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An essential function of video surveillance systems that are widely utilized for public 

safety and other purposes is automatic anomaly detection. The interpretability of anomaly 

detection is essential, though, because the kind and severity of the anomalies in the video 

dictate the appropriate response. Thus, the proposed study presents an explainable AI-

based model, X2_PDDVnet, for video anomaly detection with high accuracy in the 

detection and interpretation of anomalous events. This model uses a two-path structure 

combining Vision Transformer (ViT) and AlexNet-inspired Convolutional Neural 

Network (CNN) hrough ZigZag path learning, which enhances feature extraction based on 

local and global patterns for such complex and dynamic video scenes. This hybrid 

approach advances video anomaly detection through combining global and local feature 

extraction to cover the analysis of high-level and granular details in any video frames. The 

three datasets include UCSD Anomaly Detection (University if Caifornia, San Diego), 

Avenue, and Shanghai Tech are utilized. Preprocessing of data is done by applying 

denoising, contrast enhancement, geometric transformations, and normalization to ensure 

optimized input. After the pre-processing, the model utilizes a dual-path encoder model. 

The ViT path captures global relationships between video frames by allowing each frame 

to be a sequence of tokens for the detection of spatial and temporal anomalies. In the 

meantime, the Zigzag Alex Net path makes use of dilated convolutions for local feature 

detection for further multi-scale information capture through an embedded Dilated Multi-

Scale Inception Network (DiMS-Inception) in every convolution block. This dual-path 

structure yields a robust feature representation. The Grad-CAM and LIME offer heatmaps 

for improved visualization, which emphasize areas in crucial frames to make the 

mathematical model's decision-making process clearer. In this manner, the model succeeds 

in producing a transparent and interpretable anomaly detection process, which is of utmost 

importance for practical surveillance applications. The combination of ViT and CNN with 

the features of interpretability is promising for accurate and reliable anomaly detection in 

security systems. 
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1. INTRODUCTION

In the modern world, monitoring public violence is essential 

for the safety and safety of large cities. Consequently, video 

surveillance systems are now a crucial part of the growing 

Internet of Things (IoT)-based smart city projects. In many 

urban locations, video surveillance is required to observe 

anomalous activity like traffic accidents, robberies, and illicit 

activity. Computer vision researchers are very interested in 

methods that involve computer vision video monitoring 

because of the widespread use of surveillance cameras for 

public places [1]. The efficient use of surveillance applications 

in homes, workplaces, public areas, and enterprises makes 

abnormal event detection much more common. However, the 

irregularities cannot be detected in real-time by the traditional 

video processing approaches. Automating the detection of 

abnormal events is crucial in order to reduce time and 

expenses and take appropriate action before major problems 

arise [2]. An anomaly is an unexpected event that occurs in a 

crowded context; there may be more than one abnormality at 

the same time. Video anomaly detection (VAD) typically uses 

a temporal video segmentation algorithm to identify shot 

boundaries over successive video frames across multiple shot 

videos [3]. An effective and trustworthy anomaly detection 

technique is still required to manage the increasing amount of 

video data produced by these systems since video information 

is dynamic and complicated. Traditional approaches often rely 

on outdated automated systems or manual watching that is 

laborious, prone to errors, and ineffective. Compared to 

previous video analysis techniques, data imbalances among 

abnormal and normal segments contribute to it being more 

difficult to find and recognize abnormalities because abnormal 

actions are infrequent related to regular ones [4]. 

The ability to identify anomalous occurrences from a 

continuous video series is the foundation of video anomaly 

detection technology. Abnormal events, on the other hand, are 
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ill-defined and boundaryless in the real world. A crucial task 

for a variety of video surveillance applications is identifying 

such occurrences. This motivates academics to develop an 

automated model for video data identification, segmentation, 

and classification [5, 6]. However, the use of hand-crafted 

features and heuristics in classic video anomaly detection 

algorithms limits their ability to handle a variety of complex 

circumstances. Artificial intelligence (AI)-based automatic 

anomaly detection solutions are necessary for surveillance 

systems due to the inefficiency of human observation [7]. 

Convolutional Neural Networks (CNN) are used by several 

video anomaly detection algorithms to learn temporal and 

spatial video data. The video is then rebuilt using inverse 

coding, or it can be combined with optical flow technology to 

forecast the subsequent frame. Usually, unsupervised, semi-

supervised, or unsupervised learning is used in anomaly 

detection frameworks. A number of machine learning and 

computer vision methods have been put forth for the purpose 

of detecting anomalies in video sequences throughout the past 

ten years [8]. Significant advancements in VAD have been 

made likely by the emergence of deep learning. New methods 

that exceed earlier methods and solve the disadvantages of 

traditional machine learning (ML) have been made feasible by 

the usage of deep learning (DL) techniques. Additionally, even 

when an anomalous event occurs, its exact nature may not be 

fully known [9, 10].  

A variety of DL models are employed for anomaly 

recognition and prevention, such as CNNs, long-short-term 

memory (LSTM), generative adversarial networks (GANs), 

recurrent neural networks (RNNs), and gated recurrent units 

(GRUs). But problems still exist because there aren't many 

anomalous actions, which means that datasets used for 

anomaly identification have considerably fewer positive 

samples (anomalies) than negative samples [11, 12]. The 

performance of the present methods is often worse due to a 

high percentage of false alarms. Despite their tremendous 

capacity, CNN-based methods are unable to detect long-term 

trends in the data due to the inherent localization of 

convolutional processes. The incapacity of CNNs to identify 

unanticipated irregularities that significantly diverge from the 

training data is one of its issues, as they are intended to 

recognize patterns in data [13]. A sequence-to-sequence model 

called Transformer has significantly improved video 

captioning, video prediction, and natural language processing 

(NLP). Transformers process the complete input data 

sequence in a single operation, as opposed to CNNs, which 

process the input sequences sequentially [14, 15]. In order to 

improve feature learning, Vison transformer-based anomaly 

detection is suggested in this study in terms of ZigZag path 

learning. The decision-making process involving video 

anomaly detection is made more transparent and 

comprehensible by integrating Grad CAM and LIME. The 

following are this work's primary contributions: 

•The development of the X2_PDDVnet model, which 

combines a Vision Transformer (ViT) and AlexNet-based 

CNN through ZigZag path learning to improve video anomaly 

detection. This hybrid approach allows for the extraction of 

both global and local features, enhancing the model's 

capability to analyze complex video scenes effectively.  

•The ZigZag Encoder and the Dilated Multi-Scale Inception 

Network (DiMS-Inception) within the model allow for 

comprehensive feature extraction at multiple scales.  

•The Inception module's dilated convolutions enable the 

model to efficiently broaden its receptive area and catch long-

range dependencies. This functionality is especially crucial for 

video analysis since abnormalities can show up in a variety of 

settings and forms. 

•Additionally, the integration of explainable AI techniques, 

such as Grad-CAM and LIME, makes the model's decision-

making process transparent involves creating heatmaps that 

show important regions that affect forecasts. 

