavonoid compounds in the 

sample (Figure 1(D)). Dragendorff solution was used to detect 

alkaloids, with the resulting spots exhibiting yellow to orange 

coloration, clearly indicating their presence (Figure 1(E)). 

Finally, spraying Vanillin sulfate solution on the TLC plate 

imparted a yellow-brown color to the separated compounds, 

signifying the presence of terpenoids in the sample (Figure 

1(F)). 

Characterization of active compounds in microbial isolates 

from flies revealed the presence of phenolics, flavonoids, 

alkaloids, and terpenoids. (Figure 2). The RF values were 

consistent across the three isolates, with notably high signals 

for flavonoids and phenolic compounds. Isolate A4 exhibited 

stronger fluorescence for terpenoids and alkaloids (RF = 0.8), 

indicating a richer metabolite profile than the others. 
 

 
(A) UV lamp observation 

254 nm 

 
(B) UV lamp observation 

366 nm 

 
(C) FeCl3 spraying 

 
(D) Citroborate spraying 

 
(E) Dragendorff spraying 

 
(F) Vanillin sulfate 

spraying 
 

Figure 1. Visualization of active compounds produced by 

fly-associated microbial isolates 

 

The TLC schematic illustrates the migration behavior of 

four major metabolite classes. Compounds with higher 

polarity, such as flavonoids and phenolics, showed the furthest 
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migration (RF = 0.9), whereas terpenoids and alkaloids 

migrated slightly less (RF = 0.8). These results are in 

agreement with the fluorescence-based characterization and 

validate the diversity of bioactive constituents.  

 

 
 

Figure 2. RF values of active compounds in each microbial 

isolate associated with flies 
 

Following the RF profile shown in Figure 2, a schematic 

representation of the TLC separation spectrum is illustrated in 

Figure 3.  
 

3.2 Antibacterial activity test for each isolate 

 

The antibacterial activities of ethyl acetate-soluble extracts 

from B. minimum (A2), Bacillus sp. (A3), and B. melitensis 

(A4) were evaluated using the disk diffusion method on agar 

media against seven clinically relevant pathogenic 

microorganisms. The results showed varying inhibition zones 

among the isolates, indicating differential susceptibility of the 

pathogens to the respective bioactive compounds (Figure 4 

and Table 1).  
 

 
 

Figure 3. Schematic diagram of the TLC separation spectrum 

of bioactive compounds produced by fly-associated microbial 

isolates 

 
 

Figure 4. Antibacterial activity (inhibition zone diameters) of ethyl acetate-soluble extracts from B. minimum (A2), Bacillus sp. 

(A3), and Brucella melitensis (A4) against seven clinically relevant pathogenic microorganisms 
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Table 1. Inhibition zone activity of B. minimum (A2), Bacillus sp. (A3), and B. melitensis (A4) isolates on seven types of 

pathogenic microorganisms 

 

Pathogenic Microorganisms 

Average Zone of Inhibition (mm) 

Ethyl Acetate Soluble Extract Ethyl Acetate Insoluble Extract 

A2 A3 A4 A2 A3 A4 

E. coli  0 7 11.5 0 0 0 

P. aeruginosa 0 0 12.5 0 0 0 

C. albicans 0 0 13 0 0 0 

S. aureus MRSA 8 7 10 0 0 0 

A. baumanii 0 0 14 0 0 0 

S. typhi 0 0 7 0 0 0 

K. pneumonia  0 12 7 0 0 0 

 

 
 

Figure 5. Disk diffusion assay images showing inhibition 

zones formed by ethyl acetate-soluble extracts of B. 

minimum, Bacillus sp., and B. melitensis against seven 

pathogenic microorganisms 

 

Among the three isolates, B. melitensis (A4) demonstrated 

the most comprehensive antibacterial profile, exhibiting 

inhibitory activity against all tested pathogens. The largest 

inhibition zones were recorded against Acinetobacter 

baumannii (14 mm) and Candida albicans (13 mm). Bacillus 

sp. (A3) showed moderate activity, particularly against 

Escherichia coli (7 mm), Staphylococcus aureus MRSA (7 

mm), and Klebsiella pneumoniae (12 mm). In contrast, B. 

minimum (A2) displayed limited antibacterial activity, with 

measurable inhibition only against Staphylococcus aureus 

MRSA (8 mm), suggesting a narrow spectrum of activity. 

