
A Tabu Search Algorithm for the Discrete Split Delivery Vechicle Routing Problem

Jun Pan1,2, Zuo Fu1, Hongwei Chen3*

1 School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
2 School of Science, Central South University of Forestry and Technology, Changsha 410004, China
3 School of Civil Engineering, Hunan City University, Yiyang 413000, China

Corresponding Author Email: zhfu@csu.edu.cn

https://doi.org/10.18280/jesa.520113 ABSTRACT

Received: 9 December 2018

Accepted: 15 January 2019

In the classic split delivery vehicle routing problem, the demands of customers can be split

unconditionally into pieces of any size. However, in the real-world distribution system, the

customer demands consist of a set of orders on different quantities of goods. During the

distribution, demands can be spitted, but orders cannot. This paper considers the vehicle

routing problem with split delivery by order. It formulates the problem as an integer linear

programming model, creatively applies the binary to the decimal decoder method to represent

the solution, proposes a heuristic order-insertion procedure, and develops a tabu search

algorithm. Using the developed algorithm, this paper tests 25 benchmark instances. According

to the test results, the algorithm proposed has a small gap with the best-known solutions, but

has an advantage in computing time.

Keywords:

vehicle routing, discrete split delivery,

ejection chains, tabu search

1. INTRODUCTION

The vehicle routing problem (VRP) is the core of logistics

and transportation. In this problem, a fleet of homogenous

vehicles are used to serve a set of customers, and each

customer is visited by a single vehicle, and the objective is to

minimize the total transportation cost. The split delivery

routing problem (SDVRP) relaxes the restriction that each

customer is visited only once; in other words, a customer is

allowed to be visited by more than one vehicle. With the split

delivery allowed, both the traversal distance and the number

of vehicles are desired to be reduced.

 In the classic SDVRP, the customer demands can be spitted

into pieces of any size unconditionally. However, in the real-

world urban logistics distribution system, distribution centres

provide daily services for B2B and commodity customers in

urban areas. The customer demands consist of a set of orders,

each of which has a different quantity of goods. The demands

can be split, but the order cannot. Therefore, it is necessary to

further study the VRP with split delivery by order.

Figure 1 illustrates an example of the DSDVRP with three

customers and a depot, where the edge labels indicate

distances and the node labels in parentheses are the customer

demands. The vehicle capacity is 100. Figure 1(a) shows the

optimal solution to the classical VRP, which contains three

direct trips for each customer, and the total distance is 60. With

split delivery allowed, customer 2 is visited by two vehicles

(Figure 1(b)). Consequently, the total traversal distance drops

to 52, and 2 routes are involved. In Figure 1(c), a vector is used

to denote the customers’ demands. The dimensions of the

vector represent the number of orders and the component

represents the quantity of each order. Because customer 2 and

customer 1 have only one order each, their demands cannot be

split. Hence, the solution in Figure 1(b) is infeasible for the

DSDVRP. Figure 1(c) shows the optimal solution to the

DSDVRP where the demand of customer 3 is split by order.

The total distance (i.e. 56) is larger than that of the SDVRP. In

conclusion, if the quantity of each order is 1, the DSDVRP is

equivalent to the SDVRP; in other words, the DSDVRP is a

generalization of the SDVRP.

VRP SDVRP DSDVRP

Figure 1. Comparison of the VRP, SDVRP and DSDVRP

Journal Europeen des Systemes Automatises
Vol. 52, No. 1, February, 2019, pp. 97-105

Journal homepage: http://iieta.org/Journals/jesa

97

Nakao et al. [1] first defined the problem as the discrete split

delivery vehicle routing problem (DSDVRP) and proposed a

heuristic algorithm based on dynamic programming. The

algorithm was tested in real-world instances of a huge

manufacturer, and exhibited efficient performance. Salani et al.

[2] considered the DSDVRP with time windows and

developed a branch-and-price algorithm. Z. Fu et al. [3]

studied with the DSDVRP with soft time windows and

proposed a tabu search algorithm. All these algorithms

mentioned above took orders as operation objects. There are

also other researchers who adopted prior split strategies. M.

Qiu [4] aggregated randomly some orders of each customer

into a new order in advance, and then transferred the DSDVRP

into the classic capacitated vehicle routing problem (CVRP).

Chen et al. [5] also proposed two prior split rules called

25/10/5/1 or 20/10/5/1 for the SDVRP. The approach of

considering orders as independent customers can multiply the

scale of the DSDVRP and make it difficult to solve.

This paper proposes a new tabu search algorithm, which

takes customers as operation objects. The remainder of the

paper is organized as follows. This research is based on the

theory of SDVRP, so it reviews the literatures on the SDVRP

in section 2. In section 3, it formulates a mathematic model for

the DSDVRP and analyzes the properties of optimal solutions.

In section 4, it develops a tabu search algorithm for solving the

DSDVRP. In section 5, it presents the computational results.

Finally, this paper is concluded in section 6.

2. LITERATURE REVIEW ON THE SDVRP

The primary motivation to split the customer demands is to

reduce the traversal cost and the number of vehicles. Dror and

Trudeau [6] showed that allowing split delivery can save costs.

Archetti et al. [7] proved that the traversal cost saving that can

be obtained is at most 50 % and that this bound is tight. These

authors also studied the properties of optimal solutions. Dror

and Trudeau [6] proved that the SDVRP is NP-hard. If the

traversal cost satisfies the triangle inequalities, there exists no

optimal solution where two routes can cover more than one

customer (such a configuration is called a 2-split cycle).

Archetti et al. [7] derived another property of the optimal

solution: the number of splits is smaller than that of the routes

if the distance cost satisfies the triangle inequalities.