The structure of the paper is as follows: A synopsis of 

pertinent material is given in Section 2. The proposed strategy 

is examined in Section 3. Results are summarized in Section 

4. Section 5 contains the paper's conclusion. 

 

 

2. LITERATURE REVIEW  

 

This section examines a few of the most recent research 

works regarding video and event anomaly detection using the 

deep learning techniques.  

Kim et al. [16] have suggested a Cross U-Net framework 

that takes speed and accuracy of anomaly detection into 

account. The Cross U-Net architecture makes use of two U-

Net-based subnetworks in a recently suggested deep learning 

model. In order to be utilized as the input for the next layer, it 

makes ensures that the result of each third layer in the 

contracting path merges with the output of the matching layer 

in the other subnetwork. The cascade sliding window 

approach, a recently suggested technique for calculating a 

frame's anomaly score, is also used in this framework. Ped2, 

Avenue, and Shanghai Tech datasets were used to evaluate the 

Cross U-Net framework's abnormality recognition accuracy. 

Le et al. [17] developed a transformer-based TwinSformer 

model for anomaly detection in aerial drone-based videos, 

overcoming challenges such as dynamic backgrounds, 

changing viewpoints, and intricate textures. The model uses a 

multi-stage encoder to generate multi-scale features, which are 

then input into a hierarchical spatio-temporal transformer. 

Tested on both ground and aerial datasets, the model shows 

superior performance compared to current methods. 

Balamurugan and Jayabharathy [18] have developed a 

model Bi-LSTM and hybrid CNN-based abnormal event 

detection models. This approach extracts spatiotemporal 

information from every single frame that was chosen from a 

sequence of frames using CNN with pre-trained models. The 

multi-layer Bi-LSTM receives these features and is able to 

accurately categorize the anomalous occurrences in complex 

road surveillance scenarios. To improve video summarization, 

the fine grain technique employs an LSTM encoder-decoder 

model based on hierarchical temporal attention. 

Taghinezhad and Yazdi [19] introduced a novel anomaly 

detection technique based on unsupervised frame prediction 

that enhances overall performance. A Time-distributed 2D 

CNN-based decoder and encoder with a U-Net-like 

architecture was developed. The most pertinent archetypal 

pattern corresponding to the typical situation is retrieved and 

stored in memory slots by a memory module during training. 

This enables the model to produce inaccurate predictions in 

response to unusual input. Dilated convolutions were proposed 

as an upstream multi-branch structure to extricate contextual 

information while maintaining regular semantic patterns over 

several dimensions. The optical flow loss function is 

effectively replaced by the multi-path structure, which 

integrates time data into network architecture. The benchmark 

datasets CUHK Avenue, UCSD Ped1, and UCSD Ped2 are 

used to test the experiment.  
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Aslam and Kolekar [20] created a technique 

TransGANomaly, is a ground-breaking anomaly detection 

technique that uses a GAN based on a video Vision 

Transformer (ViViT). A video frame predictor that has only 

been adversarially trained on standard video data is the 

proposed framework. A ViViT network serves as the GAN's 

generator, receiving 3D input tokens from the video clips. The 

generator uses previous sequences to foresee the future frame. 

The original and expected frames for binary classification are 

then fed into the discriminator in the model. Several 

experiments have been carried out using the Shanghia Tech, 

CUHK Avenue, and UCSD Pedestrian datasets to verify the 

efficacy of the proposed method. 

Wu et al. [21] presented an effective DL technique for 

detecting anomalies in movies by extracting high-level 

concept and context characteristics for training denoising 

autoencoders (DAE) from pre-trained deep models. The 

suggested approach requires little training time and delivers 

recognition results with the state-of-the-art techniques (less 

than 10 s on UCSD Pedestrian datasets). The combination of 

autoencoder as well as SHapley Additive exPlanations 

(SHAP) for model interpretability in video detection of 

anomaly is also used for the first time here.  

Qasim and Verdu [22] have created an automated approach 

utilized a deep CNN and an SRU (Simple Recurrent Unit) to 

recognize abnormalities in videos. The SRU gathered 

temporal features, while the ResNet framework leveraged the 

incoming video frames to acquire high-level feature 

representations. Its highly parallelized implementation and 

expressive recurrence enhance the visual anomaly detection 

system's accuracy. ResNet18 + SRU, ResNet34 + SRU, and 

ResNet50 + SRU are the three models recommended in the 

study to identify abnormalities. The UCF-Crime dataset is 

used to analyze the suggested models.  

Sharif et al. [23] have developed two pretrained feature 

extractors for ViT (such as CLIP) and CNN (such as C3D and 

I3D) to efficiently extract discriminating representations. 

Then, using the suggested temporal self-attention network 

(TSAN), video snippets of interest was presented while taking 

into account both short- and long-range temporal 

dependencies. CNN-ViT-TSAN is a generalized architecture 

based on multiple instance learning (MIL). It outlines a series 

of models for the WVAED difficulty using TSAN and 

characteristics that have been derived from CNN and/or ViT. 

Experiments conducted on well-known public crowd datasets 

proved that the CNN-ViT-TSAN model is effective.  

Yang et al. [24] have presented a new two-stream fusion 

technique for identifying irregular events in order to better 

handle these various abnormal events. The object, posture, and 

optical flow features are initially extracted. The object and 

pose data are then combined early on to eliminate occluded 

pose graphs. A Spatio-Temporal Graph Convolutional 

Network (ST-GCN) is fed the trustworthy posture graphs in 

order to identify anomalous behavior. At the same time, a 

framework was presented for video prediction that uses the 

disparity amid expected and ground truth frames to detect 

anomalous frames. The final results are obtained by combining 

the prediction and classification streams at the decision-level. 

Bajgoti et al. [25] have introduced Swin Anomaly, Swin 

Transformers are used for a conditional GAN-based 

autoencoder-based feature extractor technique for VAD. This 

suggested technique uses a 3D encoder to upsample 

spatiotemporal data from a series of video frames, and then a 

2D decoder to predict a subsequent frame. Patch-wise mean 

squared error and Simple Online and Real-time Tracking 

(SORT) were used to track and identify anomalies in real time. 

The recommended strategy outperforms the current 

prediction-based video anomaly detection techniques and 

provides flexibility in identifying anomalies using a range of 

parameters.  

Transformer-based models like ViViT, Swin Transformer, 

and CNN-ViT hybrids are used alone or not combined with 

multiscale local pattern detection processes. This work fills 

this gap using X2_PDDVnet, a dual-path architecture that 

combines ViT and a ZigZag-path augmented AlexNet for 

strong global-local anomaly detection. Compared to CNN-

ViT-TSAN or SwinAnomaly, X2_PDDVnet's parallel 

encoder architecture retains hierarchical local details and 

frame-level global semantics, improving detection accuracy 

and explainability. 

