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Landslides have increasingly threatened infrastructure and safety along the highland 

corridor between Pekan Nabalu and Kundasang, Sabah, with several incidents causing 

significant road closures and economic losses in recent years. This study assesses 

landslide susceptibility in the area using the Weights of Evidence (WoE) model, a 

bivariate statistical approach well-suited for handling nonlinear spatial relationships and 

conditional independence among causative factors. The model integrates geological 

formations—including the Trusmadi Formation, Crocker Formation, and Pinosouk 

Gravel deposit—with factors such as slope angle, land use, drainage, and lineament 

proximity, lithology, slope curvature, and soil series. A total of 564 landslides covering 

0.27 km² were digitized to develop the susceptibility model. The resulting Landslide 

Susceptibility Analysis (LSA) map classifies the region into five categories: Very Low 

(11.39%), Low (25.56%), Moderate (29.67%), High (23.6%), and Very High (9.78%). 

Notably, the Very High susceptibility zones are clustered near Bundu Tuhan and 

constitute 14.1% of the area. Validation using the Area Under Curve (AUC) method 

yielded a success rate of 78.15% and a prediction rate of 77.9%. The results provide 

practical support for slope risk zoning, infrastructure planning, and mitigation strategies 

in this geohazard-prone region. 
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1. INTRODUCTION

The region stretching from Pekan Nabalu to Kundasang in 

northwest Sabah, Malaysia, is highly prone to landslides due 

to its complex geological structure, rugged geomorphology, 

active tectonics, and intense climatic conditions [1-4]. This 

natural susceptibility has been further aggravated by rapid 

development and construction activities driven by growing 

tourism and agriculture [4-6]. As a result, the area frequently 

experiences landslide events that have, since the 1980s, caused 

significant damage to lives, infrastructure, property, the local 

economy, and the environment [3, 6, 7]. 

To assess the region's landslide susceptibility, this study 

applies a bivariate statistical approach using the Weights of 

Evidence (WoE) model. This method quantitatively integrates 

a dependent variable (landslide occurrence) with multiple 

independent causative factors to generate a spatially reliable 

susceptibility map [6]. The analysis is conducted using 

Geographic Information System (GIS) technology to assess 

landslide risk at a regional scale [8-10]. The WoE model is 

used to evaluate the relationship between landslide 

distribution and key contributing factors, allowing the 

prediction of potential future hazard zones. The resulting 

Landslide Susceptibility Analysis (LSA) map is validated 

using the Area Under Curve (AUC) method to ensure model 

accuracy and predictive reliability. 

2. STUDY AREA

The study was conducted along the highland corridor 

between Pekan Nabalu and Kundasang, Sabah, Malaysia, 

covering approximately 114 km², bounded by latitudes 

5°57’50.02” N to 6°1’57.57” N and longitudes 116°27’19.45” 

E to 116°35’25.97” E (Figure 1). This region is characterized 

by rugged topography, steep slopes, and high elevations 

shaped by historical tectonic uplift, active geomorphological 

processes, and weathering cycles [11, 12]. Many recent 

landslides and slope failures in the area are attributed to rapid 

infrastructure development and poor slope management 
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practices [13]. One of the most devastating events occurred in 

Kundasang, causing infrastructure damage and economic 

losses estimated at nearly a trillion Ringgit Malaysia [14].  

The climate in this region is equatorial and influenced by 

both northeast and southwest monsoons. According to the 

Malaysian Meteorological Department (2023), the average 

annual rainfall ranges between 3,000 to 4,500 mm, with peak 

precipitation occurring from October to January. This high 

rainfall intensity significantly contributes to slope saturation 

and instability. 

Geologically, the study area comprises three major 

lithological units: the Pinosouk Gravel deposits (Pleistocene 

to Holocene), the Crocker Formation (Late Eocene to Early 

Miocene), and the Trusmadi Formation (Paleocene to Middle 

Eocene) [15]. These formations are composed of interbedded 

sandstones, siltstones, shales, and loose colluvium, many of 

which are intensely faulted, sheared, and jointed, making the 

terrain prone to landslides. A schematic map illustrating the 

distribution of faults and geological structures across the study 

area is shown in Figure 2. 