Considering that the SDVRP is NP-hard, a variety of

heuristic procedures for the SDVRP have been proposed. Dror

and Trudeau [6] first developed a local search algorithm,

which incorporated k-split interchanges and route additions.

Archetti et al. [8] presented a tabu search algorithm called

SPLITABU, which uses two procedures called ORDER

ROUTES and BEST NEIGHBOUR. With only two

parameters, SPLITABU is very easy to implement, and the

variants of SPLITABU can provide high quality results. Chen

et al. [9] combined a mixed integer program and a variable-

length record-to-record travel algorithm into a new method for

the SDVRP. The hybrid algorithm outperformed the tabu

search algorithm proposed by Archetti et al. in solving six test

problems with 50~199 customers and again performed well in

solving other five problems where lower bounds exist. In the

last decade, Silva. et al. [10] proposed an iterated local search

heuristic algorithm, which is highly competitive.

Several researchers also focused on the exact solution

methods. Belenguer, Martinez and Mota [11] studied the

polyhedron of the SDVRP and found new valid inequalities

that define facets through a cutting plane algorithm in

conjunction with a relaxed formulation. The gaps between the

lower and upper bounds are within 12% for problems with 50,

75, and 100 customers. Lee et al. [12] modelled a dynamic

programming model of the SDVRP, which is able to solve test

problems with up to 7 customers. Jin et al. [13] developed a

two-stage algorithm which divides the SDVRP into two sub-

problems: the first is an assignment problem that determines

the clusters of customers served by the same vehicle, and the

second is a TSP for each cluster. The algorithm can solve test

problems with up to 22 customers. Arichetti et al. [14]

proposed a column generation algorithm that solves the test

problems with up to 100 customers.

Moreover, several variants of the SDVRP have been studied

for both theoretical and practical purposes. Gulczynski et al.

[15] considered the SDVRP with an additional constraint: each

customer has a minimum delivery amount, which is defined as

a fixed fraction of the demand. Jia Fu et al. [16] studied the

split-delivery weighted vehicle routing problem, which takes

the cargo weight into account. Zuo Fu [3] studied the vehicle

routing problem with soft time windows and split delivery by

order in the context of pure distribution with a single depot and

a heterogeneous fleet of vehicles.

3. FORMULATION AND PROPERTIES OF THE

SOLUTIONS

The DSDVRP is defined on a complete graph G=(N,E),

where 𝑁 = {0,1, ⋯ , 𝑛} is the set of nodes and E is the set of

edges. Node 0 denotes the depot, and the others represent the

n customers. A distance matrix C = (𝑐𝑖𝑗) is defined on the set

E, each element of which denotes the distance between node i

and node j. Let 𝑛𝑖 stand for the number of customer i’s orders,

and 𝑑𝑖
𝑘(𝑘 = 1, ⋯ , 𝑛𝑖) denote the demand of the customer i’s

k-th order. The total demand of customer i is 𝑑𝑖, which is equal

to the sum of 𝑑𝑖
𝑘(𝑘 = 1, ⋯ , 𝑛𝑖) , i.e. 𝑑𝑖 = 𝑑𝑖

1 + 𝑑𝑖
2 ⋯ + 𝑑𝑖

𝑛𝑖.

We assume the following:

●Each route begins and ends at the depot;

●The number of vehicles m is unlimited;

●Each of the vehicles is homogeneous with a capacity of Q;

●The customers’ demands can be split, but the orders

cannot.

𝑥𝑖𝑗𝑙 is a binary variable, which is 1 if vehicle l travels from

customer i to customer j, and 0 otherwise. 𝑦𝑖𝑘𝑙 is another

binary variable, which equals to 1 if vehicle l delivers

customer i’s k-th order, and 0 otherwise. The DSDVRP can be

modelled as follows.

0 0 1

min
n n m

ij ijl

i j l

c x
= = =

 (1)

s.t.
0 1

1 0, ,
n m

ijl

i l

x j n
= =

 = (2)

1 1

0, , ; 1, ,
n n

ijk jik

j j

x x i n k m
= =

= = = (3)

1 1, , ;ij

i S j S

x S k m S N

 − = (4)

98

1 1

1, ,
in m

ik ikl i

k l

d y d i n
= =

= = (5)

1 1

1, ,
inn

ik ikl

i k

d y Q l m
= =

 = (6)

1

1, , , 1, , , 1, ,
n

ikl ijl i

j

y x i n k n l m
=

 = = = (7)

{0,1} 0, , ; 0, , ; 1, ,ijkx i n j n k m = = = (8)

Formula (1) is the objective function, targeting the

minimum traversal distance of vehicles. Constraint (2) mean

that each customer is visited by one vehicle at least; constraint

(3) imposes the equilibrium condition of goods flow;

constraint (4) is the classic sub-tour elimination constraint;

constraint (5) ensures the total demand of customers can be

satisfied; constraint (6) requires that the delivery amount of

each vehicle should not exceed its capacity; and constraint (7)

imposes the connectivity of the route performed by l.

As mentioned in section 2, Dror and Trudeau [6] proved that

if the distance satisfies the triangle inequalities, the optimal

solution to the SDVRP does not contain any k-split cycle (𝑘 ≥
2), which means there is at most one node between any two

routes in the optimal solution to the SDVRP. However, this

result does not hold for the DSDVRP. Figure 2 illustrates the

case. In this example, there are three customers with two

orders per customer. The capacity of each vehicle is 100, and

the total demand of all the customers is 200, so the optimal

solution needs at least two vehicles. First the solution with

three direct trips from each customer to the depot has a total

traversal distance of 60. Next, it is clear that no pair of

customers can be visited in one route without violating the

vehicle capacity. Further, consider the route visiting each

customer. The routes of this solution are: 0-1(55)-2(15)-3(30)-

0, 0-1(30)-2(50)-3(20)-0, where the integers in parenthesis are

the demands delivered by vehicles, and the total distance is 44.