 

 

3. PROPOSED METHODOLOGY  

 

The proposed methodology of the X2_PDDVnet model 

focuses on improving video anomaly detection by combining 

a ViT and an enhanced AlexNet-based CNN with ZigZag path 

learning. The ViT includes long-range dependencies by 

processing video frames as sequences of tokens, whereas the 

variant AlexNet focuses on local pattern recognition through 

the exploration of dilated convolutions and enlarging the 

receptive field by having Zigzag path learning. Finally, these 

two paths extract complementary global and local features and 

fuse together to form the comprehensive representation of the 

video input. To make the model more explainable, the integral 

of Grad-CAM with LIME enables users to visually inspect and 

understand the locations within video frames that are most 

relevant in driving anomaly detection decisions. The decoder 

of this model, resembling U-Net architecture, produces the 

segmentation maps from the fused feature maps before 

eventually using dilated convolutions to refine the output. This 

hybrid approach will detect anomalies at both the global and 

local levels in surveillance video, and the explainable AI 

components provide transparency into the process, making 

such a system reliable for security and monitoring systems. 

Figure 1 displays the suggested methodology's overall block 

diagram. The proposed methodology's block diagram is 

depicted in Figure 1. 

 

3.1 Data collection  

 

Initially, three open-source datasets are collected: the 

UCSD Anomaly Detection Dataset, which provides video 

sequences capturing normal and abnormal activities; the 

Avenue Dataset for Abnormal Event Detection, focusing on 

urban abnormal events; and the Shanghai Tech Dataset, which 

enriches the training data with diverse scenarios. 

 

3.2 Preprocessing  

 

Once collected, Preprocessing is done on the data, which 

includes geometric transformations like flipping it, rotation, 

cropping, and translation, along with noise injection to 

increase the number of training samples, denoising techniques 

like Gaussian filtering to eliminate noise, and histogram 

equalization to improve contrast and extract features. Further, 

pixel intensity values are normalized and standardized to 

enhance convergence of the model. 
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Figure 1. The proposed methodology's block diagram 

 

 

3.2.1 Geometric transformation and data augmentation 

A variety of transformations like cropping, rotation, 

flipping, translation, and noise injection are utilized to 

augment the dataset. These techniques help to create variations 

of the original images, providing the model with more diverse 

examples to learn from. 

Flipping: Flipping the image can be done in an upward 

direction or on a level plane. It creates an image by rotating it 

by a factor of 90 degrees. Vertical flipping is not supported by 

all systems. The photo is first rotated 180 degrees to refine 

vertical flipping, and then level flipping is carried out. 

Color space: Color space is transformed by photometric 

conversions. Using this technique, a three-photo stacked 

matrix is created, and each matrix has dimensions of height x 

width. The pixel values for every RGB color value are 

represented by this matrix. The lighting problems can be fixed 

by altering the image's color distributions. 

Cropping: The process of enlarging a little segment of the 

original photograph to match its proportions is known as 

random cropping. If necessary, the image is resized using 

random cropping. Translation preserves the spatial dimensions 

of an image, as opposed to arbitrary cropping, which reduces 

their size. 

Rotation: Depending on the requirements, the image can be 

rotated 90 degrees or located at small angles. An image rotated 

90 degrees without any additional background noise once it 

has been aligned. On the other hand, this is not true when 

angled slightly. If the background is black or white, the newly 

introduced noise will merge in with the rest of the image. The 

network will recognize this as part of the image yet prevent it 

from fully blending in if the background of the image has 

distinct colours. 

Translation: To find the object in any area of the picture, 

apply the translation idea. Positional bias in the data can be 

prevented by changing the image left, down, up, or right, or by 

moving it in the X or Y direction. It helps the network search 

the entire image, which causes background noise in the image. 

Noise injection: Noise injection to enhance model 

generalization and avoid overfitting. Salt-and-pepper noise 

with densities ranging in training images introduces variations, 

maintains structural details, increases learning efficiency, and 

model robustness. 

 

3.2.2 Gaussian filtering  

Linear filters are a popular technique for eliminating noise 

when additive noise is present. They convolve the image using 

a constant matrix to provide a linear combination of 

neighborhood values. Filters based on Gaussian functions are 

particularly significant since their forms are simply 

characterized and both the inverse and forward Fourier 

transformations of a Gaussian function are both real Gaussian 

functions. Furthermore, a narrower frequency domain filter 

will attenuate low frequencies and increase 

smoothing/blurring, resulting in a broader spatial domain 

filter. In essence, these Gaussian filters which are frequently 

used for picture denoising are linear filters. Eq. (1) indicates 

that the further pixels are from the center of a Gaussian filter, 

the lower their weight becomes. 

 

𝐺𝑜(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−
(𝑥2+𝑦2)

2𝜎2  (1) 

 

Gaussian filters suppress noise while maintaining picture 

features by averaging pixel values over a local region, 

assuming that pixels in a neighbourhood have close values and 

that images have uniform spatial variations. 

 

3.2.3 Contrast enhancement  

Histogram equalization is the technique of flattening out an 

image's grayscale degree value distribution. A cumulative 

distribution function, which is a computation of the histogram, 

is necessary to carry out histogram equalization. The following 

Eq. (2) is a definition of the cumulative distribution function. 

 

𝑓(𝑘) =
(𝑁 − 1)

𝑚
∑ ℎ(𝑘)

𝑛

𝑘=0

 (2) 
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𝑛 = 1,2,3,4 … . 𝑁 − 1 

 

where, f(k) is the cumulative distribution function for intensity 

level k. The total pixel value in a picture is denoted by 𝑚. The 

value of the gray pixel is 𝑁. A histogram of the gray value 𝑘 

is represented by ℎ(𝑘). The frequency of gray levels utilized 

in an image can be determined using histogram equalization. 

 

3.2.4 Normalization  

Normalization facilitates improved model learning by 

ensuring that the features have comparable scales. 

Normalization is typically used in image processing to scale 

pixel intensity values to a particular range, like [0, 1] or [-1, 

1]. Eq. (3) presents the normalization formula. 

 

𝑝 =
(𝑥 − 𝑥𝑚𝑖𝑛)(𝑚𝑎𝑥 − 𝑚𝑖𝑛) 

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑚𝑖𝑛
 (3) 

 

where, 𝑝  is the converted input image, (𝑚𝑖𝑛, 𝑚𝑎𝑥)  is the 

input variable's specified range, and ( 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 ) is the 

minimum and maximum intensity values in the image and x is 

the original. Through these preprocessing steps, the collected 

datasets are transformed into a format that enhances the 

learning capabilities of the X2_PDDVnet model. Each 

technique contributes to improving data quality and diversity, 

ultimately leading to better anomaly detection performance. 

Figure 2 has been augmented to provide a more detailed and 

accurate representation. 

 

3.3 X2_PDDVnet model for segmentation 

 

The core of the proposed X2_PDDVnet model is its two-

path structure, which includes a ViT in combination with a 

ZigZag path AlexNet based CNN. Each of the paths processes 

the same input but in different ways as it operates as an 

encoder so that the features are orthogonal to each other. The 

fusion of the two paths takes place at a later stage to enhance 

the representations of the features even further. The 

architecture revolves around two components, the ZigZag 

Encoder and the ViT Encoder. Both the encoders take the same 

input but treat it in a different way to extract complementary 

features. Once these features pass through each of the two 

encoders, they are combined for further processing by the 

Decoder to finalize segmentation and classification results. 