Importantly, none of the ethyl acetate-insoluble fractions 

exhibited any detectable antibacterial activity, indicating that 

the bioactive compounds responsible for inhibition were 

present exclusively in the ethyl acetate-soluble phase. 

Figure 4 presents a quantitative bar graph illustrating the 

average inhibition zone diameters, enabling direct comparison 

of antibacterial efficacy across isolates and pathogens, 

whereas Figure 5 displays photographic images of the agar 

plates, visually confirming the presence, shape, and clarity of 

the inhibition zones formed by each extract. 

Together, these figures provide complementary 

perspectives: while Figure 4 facilitates analytical comparison 

based on quantitative data, Figure 5 offers qualitative visual 

validation, thereby enhancing the overall interpretation of the 

antibacterial potential demonstrated by each isolate. 

 

 

4. DISCUSSION  

 

Characterization of active compounds in fly-associated 

microorganisms has identified a diverse range of secondary 

metabolites. The isolates B. minimum (A2), Bacillus sp. (A3), 

and B. melitensis (A4) exhibited distinct metabolite profiles, 

reflecting the unique compounds produced by each species. 

Isolates A3 and A4 produced flavonoids, terpenoids, 

phenolics, and alkaloids, known for their antioxidant and 

antimicrobial properties [34-36], while isolate A2 did not yield 

any alkaloids. All three isolates demonstrated high RF values 

for flavonoids and phenolic compounds, suggesting 

significant potential for therapeutic applications. These 

compounds have been previously recognized for their role in 

inhibiting the growth of pathogenic bacteria [37-39]. 

Mechanistically, flavonoids are known to disrupt microbial 

membrane integrity and inhibit nucleic acid synthesis, whereas 

alkaloids often interfere with protein function and bacterial 

cell wall biosynthesis [40, 41]. 

Isolate A4 demonstrated the capacity to produce secondary 

metabolites, specifically terpenoids and alkaloids, with high 

RF values. These findings suggest a diverse polarity in the 

metabolites produced by this isolate, offering potential 

flexibility in targeting antibiotic-resistant pathogens [42]. 

Previous studies have indicated that terpenoids and alkaloids 

from bacterial isolates possess significant antibacterial 

properties [41, 43]. For instance, diterpenoids isolated from 

Streptomyces spp. and alkaloids from Actinomycetes have 

shown potent activity against MRSA and ESBL-producing 

bacteria in other reports, highlighting the therapeutic potential 

of similar compound classes [44, 45]. 

As resistance to conventional antibiotics continues to rise, 

the exploration of these compounds as therapeutic alternatives 

is increasingly pertinent. The antibacterial activity test results 

Escherichia coli Pseudomonas aeruginosa 

Candida albicans Staphylococcus aureus MRSA 

Acinetobacter baumannii Salmonella typhi 

Klebsiella pneumoniae ESBL 
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indicated that the insoluble fraction of the ethyl acetate extract 

did not produce inhibition zones against the tested pathogenic 

microorganisms. This suggests that active compounds with 

antimicrobial potential may either be absent in this fraction or 

not sufficiently dissolved to interact with the target 

microorganisms. Another possibility is that the compounds are 

bound within a polymeric or hydrophobic matrix that inhibits 

their diffusion, or their bioavailability is reduced due to low 

solubility in aqueous environments [46, 47]. The active 

compounds might also be trapped within a complex matrix that 

prevents their release by the solvents, thereby diminishing 

their effectiveness. Further investigation using fractionation 

techniques and bioassay-guided isolation is warranted to 

explore whether these inactive fractions contain cryptic or 

latent bioactive compounds [48, 49]. 

The antibacterial activity of B. minimum (A2), Bacillus sp. 

(A3), and B. melitensis (A4) isolates against seven pathogenic 

microorganisms revealed varying zones of inhibition for the 

ethyl acetate soluble extract. Using solvents with appropriate 

polarity significantly enhances the availability of bioactive 

compounds, thereby improving antimicrobial efficacy [50]. 