Then, this solution is optimal, in which each two of the

customers constitute a 2-split cycle. The example indicates

that the structure of the optimal solution to the DSDVRP may

be more complex than that for the SDVRP.

Figure 2. In the example, the optimal solution has a 2-split

cycle

4. A TABU SEARCH ALGORITHM FOR THE DSDVRP

Since it was developed by Glover in 1988, Tabu Search (TS)

has been standing out as the best metaheuristic for a variety of

VRPs. Similar to the Hill-climbing algorithm, TS explores the

solution space by moving from the current solution 𝑥𝑘 , at

iteration k, to its best neighbour 𝑥𝑘+1 in the neighbourhood

𝑁(𝑥𝑘). To avoid cycling, TS uses the tabu list to record some

attributes of the recently examined solutions, and moves in the

tabu list are forbidden unless their neighbourhood solution

satisfies the aspiration criterion. To escape from the local

optimal solution, several implementations can be adopted,

such as intermediate infeasible solutions, intensification and

diversification strategies.

In this section, a new tabu search algorithm is presented,

which takes customers as operation objects and uses

embedded neighbourhood structures based on ejection chains.

To accelerate neighbourhood search, the Neighbour Route of

each customer is defined (see definition 1) to reduce the

solution neighbourhood cardinality. The Neighbour Route will

be dynamically adjusted during the search process. Of course,

it may get too strong and forbid high-quality neighbourhood

solutions. For this reason, the perturbation mechanism is used

after a given number of non-improving iterations.

Definition 1 If route r contains at least one of the p

customers nearest to customer i, r is the Neighbour Route of

customer i. The set of neighbour routes of customer i is

denoted by 𝑁𝑅𝑖.

4.1 Representation and decoding method

In the papers by Nakao et al. [1], M. Qiu et al [4] and F. Zuo

[2], the different orders of the same customer were dealt with

as independent customers, and the solution was represented by

a sequence of orders. In this section, a new coding method is

proposed, which is called the Binary to Decimal Decoder

method (BDD), to represent solutions of the DSDVRP. For

example, there is a route represented by an integer string 0-

3(5)-4(3)-6(2)-8(7)-11(5)-0. The integer string outside the

parentheses represents the service sequence in the route. By

converting decimal integers in parentheses to binary numbers,

we can get the message of the orders delivered in the route.

For example, integer 5 decoded to binary numbers is equal to

101. From right to left, 101 means only the first and third

orders of the corresponding customer are delivered in the route.

Figure 3 shows a route string which can be decoded by BDD.

Figure 3. Solution representation

4.2 Initial solution

The initial solution is generated by an insertion-based

algorithm. The insertion of orders can be modelled as the

knapsack problem, which can be solved by the dynamic

programming based algorithm. However, Boudia et al. [18]

pointed out the dynamic programming cannot significantly

improve the solution found by the greedy heuristic. For the

sake of computing time, this paper applies the simple greedy

heuristic in which insertions are performed by the decreasing

order of 𝑑𝑖
𝑗
. Furthermore, customer node i is permitted to be

inserted into route r only if the sparse capacity of route r is no

less than the minimum unrouted order of customer i.

Algorithm 1 shows the pseudocode of inserting customer 𝑖′𝑠

unrouted orders into an unforbidden route 𝑟𝑘.

99

Notation:

L: the list of unrouted customers;

𝑠𝑟: the sparse capacity of route r;

𝑞𝑖𝑟: the delivery amount of customer i served by route r;

𝑈𝑖: the set of unrouted orders of customer i.

Table 1. Pseudocode of inserting i into 𝑟𝑘

Algorithm 1 insert customer 𝑖′𝑠 unrouted orders into an

unforbidden route 𝑟𝑘

1: Procedure IOR(𝑈𝑖, 𝑝𝑘);

2: 𝑈𝑖the list of the unrouted orders of customer i, and the

orders are sorted by decreasing order;

3: 𝑞𝑖𝑟 ← 0;
4: while 𝑝𝑘 ≥ 𝑚𝑖𝑛{𝑑𝑖

𝑗
|𝑑𝑖

𝑗
∈ 𝑈𝑖} do;

5: for each 𝑑𝑖
𝑗
 in 𝑈𝑖 do;

6: if 𝑑𝑖
𝑗

≤ 𝑝𝑘;

7: 𝑈𝑖 ← 𝑈𝑖\{𝑑𝑖
𝑗
};

8： 𝑠𝑘 ← 𝑠𝑘 − 𝑑𝑖
𝑗
;

9： 𝑞𝑖𝑟 ← 𝑞𝑖𝑟 + 𝑑𝑖
𝑗
;

10: return 𝑈𝑖 and 𝑝𝑘 and 𝑞𝑖𝑟

Table 2. Pseudocode of constructing the initial solution

Algorithm 2 construct the initial solution

1: Procedure initial construction

2: initial 𝑅 ← ∅, 𝐿 ← the list of unrouted customers, 𝑘 ← 1;

3: for each i in L do

4: 𝑈𝑖 ←the set of unrouted order of i, in which orders are

sorted by decreasing order of 𝑑𝑖
𝑗
;

5: 𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝐿{𝑐𝑖0};