This compilation of approaches catalyzes the capturing of 

local as well as global contextual information within the 

model. Hence, the ZigZag Encoder offers local detail and 

spatial patterns in the input and the ViT Encoder is more 

capable of global relationships across the input frames. The 

Dilated Multi-Scale Inception Network (DiMS-Inception) 

presented at the individual block of the Zigzag Encoder helps 

capture multi-scale features and expand its receptive field. The 

proposed X2_PDDVnet architecture is shown in Figure 3. 

The model input is an image or a video frame that is 

processed in parallel both by the ZigZag Encoder and the ViT 

Encoder. Since features produced by the two are different, 

there's a chance that the model could extract a wide range of 

information from an input. 

 

 
 

Figure 2. Augmented image 

 

 
 

Figure 3. X2_PDDVnet architecture 
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ViTs have gained much popularity lately for their 

applicability to global relationships in image data. While 

CNNs are set to spend more time on local feature extraction 

by exploiting convolutional filters, a ViT takes an image as a 

sequence of patches and applies transformer layers to learn the 

relationship across the whole image. A one-dimensional 

sequence of token embeddings is the input for ViTs. To create 

a series of flattened tokens 𝑥𝑝 ∈  ℝ𝑁×(𝑃3.𝐶), an input image 

must divide into 𝑥 ∈ ℝ𝐻×𝑊×𝐷×𝐶 with height 𝐻, width 𝑊, and 

𝐷 depth of the feature maps and 𝐶 is the input channels. The 

flattened tokens in which (𝑃, 𝑃, 𝑃)  denotes each patch 

resolution and the length of the sequence is 𝑁 =
(𝐻×𝑊×𝐷)

𝑃3 . 

After that, a linear layer that remains constant across all of the 

transformer layers projects the patches upon a 𝐾-dimensional 

embedding space. To preserve the collected patches' spatial 

information, the projected patch embedding 𝑬 ∈  ℝ(𝑃3.𝐶)×𝐾  is 

added with a 1D learnable positional embedding in accordance 

with 𝑬𝑝𝑜𝑠 ∈ ℝ𝑁×𝐾 . The Transformer encoder's final input 

sequence, 𝑧0 is: 

 

𝑧0 = [𝑥𝑣
1𝑬; 𝑥𝑣

1𝑬; … . . , 𝑥𝑣
1𝑬] + 𝑬𝑝𝑜𝑠 (4) 

 

A learnable class token, 𝑥𝑐𝑙𝑎𝑠𝑠 is incorporated to the token 

sequence so that it can be used for classification tasks. 

Multiheaded self-attention (MHA) and multilayer 

perceptron’s (MLP) are arranged in alternating layers within a 

single Transformer block to construct the Transformer 

encoder. Multiple stacked Transformer blocks make up a ViT, 

and the latent tokens 𝒛𝑖 are determined by 

 

𝑧𝑖
′ = 𝑀𝐻𝐴(𝑁𝑜𝑟𝑚(𝑧𝑖−1)) + 𝑧𝑖−1, 𝑖 = 1, … . 𝐿 (5) 

 

𝑧𝑖 = 𝑀𝐿𝑃(𝑁𝑜𝑟𝑚(𝑧𝑖
′)) + 𝑧𝑖

′, 𝑖 = 1, … . 𝐿 (6) 

 

where, 𝐿 -number of transformer layers, 𝑖 - intermediate block 

identifier, and 𝑁𝑜𝑟𝑚 stands for layer normalization. 𝑀𝐿𝑃 is 

made up of two linear layers with GELU activation functions. 

An MHA sublayer is composed of 𝑛 parallel SA (self-

attention) heads. The SA block is a parameterized function that 

specifically establishes the relationship between a query (𝑞) 

and the matching representations of a key (𝑘) and value (𝑣) in 

a sequence 𝑧 ∈ ℝ𝑁×𝐾 . Eq. (7) is used to determine the 

attention weights (Attn) by measuring the similarity between 

two elements in z and their key-value pairs. 

 

𝐴𝑡𝑡𝑛 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑘𝑇

√𝐾ℎ

) (7) 

 

where, 𝐾ℎ = 𝐾/𝑛 is a scaling factor, that keeps the number of 

parameters constant under various key 𝑘 values. Eq. (8) uses 

the determined attention weights to calculate the output of SA 

for values 𝑣 in the sequence 𝑧.  

 

𝑆𝐴(𝑧) = 𝐴𝑡𝑡𝑛. 𝒗 (8) 

 

where, 𝒗  stands for the values in the input sequence. 

Furthermore, Eq. (9), which describes the output of MSA, in 

Eq. (9),  

 

𝑀𝐻𝐴(𝑧) =  [𝑆𝐴1(𝑧); 𝑆𝐴1(𝑧); … . ; 𝑆𝐴𝑛(𝑧)]𝑊𝑚ℎ𝑎 (9) 

 

where, the multi-headed trainable parameter weights are 

represented by 𝑊𝑚ℎ𝑎 ∈ ℝ𝑛 𝐾ℎ×𝐾 . Using a ViT Encoder, the 

model captures both the local details as well as global contexts 

that capture anomalies that could be situated anywhere across 

any parts of an image or video frame. The Zigzag based feature 

learning encoder is depicted in the Figure 4. 

 

 

 
 

Figure 4. The architecture of Zigzag based feature learning encoder 
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Zigzag Encoder consists of four independent blocks, each 

of which extracts progressively more complex features from 

the input. Convolutional filters of smaller sizes from Alex Net 

are utilized progressively, so that the network learns coarse as 

well as fine details by the increasing depth of layers. Max 

Pooling after each convolutional layer reduces the spatial 

dimensionality, thereby reducing the computational cost while 

keeping only the most important features. The encoder 

comprises a Dilated Multi-Scale Inception Network (DiMS-

Inception) that enhances multi-scale feature learning without 

adding additional parameters to increase the receptive field. 

Skipping pixels would help to capture more context from 

surrounding areas, which is very important for capturing long-

range dependency. This term, "Zigzag", defines the non-linear 

approach the encoder uses to extract features. The network, 

therefore, detects different orientations and patterns by 

zigzagging across various orientations and regions of image or 

video frames. Each of the four blocks of the ZigZag Encoder 

specializes in extracting features at different granularities: 

large spatial patterns using larger convolution kernels in the 

front blocks and finer, detailed features with smaller kernels in 

the later blocks. 

The Alex Net has 5 convolutional layers and the last 3 layers 

are fully connected. There are also activation and pooling 

layers among the layers. Max-pooling layers are coupled in 

series with convolution layers in the Alex Net architecture. 