 

 
 

Figure 1. Location of the study area from Pekan Nabalu to 

Kundasang Town, Sabah, Malaysia 

 

 
 

Figure 2. Landslide distribution map of the study area 

 

3. MATERIALS AND METHODS 

 

Geographic Information System (GIS) was the primary tool 

used for executing the spatial analysis in this landslide 

susceptibility study. The process was divided into three main 

stages to generate a detailed landslide susceptibility map. The 

first stage focused on mapping the spatial distribution of 

observed landslides. The second stage involved selecting eight 

contributing factors considered relevant to landslide 

occurrence—namely, drainage proximity, land use, slope 

steepness, distance to lineaments, slope aspect, geological 

formation, slope curvature, and soil classification. In the final 

stage, the Weights of Evidence (WoE) model was employed 

to derive the susceptibility zones, and its accuracy was 

evaluated using the Area Under the Curve (AUC) technique. 

All spatial data were processed as raster layers with a 

consistent resolution of one meter, allowing for high-precision 

spatial analysis.  

 

3.1 Landslide distribution map 

 

A total of 564 landslides, encompassing both soil and rock 

slope failures, were digitized to develop a comprehensive 

landslide distribution map spanning the corridor from Pekan 

Nabalu to Kundasang Town (Figure 2). These landslides were 

delineated in polygon format using high-resolution SPOT 6 

satellite imagery (2020–2022) and orthophotos provided by 

the Department of Survey and Mapping Malaysia (JUPEM). 

The inventory was compiled through visual interpretation, 

identifying scars based on typical morphological features such 

as arcuate crowns, exposed bare surfaces, and vegetation 

disturbance. Digitization was performed manually using 

ArcGIS Pro, with each landslide polygon assigned attributes 

including landslide type, estimated area, and source of 

verification. 

To ensure accuracy, the landslide locations were further 

validated using historical data from the Sabah Department of 

Minerals and Geoscience (JMG) and field surveys conducted 

during August and October 2023. The integration of remote 

sensing, secondary sources, and field validation enhanced the 

reliability of the inventory, which served as the foundational 

input for the landslide susceptibility modeling using the 

Weights of Evidence (WoE) approach. 

From the total inventory, 396 landslides (70%) were 

randomly selected to form the training dataset, while the 

remaining 168 landslides (30%) were designated as the testing 

dataset for model validation. This random sampling technique 

was applied to minimize selection bias within the GIS-based 

statistical analysis, in accordance with established practices 

[10]. 

The training dataset was used to construct a success rate 

curve, assessing the model’s ability to classify known 

landslides within susceptibility classes. Meanwhile, the testing 

dataset supported the generation of a prediction rate curve, 

which evaluated the model’s predictive performance. The 

landslide inventory used in this study was developed through 

a combination of desk-based image analysis, field verification, 

and interpretation of Google Earth imagery and IFSAR-

derived datasets. 

 

3.2 Landslide causative factor maps 
 

This assessment incorporated eight key parameters that 

contribute to landslide occurrence. These include drainage 
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proximity, land use patterns, slope gradient, distance to 

structural lineaments, slope orientation, underlying geology, 

slope profile curvature, and soil classification. The factors 

were chosen based on their relevance to slope instability as 

observed in the study area. The selection was guided by the 

area's geomorphological context, the diversity of landslide 

mechanisms identified, and documented past landslide 

occurrences [16, 17]. 

Several thematic factor maps, including lithology, soil 

series, and land use, were obtained from the Department of 

Agriculture (DOA) (2018) and the Department of Mineral and 

Geoscience Malaysia (JMG) (2018). In contrast, slope angle, 

slope aspect, slope curvature, drainage proximity, and 

lineament proximity were derived from a Digital Elevation 

Model (DEM) generated using Interferometric Synthetic 

Aperture Radar (IFSAR) data. All raster layers were produced 

with a consistent spatial resolution of 1 meter × 1 meter, 

referenced to the GDM 2000 BRSO (meters) coordinate 

system. 

Slope angle, aspect, and curvature layers were extracted 

directly from the DEM, whereas the lithology, soil series, and 

land use layers were digitized from polygon-based vector data. 

Proximity maps for drainage and lineament features were 

developed from DEM-derived linear elements and analyzed 

using the Multiple Buffer tool in ArcGIS 10.4. All thematic 

layers were ultimately converted to raster format for use in the 

Weights of Evidence (WoE) statistical model. 

The use of a 1 m × 1 m cell size across all raster layers 

provided a high-resolution spatial representation of terrain 

variability, which is particularly important in steep, rugged 

topography such as that between Pekan Nabalu and 

Kundasang. This resolution enabled the detection of micro-

topographic features that influence slope instability, such as 

minor drainage channels and terrain breaks. However, it also 

increased computational demands and could introduce noise if 

not supported by equally detailed input data. 