6: 𝑟𝑘 ← (0 − 𝑡 − 0), 𝑅 ← 𝑅 ∪ {𝑟𝑘}, 𝑠𝑘 ← 𝑄 − 𝑑𝑖, 𝑞𝑖𝑘 ← 𝑑𝑖;

7: update 𝐿 ← 𝐿\{𝑡};

8: while 𝐿 ≠ ∅ do

9: for each i in 𝐿 do

10: 𝜀∗ ← ∞, 𝜏∗ ← ∞;

11: for each r in 𝑅 do

12： if 𝑠𝑘 ≥ 𝑚𝑖𝑛{𝑑𝑖
𝑗
|𝑑𝑖

𝑗
∈ 𝑈𝑖}

13: 𝜀𝑖𝑟 ← the cheapest cost of inserting i into r;

14: if 𝜀𝑖𝑟 < 𝜀∗

15: 𝜀∗ ← 𝜀𝑖𝑟, 𝑟∗ ← 𝑟𝑖, 𝑖
∗ ← 𝑖;

16: 𝜏∗ ← 𝜇𝑐0𝑖 − 𝜀𝑖𝑟𝑖
;

17: if 𝜏∗ < 0

18: 𝑟∗ ← insert i in the position with the lowest cost of 𝑟∗;

19: (𝑈𝑖∗ , 𝑝𝑟∗ , 𝑞𝑖∗,𝑟∗) ←IOR(𝑈𝑖∗, 𝑝𝑟∗);

20: else

21: 𝑘 ← k + 1, 𝑟𝑘 ← (0 − 𝑖∗ − 0);

22: 𝑅 ← 𝑅 ∪ {𝑟𝑘}, 𝑠𝑘 ← 𝑄 − ∑ 𝑑𝑖∗
𝑗

𝑑
𝑖∗
𝑗

∈𝑈𝑖∗
, 𝑞𝑖𝑘 ← ∑ 𝑑𝑖∗

𝑗

𝑑
𝑖∗
𝑗

∈𝑈𝑖∗
;

23: If 𝑈𝑖 = ∅

24: 𝐿 ← 𝐿\{𝑖∗};

25: return R

This paper develops a parallel insertion heuristic to

construct the initial solution to the DSDVRP. The routes are

expanded under the two constructions:

𝜀𝑖𝑟 = (𝑐𝑠𝑖 + 𝑐𝑖𝑡 − 𝜆𝑐𝑠𝑡) (9)

𝜏𝑖𝑟 = 2𝑐0𝑖 − 𝜀𝑖𝑟 (10)

where 𝜀𝑖𝑟 is the lowest generalized cost of inserting customer

i into route r; and s and t are the preceding and succeeding

customers, respectively, in route r after customer I is inserted;

𝜆 is a route shape parameter proposed by Gaskell [19] and

Yellow [20] to improve the initial solution; 𝜏𝑖𝑟 is a

discriminant function to decide whether to insert i into route r

or create a new route with i. The pseudocode of constructing

the initial solution is summarized in Table 2. 𝐿 is the list of

unrouted customers, and the first route 𝑟1 is constructed with

the farthest unrouted customer node from the depot (line 5-7).

Then the procedure continues to select the insertion candidate

(line 9-16). If 𝜏∗ < 0 , create a new route with the

corrosponding customer node, or otherwise insert the node

into the related route (line 17-22). Update the unrouted

customer list 𝐿 (line 23-24). Repeat the process until 𝐿 is

empty.

4.3 Neighbourhood structure

The neighbourhood structure is an important aspect of Tabu

search applications, where a set of moves are defined to transit

a current solution into a new one. In order to enhance the

ability of global searching and prevent early convergence,

researchers apply a mixed neighbourhood structure that

usually consists of node-shift or arc-exchange operators. At

each iteration, a move is achieved by selecting a random one

or the best of all neighbourhood structures.

Ejection chain is an innovative neighbourhood structure

defined by Glover [21]. An ejection chain can be viewed as a

series of triplets, each consisting of three consecutive nodes in

a route. And the neighbourhood solution is obtained by

moving a node to the position occupied by another. As a result,

the ejection chain procedure provides a way of compressing a

sequence of moves into a compound move. Inspired by the

idea, Rego and Roucairol [22] proposed a tabu search for the

VRP, and A. Fu et al. [23] developed a highly adaptive

neighbourhood structure, called the split-delivery node

ejection chain (SNEC), for the split delivery vehicle routing

problem with the minimum delivery amount. In this section,

the SNEC is modified in the tabu search phase. The operator

denoted by SNEC* starts with ejecting customer node i from

route 𝑟𝑠 to an adjacent route 𝑟𝑡 . If the sparse capacity 𝑟𝑡 is

enough, locate i in the position of 𝑟𝑠 with the lowest cost.

Otherwise, transfer some or the entire delivery amount of a

different customer j in route 𝑟𝑡 to another route 𝑟𝑙 . The

operator involves the following three types of neighbourhood

structures.

Type I: relocation. For customer node 𝑖 ∈ 𝑟𝑠 and 𝑟𝑡 ∈ 𝑁𝑅𝑖,

remove customer node 𝑖 to the position with the lowest cost

in 𝑟𝑡 . If i is split between 𝑟𝑠 and 𝑟𝑡, delete the split. This move

is feasible when 𝑠𝑖 ≥ 𝑞𝑖𝑟𝑖
.

Type II: ejection chain. Type II is illustrated in Figure 4.