Variable kernel sizes are used by the first convolution layer 

and subsequently by the max-pooling layers. Since there are 

four blocks are considered in our work, the last convolution 

layer of Alex Net is neglected and also the max pooling layers 

are added with each convolution block unlike Alex Net as in 

the last three convolution blocks in Alex Net perform only 

ReLU operation and is not connected with pooling. In our 

work, Alex Net is used as second encoder which comprises of 

convolution blocks of 11×11, 5×5 and 3×3. The Alex Net 

block is connected with a Zigzag path feature learning 

framework comprises of Inception module with Dilated 

Convolution layers.  

ZigZag Block 1 applies an 11×11 convolutional filter to 

capture coarse, high-level features that are then followed by 

Max Pooling to downsample. In this block, more multi-scale 

features are captured using a Dilated Multi-Scale Inception 

Network (DiMS-Inception). In ZigZag Block 2, the filter size 

is reduced to 5×5 for even more refined feature extraction, 

followed again by Max Pooling and the Dilated Multi-Scale 

Inception Network (DiMS-Inception) to gather even more 

contextual information across scales. The size of the filter in 

ZigZag Block 3 is reduced to 3×3, which is primarily focused 

on extracting highly detailed local features, although Max 

Pooling as well as the Dilated Multi-Scale Inception Network 

(DiMS-Inception) is applied. ZigZag Block 4 is the final block 

in the network and its backbone is composed of a 

convolutional filter of size 3×3 because it is very efficient in 

extracting very fine details and complex patterns similar to the 

architecture of Alex Net. This block also implements Max 

Pooling and the Dilated Multi-Scale Inception Network 

(DiMS-Inception) for multi-scale feature extraction.  

 

3.4 DiMS-inception 

 

The inception module is taken from the Inception A block 

from the standard Inception V3 architecture in which the conv 

3×3 block is divided into three tier dilated convolution blocks 

with the dilated rate of 4, 8 and 16. The three-tier dilated 

convolution block is concatenated and is given to the next 

block. Inception layers are stacked on top of one another with 

irregular max-pooling layers with a stride of two. They are 

made up of three convolutional layers: one 1×1 and three 3×3 

and five× 5 convolutional layers. The output of each of these 

layers is a single output vector that serves as the input for the 

layer that follows. These layers should only be used at higher 

levels, leaving the other convolutional layers intact, in order to 

better improve the model memory during training. This 

architecture's primary advantage is that it allows network 

width to be increased without uncontrollably raising 

computational complexity. This design allows the network to 

capture features at multiple scales without losing spatial 

information; in later sections, we will see that it proves useful 

in applications, such as object detection or image and video 

analysis, when the scale of the objects of interest varies 

greatly. The DiMS-Inception network architecture is shown in 

the Figure 4 in which an Inception-based Dilated 

Convolutional Network with different dilation rates (R), a 

variation of the popular Inception Network that incorporates 

dilated convolutions. The architecture comprises of Inception 

blocks that have been improved using dilated convolutions. 

Each convolutional path within the block has a different 

dilation rate (R=4,8,16) this makes it possible for the network 

to process features at different scale independently. At the 

same time, 1×1 convolutions are applied for dimensionality 

decrease of input feature maps, useful to decrease a 

computational load without losing important information. 

Dilation is used as a primitive module in this architecture, 

hence with "holes" or dilation in the convolutional kernels, In 

order to collect long-range dependencies and contextual 

information both of which are crucial for segmentation and 

anomaly detection tasks it expands the receptive field without 

adding more parameters or sacrificing resolution. The dilated 

CNN readily enhances the proposed approach, which is based 

on the 2D convolution layer. Eq. (10) is the mathematical 

calculations for dilation. 

 

𝑦(𝑚, 𝑛) = ∑ ∑ 𝑥(𝑚 + 𝑟 × 𝑖, 𝑛 + 𝑟 × 𝑗)𝑤(𝑖, 𝑗)

𝑛

𝑗=𝑖

𝑚

𝑖=1

 (10) 

 

where, 𝑦(𝑚, 𝑛) denotes the output, 𝑥(𝑚, 𝑛) denotes the input. 

The filter where 𝑚  and 𝑛  are called length and width, 

respectively, is illustrated by 𝑤(𝑖, 𝑗) . In the diluted 

convolution layer Eq. (10), the variable 𝑟  stands for the 

dilation rate. When 𝑟 is used, it refers to the rate of dilation, 

which is given a distinct number. In case of 𝑟 is allotted as “1”. 

A conventional convolution layer will be created from the 

dilated convolution. Instead of pooling and convolution layer, 

the Sparse Kernels are used. Additionally, the dilated 

convolution expands the relevant field without using operators 

like a convolution layer. This benefit makes the small size 

kernel 𝑘 × 𝑘  that has been increased in size i.e., 𝐾 + (𝑘 −
1)(𝑟 − 1) where 𝑟 is a dilation rate that might have several 

values, such as 2, 3, or 5. Figure 5 depicts the architecture of 

the DiMS-Inception network. 

This architecture begins with a 1×1 convolution layer, 

which serves two key purposes: preserving the spatial 

resolution in addition to the dimensionality reduction. It 

reduces the number of computations and also provides fine 

spatial details without changing the spatial dimensions of the 

feature map that reduces computational complexity and allows 

more detailed computations in the subsequent layers. After 

675



 

this, it is passed through three sets of parallel paths, each with 

3×3 convolutions, with different dilation rates (R = 4, 8, 16). 

The dilation controls the stride rate which is used to space out 

the kernel elements for the convolution so that it can span a 

larger receptive field. When R=4, it learns medium-range 

contextual dependencies, R=8 it learns long-range 

dependencies, and R=16 it learns a global context without 

losing spatial resolution. These parallel branches essentially 

draw out features at varying levels, and their results are 

combined together either in an interleaved manner through 

concatenation or in an additive way whereby the final version 

of the outputs are aggregated representing fine, mid and large 

scales information of the given input, which is definitely a 

deeper representation. Downsampling is done by using pool 

layers, especially average pool layers. This downsizes the 

spatial dimensions of the feature maps, thereby normalizing 

the values by averaging over pixels and aids the network to 

emphasize on significant features, which is helpful in 

scenarios where global context is important than the local 

texture. In the final stage 1×1 convolutions are used to make 

the width and height smaller and make some additional 

transformations to the features extracted thus making it to suit 

tasks such as classification or segmentation. The 1×1 

convolution helps to fuse multi-scale features together so that 

the final feature map has an appropriate dimensionality for a 

given task. 

 

 
 

Figure 5. DiMS-Inception network architecture 

 

 
 

Figure 6. Attention module structure 

 

The architecture of the decoder is U-shaped. The fused 

feature maps are resized to 
𝐻

32
,

𝑊

32
,

𝐷

32
 and then processed 

through an inception-based dilated convolution in the 

encoder's deepest layer. These feature maps are then subjected 

to a sequence of upsampling blocks, each of which has a 

dilated convolution block depending on inception. Through 

skip connections, these are joined with the encoder's matching 

feature maps. To further improve the segmentation, the feature 

maps are combined and then run through an inception-based 

dilated convolution block. Each upsampling block has an 

upsampling factor of two and is composed of a ReLU 

activation function, a normalization layer, and a 

deconvolutional layer. Finally, segmentation probability maps 

are calculated using a Sigmoid activation function and an 

integer value of 1×1×1 3D convolution layer. It uses the 

attention module to further refine the feature representation. 