To assess the appropriateness of this resolution, a sensitivity 

check was conducted by comparing the susceptibility outputs 

against a coarser 10 m × 10 m resolution model. While both 

models displayed consistent spatial patterns, the 1 m resolution 

output offered greater zoning detail, especially along slope 

transitions and infrastructure corridors. Furthermore, the AUC 

values confirmed its suitability, with the 1 m resolution model 

yielding slightly higher success (78.15%) and prediction 

(77.9%) rates. These results justify the use of high-resolution 

raster layers for precise landslide susceptibility mapping at a 

local scale. 
 

3.3 Landslide Susceptibility Analysis (LSA) map using 

Weights of Evidence (WoE) model 
 

The Weights of Evidence (WoE) method, a bivariate 

statistical approach introduced by Bonham-Carter [18], was 

used to evaluate landslide susceptibility in the study area. 

Rooted in Bayesian probability, WoE applies natural 

logarithms and assumes conditional independence among the 

landslide causative factors (Eq. (1)). The model calculates 

positive weights (W⁺) to indicate a positive correlation 

between a factor and landslide presence (Eq. (2)), and negative 

weights (W⁻) to reflect its absence in landslide-prone areas (Eq. 

(3)). The contrast value (C), obtained by subtracting W⁻ from 

W⁺ (Eq. (4)), determines the relative influence of each factor 

in contributing to landslide occurrence [18]. 

 

P(A|B) = P(B|A) × P(A) / P(B) (1) 

 

Wᵢ⁺ = ln [P(B|A) / P (B|A̅)] (2) 

 

Wᵢ⁻ = ln [P (B̅|A) / P (B̅|A̅)] (3) 

 

C = W⁺ - W⁻ (4) 

 

where, 

• P is the probability ratio of landslide occurrence 

within the study area. 

• B represents the total area where a specific landslide 

causative factor is present. 

• B̅ denotes the total area where the landslide causative 

factor is absent. 

• A is the number of landslides occurring within the 

area influenced by the causative factor. 

• A̅ is the number of landslides occurring outside the 

area influenced by the causative factor. 

• W⁺ refers to the positive weight assigned to the 

presence of a causative factor, indicating a positive 

correlation with landslide occurrence. 

• W⁻ refers to the negative weight assigned to the 

absence of the causative factor in landslide-prone 

zones. 

• C denotes the contrast value, calculated as the 

difference between W⁺ and W⁻, representing the 

influence strength of each subclass within a causative 

factor. 

In generating the landslide susceptibility map, the Landslide 

Susceptibility Index (LSI) was derived by integrating the 

weighted raster layers of each landslide causative factor using 

ArcGIS 10.4. The weight assigned to each factor was 

calculated based on the spatial relationship between the 

presence or absence of landslides and the corresponding factor 

class, represented through pixel-based analysis. This 

relationship is summarized in the combination Table 1, which 

reflects how landslide occurrences intersect with factor 

distributions.  

 

Table 1. Combining the presence of landslides and causative 

factors in the study area 

 
 Factor Present Factor Absent 

Landslide Present Npix1 Npix2 

Landslide Absent Npix3 Npix4 

 

In this table, pixel counts were extracted from the GIS 

environment to quantify the overlap between landslide events 

and factor classes. These pixel values were then used to 

compute the relative influence (weights) of each factor. The 

required input values include the total number of pixels in the 

study area, the number of pixels affected by landslides, and the 

distribution of these pixels across different factor classes. 

Once the weights were determined, each factor layer was 

multiplied by its corresponding weight, and the resulting 

weighted layers were combined to form the final LSI map. The 

map values were then classified into five categories: Very Low, 

Low, Moderate, High, and Very High. This classification 

facilitates the identification of high-risk zones and supports 

informed decision-making for slope hazard mitigation and 

land-use planning. 
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3.4 Model validation 

 

The Area Under the Curve (AUC) method was applied to 

validate the performance of the landslide susceptibility model 

[19]. To assess the model’s accuracy in predicting landslide-

prone areas, the AUC analysis was conducted by integrating 

the landslide inventory map with the landslide susceptibility 

map (LSM). The inventory data were randomly split, with 

70% of the landslides used as the training dataset to calculate 

the success rate, while the remaining 30% served as the testing 

dataset to evaluate the model’s prediction rate. 