For customer node 𝑖 ∈ 𝑟𝑠 and route 𝑟𝑡 ∈ 𝑁𝑅𝑖 , remove

customer node 𝑖 to the position with the lowest cost in 𝑟𝑡 . If

route 𝑟𝑡 is overloaded, remove customer node 𝑗 ∈ 𝑟𝑡(𝑗 ≠ 𝑖) to

the position with the lowest cost in 𝑟𝑙 ∈ 𝑁𝑅𝑗 . This move is

feasible when 𝑟𝑙 has sufficient sparse capacity to serve j. If

𝑟𝑙 = 𝑟𝑠, the move is similar to the classic 1-1 exchange.

Type III: new split. Type III is illustrated in Figure 5. For

customer node 𝑖 ∈ 𝑟𝑠 and route 𝑟𝑡 ∈ 𝑁𝑅𝑖 , remove customer

node 𝑖 to the position with the lowest cost in 𝑟𝑡. If route 𝑟𝑡 is

overloaded, shift some orders of customer 𝑗 ∈ 𝑟𝑡(𝑗 ≠ 𝑖) to the

position with the lowest cost in 𝑟𝑙 ∈ 𝑁𝑅𝑗 . In this case, the

demand of customer node j is split between 𝑟𝑡 and 𝑟𝑙 . The

move is feasible when the shifting demand of j can cover the

lack of capacity 𝑟𝑠. The insertion of customer node j into 𝑟𝑙

applies IOR.

100

Figure 4. Illustration of Type II

Figure 5. Illustration of Type III

Once the neighbourhood is triggered by customer node i,

the reaction of the subsequent process depends on the total

saving cost. In other words, the nodes, routes and delivery

amounts of the subsequent process will be selected adaptively,

leading to the maximum cost saving.

4.4 Perturbation mechanism

To escape the local optimal solution, this paper applies

strategic perturbation to diversify the local search region. The

pseudocode of the perturbation procedure is demonstrated in

Table 3. The perturbation mechanism consists of a destroy

operator and a repair operator. The destroy operator first

selects q customer nodes at random and then removes them

from all their routes (line 2-3). The destroy operator plays a

role in diversifying the solution space. The repair operator

reinserts the selected customer nodes into routes (line 8-18).

Table 3. Pseudocode of perturbating the current solution

Algorithm 3 perturbate the current solution

1: Procedure perturbation(R)

2: Lthe list of the q unrouted customers selected at random

3: Sremove the customer nodes in L from S

4: for each i in L do

5: 𝑈𝑖the list of the unrouted orders of customer i, and the

orders are sorted by decreasing order

6: while 𝐿 ≠ 𝜙 do

7: 𝐼∗ ← ∞;

8: for each 𝑖 in L do

9: for each 𝑟𝑘 in R do

10: if 𝑠𝑘 ≥ 𝑚𝑖𝑛{𝑑𝑖
𝑗
|𝑑𝑖

𝑗
∈ 𝑈𝑖}

11: 𝐼𝑖𝑘 ← the cheapest cost of insert i into rk

12: if 𝐼𝑖𝑘 < 𝐼∗

13: 𝐼∗ ← 𝐼𝑖𝑘 𝑖∗ ← 𝑖 𝑘∗ ← 𝑟𝑘;

14: if 𝐼∗ < ∞

15: R←insert 𝑖∗ into 𝑟𝑘∗;

16: else

17: 𝑖∗ ←select a customer in L at random;

18: R← 𝑅 ∪ {(0, 𝑖∗, 0)};

19: update 𝑈𝑖∗;

20: If 𝑈𝑖∗ = 𝛷

21: 𝐿 = 𝐿\{𝑖∗}

22: return R

4.5 Framework of tabu search

The proposed solution algorithm is a three-phased tabu

search algorithm. It starts with the initial solution by the initial

construction procedure. The tabu search phase adopts the

adaptive neighbourhood structure SNEC*. At each iteration,

the solution is associated with the attributes (i,j). The inverse

ejection (j,i) should be forbidden for 𝜃 iterations. The value of

𝜃 depends on the number of customers and the number of

routes. Practical experiments indicate that changing the value

at random is more effective than setting a fixed number. So the

value of 𝜃 is chosen randomly within the interval [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥]
during the search. Nevertheless, the tabu status of an attribute

can be revoked if the move improves 𝑠∗ (the best solution

found so far). The aspiration criteria are defined as 𝑓(𝑠) <
𝑓(𝑠∗). If 𝑠∗ is not improved during successive iterations, the

perturbation procedure will be called for diversifying the

searching space. At last, every route in 𝑠∗ is re-optimized by

the 3-opt procedure. Table 4 shows the framework of the tabu

search.

Table 4. Framework of the tabu search

Algorithm 4 Tabu search

1: 𝑠 ← initial construction

2: 𝑠∗ ← 𝑠 𝑓∗ ← 𝑓(𝑠);

3: counter ← 0;

4: while counter< maxIters do

5: 𝑠 ←{SNEC*(s)| s subject to tabu and aspiration

conditions};

6: If 𝑓(𝑠) < 𝑓(𝑠∗)

7: 𝑠∗ ← 𝑠 𝑓(𝑠∗) ← 𝑓(𝑠)

8: counter← 0

9: else counter←counter+1

10: If counter >perIter

11: s←perturbation(s)

12: 𝑠∗ ←post optimize 𝑠∗ by the 3-opt procedure;

13: return 𝑠∗

101

5. COMPUTATIONAL RESULTS AND ANALYSIS

The DSDVRP is new in literatures, so there is no benchmark

instance yet, and what is more, the most related instances used

by Nakao et al. are also unavailable. This paper uses the test

instances generated from the TSPLIB and those proposed by

Chen et al. [9]. For each customer, orders are generated by the

prior split strategy called 20/10/5/1 rule or 25/10/5/1 rule. For

details of the rules, please refer to Chen et al. [9]’s paper. The

number of customers ranges from 21 to 100, and the number

of orders from 66 to 590. The algorithm proposed here is

coded in Matlab R2014 a and implemented on a personal

computer with a 2.40 GHz, i5-2430 processor, 4GB of RAM

and the Windows 7 operating system.