This module improves the model's capacity to detect 

anomalies by drawing attention to the pertinent areas of the 

input image. Figure 6 depicts the attention mechanism. 

The attention module is intended to improve feature 

learning since it allows important regions to be given more 

emphasis. It is comprised of fully connected (FC) layers which 

helps in mapping the input features into higher-dimensional 

space and it also has ReLU activation function to introduce 

non-linearity into the feature space. A second FC layer 

processes these features and the result is then passed through 

a SoftMax layer which yields the attention weights. These 

weights describe the significance of the particular input parts, 

and the model learns to use essential information. The benefits 

of attention mechanisms include attention-driven feature 

learning, model interpretability through understanding the 

decision-making process, and dynamic attention where the 

model’s focus will change based on the data. The model also 

enables to extract both high-level and low-level features, 

enhancing performance by capturing fine-grained details 
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while also understanding broader, more abstract concepts. 

This attention mechanism enhances detection accuracy by 

enabling the model to more effectively allocate resources by 

giving priority to specific areas.  

Lastly, the methodology presents explainable AI 

techniques, such as Local Interpretable Model-agnostic 

Explanations (LIME) for fine-tuning individual predictions 

and Grad-CAM (Gradient-weighted Class Activation 

Mapping) for creating heatmaps that explain the regions 

influencing the model's predictions. Figure 7 illustrates the 

visualization of GRAD-Cam and LIME. Figure 8 shows the 

real-time visualization 

 

 
 

Figure 7. GRAD-Cam and LIME visualization 

 

 
 

Figure 8. Real time GRAD-Cam and LIME visualization 

 

 

4. RESULTS AND DISCUSSION 

 

This section discusses the experiment's results using 

evaluation metrics such as precision, precision of the F-

measure, sensitiveness, specificity, NPV, FPR, and FNR. The 

suggested X2_PDDVnet for detecting anomalies in events. 

The suggested model is implemented in Python. The 

evaluation results are contrasted with those of several other 

methods, including the proposed X2_PDDVnet, ViT, CNN-

Bi-LSTM, Swin Transformer, and U-Net. 

 

4.1 Dataset description  

 

Three datasets, including Avenue, UCSD Anomaly 

Detection, and Shanghai Tech, are used to assess the 

effectiveness of the suggested approach. These datasets were 

taken at a specific location using a static camera. The testing 

video of the aforementioned dataset retains both normal and 

aberrant occurrences, whereas the training films only contain 

normal events. 

 

4.1.1 UCSD Anomaly Detection 

Dataset 1 

(http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm). 

The UCSD Anomaly Detection Dataset was gathered using 

a stationary camera that was situated at a height that provided 

a view of pedestrian routes. The pedestrian density on the 

pathways ranged from dense to sparse. The only individuals in 

the film are passersby in a normal setting. Unusual pedestrian 

movement patterns or the movement of non-pedestrian objects 

along the paths can result in strange events. Anomalies are 

common and include people crossing a walkway or in the grass 

around it, bikers, skaters, and small carts. There were also a 

few incidences involving wheelchair users. Since none of the 

anomalies were manufactured for the dataset's assembly, they 

are all spontaneously occurring. Two subsets of the data were 

created, each of which represented a distinct scene. The 200-

frame video footage that was captured from each scene was 

divided into different clips. Peds1: video featuring throngs of 

people moving either toward or away from the camera, along 

with a small amount of perspective distortion. There are 34 

teaching and 36 testing video samples. Peds2: situations where 

the camera plane and pedestrian movement are parallel. 

contains sixteen teaching video examples and twelve testing 

video examples. Each clip's ground truth annotation includes 

a binary flag for each frame that indicates whether an 

abnormality is present or not. Furthermore, manually created 

pixel-level binary masks are included for a subset of 10 films 

for Peds1 and 12 clips for Peds2, identifying the areas with 

anomalies. This will allow performance to be assessed in terms 

of algorithms' capacity to locate anomalies. 

 

4.1.2 Avenue Dataset 

Dataset 2 

(https://www.cse.cuhk.edu.hk/leojia/projects/detectabnorm

al/dataset.html).  

The Avenue Dataset includes 21 testing and 16 training 

video segments. Normal circumstances are captured in the 

training videos. Videos of tests show both typical and unusual 

occurrences. The videos, which contain 30652 frames (15328 

training, 15324 testing), were shot on CUHK Campus Avenue. 

People are frequently seen wandering about the subway 

entrance and stairwell. Unusual events, however, include 

individuals hopping, tossing bags, lingering, hurrying and 

going in the wrong direction, and so forth. Among the 

challenges of the dataset are camera movement and some 

abnormalities in the training samples. 

 

4.1.3 Shanghai Tech Dataset 

Dataset 3 

(https://www.kaggle.com/datasets/alterralaniakea/shanghai

tech-anomalous-behaviour).  

This dataset is the largest for the unsupervised VAD and 

consists of 437 video clips with an 856 × 480 pixel frame size. 

318 training and 107 testing films from 13 different backdrops 

are included in this dataset. The movies are gathered by 

changing the camera angles and lighting to broaden the 

dataset's diversity and make it more representative of real-

world situations. This dataset contains 130 real-world 

anomalous occurrences, such as vehicles, motorcycles, 

bicycles, skateboards, fighting, chasing, and jumping. 

 

4.2 Performance metrics 

 

The performance metrics employed to evaluate the 

proposed model are given below. 

Accuracy: The ratio of samples that were successfully 

identified to all samples is used to determine accuracy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

 

Precision: Out of all the samples that were predicted to be 

positive, precision quantifies the proportion of samples that 
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they were correctly identified as positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

 

Sensitivity: The percentage of true positive samples that 

were correctly classified as positive is measured by sensitivity. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (13) 

 

Specificity: Specificity is determined by how many actual 

negative samples are correctly categorised as negative. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (14) 

 

F-Measure: It is the harmonic mean of recall and precision. 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (15) 

 

FPR: The FPR calculates the proportion of really negative 

samples that were incorrectly regarded as positive. 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (16) 

 

FNR: The percentage of true positive samples that were 

incorrectly classified as negative is determined by FNR. 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (17) 

 

MCC: MCC spans from -1 to +1 and integrates data 

regarding true and false positives and negatives into a single 

value, where +1 denotes a perfect classification, 0 denotes 

random categorization, and -1 denotes the full discrepancy 

between prediction and observation. 

 

𝑀𝐶𝐶 = 
((𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁))

√((𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

(18) 

 

NPV: Out of all the samples that were predicted to be 

negative, NPV determines the proportion of actual negative 

samples that are accurately identified as such. 