 

 

4. RESULTS AND DISCUSSION 

 

Using the Weights of Evidence (WoE) model, landslide 

susceptibility in the study area was assessed by integrating the 

landslide distribution map with eight causative factors. The 

most influential subclasses within each factor, along with their 

maximum Contrast (C) values, are summarized in Table 2, 

highlighting the strength of their association with landslide 

occurrences. 

 

Table 2. Summary of landslide causative factors with the 

highest Contrast (C) values and their associated subclasses 

 

Factor 
Subclass with 

Highest C 

Max C 

Value 

Interpretation 

Slope 

Angle 
36–60° 0.562 

Steep slopes 

increase 

gravitational stress 

Slope 

Curvature 
Convex 0.648 

Convex surfaces 

retain water 

Drainage 

Proximity 
< 200 m 0.393 

Proximity increases 

saturation 

Slope 

Aspect 
South-facing 0.355 

Greater exposure to 

rain and sunlight 

Soil Series Pinosouk 0.438 
Clay-rich and 

highly weathered 

Lithology 
Trusmadi 

Formation 
0.371 

Fractured, 

argillaceous, faulted 

rocks 

Land Use Built-up 0.372 
Reduced vegetation, 

slope disturbance 

Lineament 

Proximity 
< 100 m 0.158 

Close to faults 

increases instability 

 

As illustrated in Figure 3, slope angle significantly 

influences landslide occurrence. Based on JMG guidelines 

[20], slope angle is classified into six categories: flat (<5°), 

gentle (6°–15°), moderate (16°–25°), steep (26°–35°), very 

steep (35°–60°), and extremely steep (>60°). Notably, slopes 

between 36° and 60° (WoE = 0.532) and 16° to 25° (WoE = 

0.091) show a strong correlation with landslide occurrences, 

highlighting the role of gravitational stress in destabilizing 

steeper and moderately inclined terrain [21]. 

The slope aspect map (Figure 4) shows the orientation of 

slope surfaces in relation to environmental factors such as 

wind, rainfall, and solar exposure [22]. This factor is 

categorized into eight classes: North, Northeast, East, 

Southeast, South, Southwest, West, and Northwest. Aspects 

facing South (0.355), Southeast (0.161), Southwest (0.147), 

North (0.032), and East (0.027) exhibit higher WoE values, 

indicating greater landslide susceptibility. In particular, south-

facing slopes are more prone to failure due to increased solar 

radiation and moisture during monsoon seasons, which reduce 

vegetation cover and intensify surface erosion [23]. 

 

 
 

Figure 3. Slope angle map 

 

 
 

Figure 4. Slope aspect map 

 

 
 

Figure 5. Slope curvature map 
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Figure 6. Drainage proximity map 

 

 
 

Figure 7. Lineament proximity map 

 

Slope curvature affects both the velocity of landslide 

movement and the runout distance. As shown in Figure 5, 

curvature is classified into convex (negative), concave 

(positive), and flat (zero) surfaces [24]. Landslides are more 

frequently associated with convex (WoE = 0.648) and flat 

(WoE = 0.239) surfaces. Among these, convex slopes are more 

prone to failure due to their upward curvature, which can retain 

water and become saturated over time, ultimately reducing 

slope stability [25].  

Areas close to drainage networks are more prone to 

landslides due to increased moisture and erosion. The drainage 

proximity map (Figure 6) was classified into six buffer zones 

at 200-meter intervals: <200 m, 200–400 m, 400–600 m, 600–

800 m, 800–1000 m, and >1000 m. The highest WoE value 

(0.393) was observed within 200 meters, indicating strong 

landslide susceptibility. This is attributed to higher 

groundwater levels and enhanced seepage, which weaken 

slope stability, particularly in steep terrains affected by rapid 

runoff or debris flow during intense rainfall [26]. 

Lineament features, such as faults, play a critical role in 

slope stability by indicating zones of structural weakness [27, 

28]. The lineament proximity map (Figure 7) was classified 

into six buffer zones at 100-meter intervals: <100 m, 101–200 

m, 201–300 m, 301–400 m, 401–500 m, and >500 m. The 

highest landslide concentration occurs within 100 meters of 

lineaments, with a WoE value of 0.158. These features, formed 

by past tectonic activity and weathering, increase landslide 

likelihood, especially when triggered by earthquakes or 

intense rainfall [29]. 