5.1 Algorithm calibration

The algorithm proposed in this paper has 7 parameters to set:

1) the route shape parameter (𝜆); 2) the p nearest customer

nodes (𝑝) ; 3) the q customer nodes selected randomly for

perturbation (𝑞); 4) the tabu list size (𝜃); 5) the perturbation

cycle (perIter); 6) the maximum iterations (maxIter); and 7)

the candidate list size (𝑚). In the initial construction phase,

the customer nodes far from the depot are given priority to be

inserted into a route. If the generalized cost of inserting i to r

is greater than the cost of creating a new directed route, the

initial construction will create the route (0-i-0). So λ is chosen

within the interval [0.7,1] . To calibrate the parameter 𝑝 ,

sensitivity analysis is performed on all the test instances, and

the test results indicate the sensitivity interval of 𝑝 is [8,10]. 𝜃

is a random integer in the interval [5, 20]. In the perturbation

phase, q is chosen randomly among 5, 6 or 7. The perIter is

equal to 10. According to the experiment, the maxIter is fixed

at 10n, and the candidate list size m at n.

5.2 Test results

Table 5 and 6 present the test results of set 1 and set 2,

respectively, in which the fifth and sixth columns are the cost

and computing time of the proposed algorithm. After

comparison with the results provided by the tabu search

algorithm developed by M. Qiu. [3], it is found that the

proposed algorithm outperforms the former in 12 instances

and equals it in 2 instances among all the 25 instances, as

shown in Table 5. Table 6 shows that the proposed algorithm

has better performance in 14 instances and equal performance

in 5 instances. From the two tables, it can be seen that some

results yield slightly different costs with the results provided

by M. Qiu. [3] due to the rounding errors in the cost data. The

computational results indicate that the proposed sub-

algorithms of IOR and SENC* can better reflect the features of

the discrete split and diversify the search space of the solution

in contrast to the prior split strategy.

Table 5. Results for set 1

Instance (20/10/5/1) Order quality

TS TS

Cost
Time(b)

(Seconds)
Cost

Time(c)

(Seconds)

eil22 66 375.28 9.38 375.8 1.54

eil23 73 568.56 19.93 568.56 1.67

eil30 108 512.72 33.81 498.02 2.68

eil33 108 837.67 43.75 837.06 3.56

eil51 188 524.61 54.63 524.61 12.5

eilA76 284 860.11 80.42 849.61 97.8

eilB76 256 1037.93 169.64 1034.21 120.9

eilC76 262 745.92 106.3 746.79 39.16

eilD76 268 719.05 203.05 687.6 120.45

eilA101 346 824.09 351.64 826.14 217.89

eilB101 413 1098.95 402.41 1099.34 311.25

SD51D1 179 457.67 32.3 459.5 12.25

SD51D2 205 714.05 62.31 718.69 36.58

SD51D3 239 971.46 62.12 965.13 55.63

SD51D4 306 1624.55 180.11 1645.91 43.12

SD51D5 296 1392.15 203.44 1387.19 44.51

SD51D6 374 2360.93 230.77 2273.51 77.82

SD76D1 267 600.19 44.97 601.43 15.32

SD76D2 329 1413.73 147.32 1226.5 90.12

SD76D3 377 1702.57 207.87 1546.33 116.34

SD76D4 427 2171.96 357.99 2179.1 213.03

S101D1 352 742.97 412.44 749.93 101.34

S101D2 431 1448.28 510.01 1412.98 343.27

S101D3 491 1957.34 597.31 1947.62 533.71

S101D5 590 3225.7 601.64 3013.44 617.34

average 289.4 1155.54 205.02 1127.00 129.19
bi7-4500U, 2.4GHz, 12GB
ci5-2430, 2.40 GHz, 4GB

As to the computing time, even if the performance of the

experiment computer used in this paper is lower than that in

M. Qiu. [3], the proposed algorithm still works competitively.

In Table 5 and 6, the average computing time of the proposed

algorithm is 129.19 and 132.88, respectively, which is much

shorter than that provided by M. Qiu. [3]. For the instances

with larger order quantities, the computing speed of the

proposed algorithm is obviously better than that provided by

M. Qiu. [3]. This has something to do with the scale of the

instance. M. Qiu. [3] aggregated randomly some orders of

each customer into a new order in advance, and then

transferred the DSDVRP into the classic capacitated vehicle

102

routing problem (CVRP). Such approach will multiply the

scale of the instance and make the search space more complex.

On the contrary, the proposed algorithm keeps the number of

customer nodes unchanged. Therefore, the convergence of the

proposed algorithm is faster.