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (19) 

 

where, 

FP (False Positives) - Number of incorrectly classified 

negatively classified samples,  

FN (False Negatives) - Number of incorrectly classified 

positively classified samples,  

TP (True Positives) - Number of correctly classified 

positively classified samples,  

TN (True Negatives) - Number of correctly classified 

negatively classified samples. 

 

4.3 Performance analysis of the proposed model  

 

The performance analysis is done on various models on 

three datasets utilized for anomaly detection: Dataset 1 (UCSD 

Anomaly Detection Dataset), Dataset 2 (Avenue Dataset for 

Abnormal Event Detection), and Dataset 3 (ShanghaiTech 

Dataset). The graphical analysis for the various performance 

metrics like accuracy, precision, sensitivity and specificity is 

shown in the Figures 9(a)-(d).  

Each model's performance demonstrates its effectiveness in 

identifying anomalies, with higher accuracy values indicating 

improved anomaly detection capability. CNN-BiLSTM 

achieved moderate accuracy on all the datasets. Accuracy 

score of CNN-BiLSTM is 0.7794 on Dataset 1, 0.83 on 

Dataset 2, and 0.8512 on Dataset 3. UNET gained more 

accuracy values as it reached 0.9191 on Dataset 1, 0.915 on 

Dataset 2, and 0.9323 on Dataset 3. The accuracy value of ViT 

model is more than CNN-BiLSTM in all datasets. Accuracy 

value for Datasets 1, 2, and 3 is 0.8422, 0.895, and 0.9054, 

respectively. However, the accuracy is less than UNET. The 

proposed X2_PDDVnet achieved the highest accuracy of any 

of the models for any of the datasets and scored 0.9763 on 

dataset 1, 0.983 on dataset 2, and 0.9898 on dataset 3. The 

dual-path architecture of this proposed model, in which it 

would integrate the ViT by a ZigZag-enhanced AlexNet, 

guarantees maximum feature extraction across any scale. 

CNN-BiLSTM is moderately accurate with lesser scores of 

0.7087, 0.798, and 0.825 in Dataset 1, 2, and 3 implying its 

failure to acquire tough time dependencies, thus increasing its 

false positives.UNET results higher precision than CNN-

BiLSTM. The ViT performs better than CNN-BiLSTM 

because it uses the global attention.  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 9. Performance evaluation of (a) Accuracy, (b) 

Precision, (c) Sensitivity, (d) Specificity 

 

Swin Transformer, using multi-scale spatial processing, is 

efficient in precision for all data sets, especially for the Avenue 

and ShanghaiTech ones. The proposed X2_PDDVnet model 

achieves the highest precision scores on all datasets with 

values of 0.9643, 0.976, and 0.977. 

CNN-BiLSTM has a relatively moderate sensitivity but 

ranks the lowest, probably because it is not able to capture 

much sequential pattern. UNET shows improved sensitivity 

scores of 0.9174, 0.91, and 0.925 and is better than CNN-

BiLSTM. The ViT improves further with values of 0.7854, 

0.853, and 0.865 for Dataset 1, 2 and 3, which utilizes global 

attention but lacks localized feature focus. The Swin 

Transformer achieves strong sensitivity, as it has a 

hierarchical, multi-scale structure. The highest sensitivity 

scores are achieved by X2_PDDVnet with scores of 0.9743, 

0.967 and 0.9856 for Datasets 1, 2 and 3 respectively. CNN-

BiLSTM has specificity of 0.7081, 0.826, and 0.83 for Dataset 

1,2 and 3. UNET has better specificity and has scores of 

0.9065, 0.907, and 0.9224. ViT outperforms CNN-BiLSTM 

because the former makes use of its global attention 

mechanism, scoring specificities of 0.8785, 0.864, and 0.875; 

but it is not that specific as UNET. The Swin Transformer high 

scores are 0.905, 0.918, and 0.932 for Dataset 1, 2 and 3, 

capitalizing on its hierarchical structure to significantly 

outperform other models for distinguishing normal events. 

Specificity for Dataset 1,2 and 3 is at a maximum score of 

0.9665, 0.968, and 0.9725 with X2_PDDVnet. The graphical 

analysis for the various performance metrics like F-measure, 

MCC and NPV is shown in the Figures 10(a)-(c).  

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Performance evaluation of (a) F-measure, (b) 

MCC and (c) NPV 

 

CNN-BiLSTM achieves relatively balanced F-measure 

values 0.7525, 0.832 and 0.843 respectively, with the lowest 

scores among all models because they are unable to capture a 

lot of complex dependencies in the network. UNET performs 

better than CNN-BiLSTM with scores of 0.9021, 0.91, and 

0.9215. Then, ViT improved scores from CNN-BiLSTM to 

0.8498, 0.885, and 0.89 by supporting its global attention 
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mechanism. Swin Transformer scores 0.918, 0.934, and 0.936, 

due to its hierarchical, multi-scale structure. X2_PDDVnet 

gets the highest F-measure values, 0.9612, 0.973, and 0.9756 

for Dataset 1, 2 and 3 respectively. CNN-BiLSTM achieves 

MCC values at 0.6921, 0.755, and 0.7723 but ranks low due to 

weak capture of the intricate relationships. On the other hand, 

UNET surpasses this through an MCC value of 0.8976, 0.805, 

and 0.8156. ViT 's results are better as they surpassed the 

values set by CNN-BiLSTM at 0.7809, 0.794, and 0.81. The 

Swin Transformer obtains the highest MCC values, 0.883, 

0.88, and 0.905, exploiting its hierarchical multi-scale 

structure to effectively capture spatial features. X2_PDDVnet 

obtains the highest MCC values, with 0.9689, 0.988, and 

0.9878 for Dataset 1, 2 and 3 respectively. For the UCSD 

dataset, CNN-BiLSTM attained 0.7632 of NPV, UNET was 

even more promising with 0.9009, while the ViT was even 

better at 0.83. The Swin Transformer offers even more 

encouraging results at an accuracy rate of 0.919. However, 

X2_PDDVnet gives the NPV at 0.9511, thus showing more 

reliability. In Avenue Dataset, CNN-BiLSTM is at 0.81, 

UNET reaches 0.925, ViT achieves 0.875, Swin Transformer 

scores 0.895, but X2_PDDVnet again surpasses all with 0.979, 

showing great differentiation of normal events. In 

ShanghaiTech, CNN-BiLSTM's NPV is 0.8352, UNET scores 

0.9354, ViT maintains 0.875, Swin Transformer achieves 

0.912, and again X2_PDDVnet leads with 0.9789 of NPV. The 

graphical analysis for the various performance metrics like G-

mean, FPR and FNR is shown in the Figures 11(a)-(c).  