The land use map shown in Figure 8, adapted from the 

Department of Agriculture in 2018, highlights areas that have 

experienced significant development and land conversion 

[30]. Such activities contribute to soil quality degradation, 

which in turn lowers slope stability and increases the risk of 

landslides. Land use was classified into four categories: barren 

land, built-up areas, cultivated land, and forest. Among these, 

built-up areas recorded the highest Weight of Evidence value 

at 0.372, indicating a strong correlation with landslide 

occurrences. Continuous expansion for tourism and 

agricultural activities without adequate structural controls has 

led to frequent slope failures in critical zones, particularly 

around Bundu Tuhan and Kundasang. 

 

 
 

Figure 8. Land use map 

 

 
 

Figure 9. Lithology map 

 

The lithological composition of an area, comprising various 

rock types with differing strength, texture, composition, and 

grain size, plays a crucial role in determining slope 

susceptibility to landslides. As shown in the lithology map 

obtained from the Department of Mineral and Geoscience 

(JMG) [31] categorizes the study area into three main units: 
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the Crocker Formation, Trusmadi Formation, and Pinosouk 

Gravel Deposits (Figure 9). Among these, the Trusmadi 

Formation exhibits the highest Weight of Evidence Contrast 

value (C = 0.371), indicating a strong association with 

landslide occurrences. 

This formation consists of highly weathered and 

argillaceous rocks, including phyllite, mudstone, and slate, 

which have undergone regional metamorphism [32]. Its 

fractured structure, extensive faulting, and the presence of 

numerous shear zones significantly reduce slope stability and 

increase water infiltration, making it particularly prone to 

landslides. 

The soil series factor, shown in Figure 10, represents the 

characteristics of soils formed from weathered rock materials 

of various parent sources and landform origins, which directly 

affect the strength of slope-forming materials. The soil series 

map was divided into three categories—Crocker, Trusmadi, 

and Pinosouk soils—based on the classification developed by 

the Land Resources Division under the British Government’s 

Overseas Development Administration [33]. A higher 

concentration of landslides is observed in areas underlain by 

Pinosouk and Crocker soils, which recorded Weight of 

Evidence values of 0.438 and 0.234, respectively. These soils 

consist mainly of clay-rich mudstone, weathered sandstone, 

and colluvial deposits. In saturated conditions, the expansion 

and contraction of fine clay minerals reduce slope stability, 

thereby increasing landslide susceptibility [34]. 

To evaluate the influence of each causative factor on 

landslide occurrence, the contrast values (C) derived from the 

Weights of Evidence (WoE) model were analyzed. The results 

revealed that slope curvature exhibited the highest contrast 

value, indicating it as the most significant factor controlling 

landslide distribution in the study area. This was followed 

closely by slope angle, particularly slopes ranging from 36˚ to 

60˚, which showed a strong spatial association with landslide 

locations due to increased gravitational stress on steep terrain. 

In addition, soil series and drainage proximity were found to 

be highly influential. Areas dominated by Pinosouk soils and 

those located within 200 meters of drainage networks showed 

elevated susceptibility, attributed to fine-grained, moisture-

retentive soils and increased pore water pressure near water 

channels. Conversely, factors such as lineament proximity and 

land use had relatively lower contrast values, suggesting a 

weaker direct role in triggering landslides but still contributing 

as secondary controls. 

 

 
 

Figure 10. Soil series map 

To further support the spatial model results, field 

observations were conducted at several critical locations, 

including Bundu Tuhan and Kundasang town. These areas 

exhibited numerous landslide features, such as shallow 

translational slides, rotational failures, and debris flows, 

particularly on steep road cuttings and deforested slopes. The 

Trusmadi Formation, which dominates many of these areas, 

consists of fractured, argillaceous rock units such as phyllite, 

mudstone, and slate. These lithologies are highly susceptible 

to weathering and deformation, particularly under intense 

rainfall. Field photographs were captured and included to 

visually document these typical landslide manifestations and 

validate the model outcomes. 

In terms of classification, the landslide susceptibility index 

(LSI) was divided into five classes—Very Low, Low, 

Moderate, High, and Very High—using the equal interval 

method. This approach was selected to maintain consistency 

and clarity in hazard communication, as it produces uniform 

class ranges that are easier to interpret and apply in local-scale 

planning and zoning. Unlike the quantile method, which can 

distort the spatial representation of susceptibility when data 

distributions are uneven, the equal interval method ensures 

that the full spectrum of susceptibility values is evenly 

represented, which is especially useful in mountainous regions 

with high data variability. 