Table 6. Results for set 2

Instance (25/10/5/1)
Order

quality

TS TS

Cost
Time(b)

(Seconds)
Cost

Time(c)

(Seconds)

eil22 69 375.28 7.59 375.8 1.54

eil23 74 568.56 19.91 568.56 1.67

eil30 110 512.72 39.31 498.02 2.68

eil33 108 837.67 48.81 837.06 3.56

eil51 187 524.61 49.44 524.61 12.5

eilA76 291 853.83 77.61 849.61 97.8

eilB76 254 1047.26 109.11 1034.21 120.9

eilC76 264 744.71 152.08 745.79 39.16

eilD76 168 699.34 248.25 687.6 120.45

eilA101 347 826.00 362.01 826.14 217.89

eilB101 419 1116.82 396.87 1104.34 311.25

SD51D1 179 458.29 31.2 459.5 12.25

SD51D2 200 717.57 71.63 718.69 36.58

SD51D3 242 975.76 44.94 965.13 55.63

SD51D4 278 1673.9 193 1645.91 93.12

SD51D5 290 1399.96 230.4 1387.19 44.51

SD51D6 340 2310.32 244.1 2273.51 77.82

SD76D1 267 599.41 57.66 601.43 15.32

SD76D2 314 1422.75 162.9 1327.5 90.12

SD76D3 379 1709.04 211 1546.33 116.34

SD76D4 399 2179.1 404.96 2179.1 213.03

S101D1 352 732.46 455.66 749.93 121.61

S101D2 416 1437.42 534.45 1412.98 343.27

S101D3 500 1989.13 587.63 1947.62 535.74

S101D5 569 3228.09 693.4 3096.14 637.34

average 280.64 1157.60 217.36 1134.51 132.88

Table 7. Comparison for set 2

Instance
Best-known

Solution

VRPHAS TS TS

Gap

(%)

Time(b)

(Seconds)

Gap

(%)

Time(b)

(Seconds)

Gap

(%)

Time(c)

(Seconds)

eil22 375.28(c) 0.00 1.65 0.00 16.97 0.14 3.08

eil23 568.56(c) 0.00 1.58 0.00 39.84 0.00 3.34

eil30 497.53(c) 0.00 2.18 3.05 73.12 0.10 5.36

eil33 826.41(c) 0.00 3.51 1.36 92.56 1.29 7.12

eil51 524.61(c) 0.00 9.37 0.00 104.07 0.00 25.00

eilA76 849.6(c) 0.00 17.76 0.50 158.03 0.00 195.60

eilB76 1024.44(c) 0.00 18.81 1.32 278.75 0.95 241.80

eilC76 745.92 0.35 15.36 0.00 258.38 0.12 78.32

eilD76 684.53(c) 0.00 14.72 2.16 451.3 0.45 240.90

eilA101 814.51(c) 0.00 14.73 1.18 713.65 1.43 435.78

eilB101 1098.95(c) 0.02 21.61 0.00 799.28 0.04 622.50

SD51D1 459.5(q) 0.4 7.23 0.00 63.50 0.4 24.50

SD51D2 709.25(q) 0.39 11.46 0.00 133.94 0.65 73.16

SD51D3 948.06(c) 0.00 15.88 0.07 107.06 0.03 111.26

SD51D4 1562.01(c) 0.00 18.90 2.00 373.11 3.37 136.24

SD51D5 1333.67(c) 0.00 19.66 1.50 433.84 1.15 89.02

SD51D6 2169.10(c) 0.00 28.04 3.10 474.87 1.48 155.64

SD76D1 598.94(q) 2.35 15.07 0.00 102.63 0.21 30.64

SD76D2 1087.40(c) 0.00 21.54 26.10 310.22 9.44 180.24

SD76D3 1427.86(c) 0.00 34.28 17.80 418.87 7.00 232.68

SD76D4 2079.76(c) 0.00 29.74 1.60 762.95 1.89 426.06

S101D1 726.59(q) 0.42 22.02 0.00 868.1 0.94 222.95

S101D2 1378.43(c) 0.00 37.16 1.73 1044.46 0.00 686.54

S101D3 1874.81(c) 0.00 39.49 1.70 1184.94 1.21 1069.45

S101D5 2791.22(c) 0.00 45.44 12.20 1295.04 4.82 1254.68

average 0.16 18.69 3.09 422.38 1.48 262.07
creferenced by Chen [5]
Qreferenced by Qiu[3]
bi7-4500U, 2.4GHz, 12GB
ci5-2430, 2.40 GHz, 4GB

103

Table 7 shows the comparison of the proposed algorithm

with other representative algorithms in these instances. Chen

et al. [5] tested the instances, combined their prior strategies

(20/10/5/1 rule or 25/10/5/1 rule) and the open source code

VRPH (Gröer, 2011). The algorithm proposed by Chen et al.

[5] is called VRPHAS. The results reported by VRPHAS are

the better ones in terms of running both split rules and the

computing time is the amount of time to run both. In order to

compare the results of VRPHAS, the data are simply

processed in Table 5 and 6. In Table 7, columns 5 and 7 show

the gaps between the smaller costs in Table 5-6 and the best-

known solutions, and columns 6 and 8 show the sum of the

computing time in Table 5-6. VRPHAS performs with an

average gap of 0.16%, which is lower than 1.48% for the

proposed algorithm. The results indicate that the algorithm has

some limitations, but may have room for improvement if

combined with classical VRP search methods.

6. CONCLUSION

This paper studies a new variant of the VRP: the discrete

split vehicle routing problem. It creatively applies the binary

to decimal decoder method to obtain the solution, proposes a

heuristic order-insertion procedure, and develops a new tabu

search algorithm, which combines the adaptive

neighbourhood structure and the perturbation strategy.

Experiments are carried out on two test sets, and the test results

suggest that the sub-algorithms of IOR and SENC*are effective

to the DSDVRP. This study enriches the theory of the

DSDVRP. Further research will focus on improving the global

search ability of the algorithm.

ACKNOWLEDGEMENTS

This study was supported by the Natural Science

Foundation of China (Project No. 71271220).

The authors would like to thank all colleagues and students

who contribute to this study. We are grateful to Dr. Shengbing

Che and Qiong Long who as the reviewers provide some

constructive comments.