The B. minimum isolate (A2) exhibited antimicrobial activity 

limited to S. aureus MRSA, likely due to a lack of diverse 

bioactive compounds, particularly alkaloids, often linked to 

more substantial antimicrobial effects [51]. Although phenolic 

and flavonoid compounds produced by isolate A2 have been 

shown to possess significant antibacterial activity against S. 

aureus, including MRSA strains [52-54], their presence alone 

is insufficient to exert notable antimicrobial effects against 

other pathogenic microorganisms [55]. This aligns with 

findings in recent studies where phenolics exhibited selective 

activity, depending on bacterial cell wall structure and efflux 

pump expression [56-58].  

The antibacterial activity of Bacillus sp. (A3) isolates 

demonstrated inhibition zones against three pathogenic 

microorganisms: E. coli, S. aureus, and K. pneumoniae. 

Previous research has indicated that Bacillus species produce 

various antimicrobial compounds capable of inhibiting protein 

synthesis [59] and disrupting bacterial cell membranes [60, 61]. 

The Bacillus sp. isolates exhibited a complex metabolite 

profile, including flavonoids, terpenoids, phenolics, and 

alkaloids, although the fluorescence values for alkaloids were 

low. The antimicrobial efficacy of these isolates against E. coli, 

S. aureus, and K. pneumoniae supports earlier findings that 

Bacillus subtilis produces active compounds effective against 

antibiotic-resistant bacteria [62, 63]. The presence of alkaloids 

in this isolate further enhances its potential to combat both 

gram-positive and gram-negative bacteria [61]. 

The B. melitensis bv isolate (A4) exhibited inhibition zones 

against all tested pathogenic microorganisms, indicating that 

its metabolites—flavonoids, terpenoids, phenolics, and 

alkaloids—effectively inhibit microbial growth. The presence 

of these compounds provides a robust foundation for the 

isolate's broad-spectrum antimicrobial activity, with the 

highest inhibition observed against C. albicans. This 

significant activity against C. albicans underscores the 

isolate's potential for treating systemic fungal infections, 

which are often challenging to manage with conventional 

antifungal agents [62]. Consequently, isolate A4 shows 

promise for developing novel antimicrobial agents, 

particularly for combination therapies targeting bacterial and 

fungal infections, thereby minimizing the need for multiple 

drugs and the associated risk of resistance [63]. Additionally, 

notable inhibition was also observed against P. aeruginosa. 

This is particularly relevant as P. aeruginosa is known for its 

robust intrinsic resistance mechanisms, and activity against 

this pathogen indicates a potent mode of action [64, 65]. 

Notably, there has been no prior report on the antibacterial 

compounds produced by B. melitensis, a bacterium 

traditionally recognized as a pathogen responsible for 

brucellosis [66, 67]. This finding is significant for its future 

application as a source of antibacterial compounds. 

 

 

5. CONCLUSIONS 
 

In conclusion, this study demonstrated that the bacterial 

isolates from Musca domestica and Chrysomya megacephala, 

specifically B. minimum (A2), Bacillus sp. (A3), and B. 

melitensis (A4), possess significant potential as sources of 

antimicrobial bioactive compounds. The metabolites 

identified—including flavonoids, terpenoids, phenolics, and 

alkaloids—exhibited effectiveness against antibiotic-resistant 

pathogens. Among the isolates, B. melitensis (A4) showed the 

most potent activity, with the highest inhibition zone reaching 

14 mm against Acinetobacter baumannii and broad-spectrum 

activity against all tested pathogens. 

These findings underscore the practical significance of fly-

associated symbiotic bacteria as novel and underexplored 

sources for antimicrobial discovery. In particular, the active 

metabolites from B. melitensis represent promising candidates 

for the development of next-generation antibiotics targeting 

multidrug-resistant infections. 

Further research is necessary to purify and identify the 

specific bioactive constituents within the ethyl acetate-soluble 

extract and elucidate the molecular mechanisms underlying 

their antimicrobial action. In addition, in vivo validation using 

animal models and subsequent clinical evaluation are 

warranted. The optimization of fermentation conditions and 

scalable biotechnological production methods is also essential 

to enhance metabolite yield and support future pharmaceutical 

applications. 
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