 

 
 

Figure 11. Landslide Susceptibility Analysis (LSA) 

 

The generated landslide susceptibility map (Figure 11) is 

divided into five distinct classes of susceptibility: Very Low, 

Low, Moderate, High, and Very High. The equal interval 

classification method was used to categorize susceptibility 

classes instead of the quantile method. This approach provides 

more intuitive and visually consistent breakpoints across 

susceptibility levels, which is beneficial for local decision-

makers and planners. In contrast, quantile classification may 

misrepresent hazard zones in areas with clustered data 

distributions, especially in mountainous terrain like this study 

area. The landslide susceptibility map classifies the study area 

into five categories: very low, low, moderate, high, and very 

high. The distribution by area is as follows: very low 

susceptibility covers 6.616 percent or 7.543 square kilometers, 

low at 20.954 percent or 23.888 square kilometers, moderate 

at 30.261 percent or 34.497 square kilometers, high at 28.056 

percent or 31.984 square kilometers, and very high at 14.113 

percent or 16.067 square kilometers. Overlaying the landslide 
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inventory with the susceptibility map reveals that 29 landslides 

are located in the very low zone, 78 in the low, 172 in the 

moderate, 177 in the high, and 108 in the very high zone. A 

greater concentration of landslide occurrences, especially 

within the moderate to very high susceptibility zones, is 

observed along developed corridors such as the main route 

connecting Pekan Nabalu to Bundu Tuhan, as well as in the 

vicinity of Kundasang town. Areas with higher population 

density, including Kampung Kiau, Kampung Tiong Lokos, 

Bundu Tuhan, Kundasang, and Kampung Dumpiring, are 

largely situated within regions classified as high to very high 

susceptibility, reflecting elevated exposure to landslide 

hazards. 

The highest concentration of high to very high landslide 

susceptibility is observed around the Bundu Tuhan area, 

primarily due to its complex geological framework and past 

geomorphic processes. These conditions have resulted in steep 

slopes at high elevations, making the area inherently prone to 

landslides. The Crocker Formation is highly jointed, the 

Trusmadi Formation consists of argillaceous slopes altered by 

regional metamorphism, and the Pinosouk Gravel comprises 

loosely packed colluvial and residual soils. These geological 

characteristics, combined with uncontrolled land use activities, 

further increase the region's vulnerability. 

In contrast, areas with very low to low susceptibility, where 

only 107 landslides were recorded, are typically characterized 

by gentler slopes and more stable terrain, requiring minimal 

intervention. On the other hand, moderate to very high 

susceptibility zones show significantly higher landslide 

frequencies, especially in steep, elevated areas. The moderate 

class recorded 172 landslides, while the high and very high 

categories accounted for 285 landslides combined, indicating 

a critical need for continuous monitoring and slope risk 

mitigation. 

To safeguard local communities, particularly those in 

Bundu Tuhan and its surroundings, development and land use 

activities should be restricted, and immediate slope 

stabilization measures must be implemented to minimize the 

risk and impact of future landslides. 

For model validation (Figure 12), the landslide 

susceptibility map was evaluated against the landslide 

inventory using the Area Under the Curve (AUC) approach. 

The calculated AUC values indicate a success rate of 78.15 

percent and a prediction rate of 77.9 percent. Since both values 

fall within the acceptable reliability range of 0.7 to 0.8, the 

model demonstrates fair predictive capability and is deemed 

suitable for application in the study area. 

 

 
 

Figure 12. Model validation using AUC curve 

 

 

5. CONCLUSION 

 

This study developed a detailed landslide susceptibility map 

for the Pekan Nabalu to Kundasang corridor using the Weights 

of Evidence (WoE) model, incorporating eight key causative 

factors. Slope curvature, slope angle, soil series, and proximity 

to drainage were identified as the most influential variables 

affecting landslide distribution, supported by both statistical 

results and field validation. 

The resulting susceptibility map, classified into five 

categories from Very Low to Very High, provides an essential 

spatial tool for local slope hazard assessment. High and very 

high susceptibility zones, particularly in Bundu Tuhan and 

Kundasang, should be prioritized for immediate slope 

stabilization, reforestation, and stricter construction control. 

The map is suitable for guiding development restrictions, 

infrastructure planning, and disaster preparedness initiatives 

by agencies such as PLANMalaysia, JKR, JPBBD, and local 

district councils. 

Furthermore, the findings support the integration of this 

susceptibility model into early warning systems, 

Environmental Impact Assessments (EIA), and site-specific 

risk assessments for future development proposals. The study 

demonstrates how GIS-based WoE analysis, when combined 

with high-resolution spatial data and ground verification, can 

serve as a cost-effective decision-support tool for landslide 

hazard management in other similar mountainous regions of 

Sabah and Southeast Asia. 
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