We thank the editor and series editor for constructive

criticisms of an earlier version of this chapter. The errors,

idiocies and inconsistencies remain our own.

REFERENCES

[1] Nakao Y, Nagamochi H. (2007). A DP-based heuristic

algorithm for the discrete split delivery vehicle routing

problem. Journal of Advanced Mechanical Design

Systems and Manufacturing 1(2): 217-226.

http://dx.doi.org/10.1299/jamdsm.1.217

[2] Salani M., Vacca I. (2011). Branch and price for the

vehicle routing problem with discrete split deliveries and

time windows. European Journal of Operational

Research 213(3): 470-477.

http://dx.doi.org/10.1016/j.ejor.2011.03.023

[3] Fu Z, Liu W, Qiu M. (2017). A tabu search algorithm for

the vehicle routing problem with soft time windows and

split delivery by orders. Chinese Journal of Management

Science 25(5): 78-86.

http://dx.doi.org/10.16381/j.cnki.issn1003-

207x.2017.05.010.html

[4] Qiu M, Fu Z. (2018). A tabu search algorithm for the

discrete split delivery vehicle routing problem. Journal of

Harbin Engineering University.

https://dx.doi.org/23.1390.U.20180804.1217.004.html.

[5] Chen P, Golden B, Wang X, Wasil E. (2017). A novel

approach to solve the split delivery vehicle routing

problem. International Transactions in Operational

Research 24(12): 27-41.

https://dx.doi.org/10.1111/itor.12250

[6] Dror M, Trudeau, P. (1989). Savings by split delivery

routing. Transportation Science 23(3): 141-

145.https://dx.doi.org/10.1287/trsc.23.2.141

[7] Archetti C, Savelsbergh MWP, Speranza MG. (2006).

Worst-case analysis for split delivery vehicle routing

problems. Transportation Science 40(2): 226-234.

https://dx.doi.org/10.1287/trsc.1050.0117

[8] Archetti C, Speranza, MG. Hertz A. (2006). A tabu

search algorithm for the split delivery vehicle routing

problem. Transportation Science 40(1): 64-

73.https://dx.doi.org/10.1287/trsc.1040.0103

[9] Chen S, Golden B, Wasil. E (2007). The split delivery

vehicle routing problem: Applications, algorithms, test

problems, and computational results. Networks 49(4):

318-329. https://dx.doi.org/10.1002/net.20181

[10] Silva MM, Subramanian A, Ochi LS. (2015). An iterated

local search heuristic for the split delivery vehicle routing

problem. Computers & Operations Research 53: 234-

249.https://dx.doi.org/10.1016/j.cor.2014.08.005

[11] Belenguer JM, Martinez MC, Mota E. (2005). A lower

bound for the split delivery vehicle routing problem.

Operations Research 48(5): 801-810.

https://dx.doi.org/10.1287/opre.48.5.801.12407

[12] Lee CG, Epelman MA, White CC, Bozer YA. (2006). A

shortest path approach to the multiple- vehicle routing

problem with split pick-ups. Transportation Research B

40: 265-284. https://doi.org/10.1016/j.trb.2004.11.004

[13] Dror GLM, Trudeau P. (1994). Vehicle routing with split

deliveries. Discrete Applied Mathematics 50: 239-254.

https://doi.org/10.1016/0166-218X(92)00172-I

[14] Jin MZ, Liu K, Bowden RO. (2007). A two-stage

algorithm with valid inequalities for the split delivery

vehicle routing problem. International Journal of

Production Economics 105(105) 228-

242.https://doi.org/10.1016/j.ijpe.2006.04.014

[15] Archetti C, Bianchessi N, Speranza MG. (2011). A

column generation approach for the split delivery vehicle

routing problem. Networks 58(4): 241-254.

https://dx.doi.org/10.1002/net.20467

[16] Gulczynski D, Golden B, Wasil E. (2010). The split

delivery vehicle routing problem with minimum delivery

amounts. Transportation Research Part E: Logistics and

Transportation Review 46(5): 612-626.

https://dx.doi.org/10.1016/j.tre.2009.12.007

[17] Tang J, Ma Y, Guan J, Yan C. (2013). A max–min ant

system for the split delivery weighted vehicle routing

problem. Expert Systems with Applications 40(18):

7468-7477. https://doi.org/10.1016/j.eswa.2013.06.068

[18] Boudia M, Prins C, Reghioui M. (1976). An effective

memetic algorithm with population management for the

split delivery vehicle routing problem. Hybrid

Metaheuristics 16-30. https://dx.doi.org/10.1007/978-3-

540-75514-2_2

[19] Gaskell TJ. (1967). Bases for vehicle fleet scheduling.

104

Operational Research Quarterly 18(3): 281-295.

https://dx.doi.org/10.2307/3006978

[20] Yellow P. (1970). A computional modification to the

savings method of the vechicle routing problem.

European Journal of Operational Research 21: 281-283.

[21] Glover F. (1992). New ejection chain and alternating

path methods for traveling salesman problems. Computer

Science and Operations Research 18: 491-507.

http://dx.doi.org/10.1016/B978-0-08-040806-4.50037-X

[22] Rego C. (2001): Node-ejection chains for the vehicle

routing problem: Sequential and parallel algorthm.

Parallel Computing 27: 201-222.

https://doi.org/10.1016/S0167-8191(00)00102-2

[23] Han AF, Chu YC. (2016). A multi-start heuristic

approach for the split-delivery vehicle routing problem

with minimum delivery amounts. Transportation

Research Part E: Logistics and Transportation Review 88:

11-31. https://dx.doi.org/10.1016/j.tre.2016.01.014

105