 

 
(a) 

 
(b) 

 

 

 
(c) 

 

Figure 11. Performance evaluation of (a) G-mean, (b) FPR 

and (c) FNR 

 

In the UCSD Anomaly Detection Dataset, X2_PDDVnet 

outperforms with a Geometric mean (G-mean) of 0.9843, 

followed by the Swin Transformer at 0.919 and UNET at 

0.9175, which is strong reliability. The ViT scores 0.8565, and 

CNN-BiLSTM has the lowest score at 0.8212. In the Avenue 

Dataset, X2_PDDVnet again leads with a G_mean of 0.978, 

followed by the Swin Transformer at 0.93 and UNET at 0.9. 

The CNN-BiLSTM is lower with a score of 0.83 for the 

ShanghaiTech Dataset. X2_PDDVnet attained highest 

G_mean with a 0.982 value in the ShanghaiTech Dataset while 

Swin Transformer and UNET are at 0.9234 and 0.9154 

respectively, followed by ViT 's score of 0.885, and the CNN-

BiLSTM acquired lowest score of 0.8348. CNN-BiLSTM and 

Swin Transformer report moderate FPRs as 0.109 and 0.108 

for UCSD, while UNET and ViT show a slight improvement 

at 0.0987 and 0.0968, respectively. X2_PDDVnet performs 

the best with the lowest FPR of 0.0121, which shows higher 

accuracy on UCSD dataset. On the Avenue Dataset, CNN-

BiLSTM scores 0.105, UNET scores 0.11, and ViT shows an 

extremely high FPR at 0.195. With 0.08, Swin Transformer 

does not perform well; however, the lowest FPR is reported by 

X2_PDDVnet with 0.025. On the ShanghaiTech dataset, ViT 

reports the highest FPR of 0.2, while CNN-BiLSTM, UNET, 

and Swin Transformer report moderate FPRs of 0.1256, 0.115, 

and 0.09, respectively. X2_PDDVnet outperforms all others 

with a low FPR of 0.0123. In the UCSD Anomaly Detection 

Dataset, X2_PDDVnet has the best FNR of 0.0121, which 

makes it highly accurate in its anomaly detection capabilities, 

with the Swin Transformer close behind at 0.085. The UNET 

and ViT are then better than the CNN-BiLSTM, by having 

FNRs, 0.1098 and 0.1076, respectively. Regarding the Avenue 

Dataset, X2_PDDVnet attained a low FNR of 0.015, while the 

CNN-BiLSTM is moderate with an FNR of 0.11. Transformer 

and Swin Transformer show high FNR of 0.13. In other words, 

more than 0.13 cases are missed in its detection. In 

ShanghaiTech Dataset, X2_PDDVnet is highly rated with an 

FNR of 0.0212; CNN-BiLSTM and Swin Transformer have 

almost the same outcomes at about 0.11. Overall, 

X2_PDDVnet has a better performance on all the datasets, 

making it a robust model for anomaly detection, while CNN-

BiLSTM needs to improve its capabilities. Figure 12 shows 

the flops and interference time. 
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(a) 

 
(b) 

 

Figure 12. (a) Flops and (b) Interference time 

 

4.4 Ablation study analysis  

 

The ablation study is investigated on the proposed model for 

the three datasets for Encoder 1, Encoder 2 and Combined 

proposed model. The ablation study on the UCSD Anomaly 

Detection Dataset show significant improvements when 

combining the ViT Encoder and ZigZag Encoder with a 

decoder, highlighting the effectiveness of this integrated 

approach is illustrated in the Table 1. 

The combined proposed model scored 0.9763, much higher 

than the individual encoders, which scored 0.93 and 0.85, 

respectively in terms of accuracy. Similarly, precision was at 

its highest in the combined model at 0.9643, indicating more 

effectiveness in identifying true positives compared to the 

encoders alone. Sensitivity improved dramatically as the 

combined model reached 0.9743, hence better detecting true 

anomalies without increasing false negatives. Specificity also 

showed improvement as the combined model achieved 

0.9665, with better accuracy in identifying true negatives. F-

measure revealed a huge improvement in the combined 

method at 0.9612. The MCC also emphasized on the 

robustness of the merged model, and it resulted in a score of 

0.9689; the ViT Encoder scores were 0.905 and 0.7 for the 

ZigZag Encoder. The NPV was 0.9511 for the merged model 

meaning that the classification for the non-anomalous data 

results in a higher precision; the FPR in case of the merged 

model considerably reduced to 0.0121 with the FNR at 0.0121 

as compared to actual anomalies not being missed. Lastly, the 

Gmean was at its peak for the combined model with a value of 

0.9843, which means better all-around performance since it 

equilibrates sensitivity and specificity. The graphical analysis 

for the comparison of individual and combined approach is 

depicted in the Figure 13.  

The efficacy of this combined approach is highlighted by 

the ablation study on the Avenue Dataset in the Table 2, which 

shows significant gains when integrating the ViT Encoder and 

ZigZag Encoder with a decoder. Table 2 presents a 

comparison analysis of the Avenue Dataset. 

Table 1. Comparison analysis on the UCSD anomaly detection dataset 

 
Metric Encoder 1 (ViT Encoder) Encoder 2 (ZigZag Encoder) Encoder 1 + Encoder 2 + Decoder 

Accuracy 0.93 0.85 0.9763 

Precision 0.912 0.84 0.9643 

Sensitivity 0.9098 0.78 0.9743 

Specificity 0.912 0.87 0.9665 

F-Measure 0.927 0.81 0.9612 

MCC 0.905 0.7 0.9689 

NPV 0.925 0.79 0.9511 

FPR 0.109 0.13 0.0121 

FNR 0.0985 0.22 0.0121 

G-mean 0.9126 0.876 0.9843 

 

Table 2. Comparison analysis on the Avenue Dataset 

 
Metric Encoder 1 (ViT Encoder) Encoder 2 (ZigZag Encoder) Encoder 1 + Encoder 2 + Decoder 

Accuracy 0.925 0.86 0.983 

Precision 0.918 0.9 0.976 

Sensitivity 0.917 0.8 0.967 

Specificity 0.9182 0.92 0.968 

F-Measure 0.9176 0.84 0.973 

MCC 0.9264 0.71 0.988 

NPV 0.9258 0.83 0.979 

FPR 0.098 0.08 0.025 

FNR 0.093 0.21 0.015 

Gmean 0.945 0.8455 0.978 
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Figure 13. Graphical analysis on the UCSD anomaly detection dataset 

 

 
 

Figure 14. Graphical analysis on the Avenue dataset 

 

Table 3. Comparison analysis on the ShanghaiTech dataset 

 
Metric Encoder 1 (ViT Encoder) Encoder 2 (ZigZag Encoder) Encoder 1 + Encoder 2 + Decoder 

Accuracy 0.95 0.84 0.9898 

Precision 0.9 0.86 0.9778 

Sensitivity 0.915 0.79 0.9856 

Specificity 0.925 0.84 0.9725 

F-Measure 0.896 0.82 0.9756 

MCC 0.915 0.68 0.9878 

NPV 0.92 0.81 0.9789 

FPR 0.205 0.16 0.0123 

FNR 0.135 0.21 0.0212 

G-mean 0.902 0.8443 0.982 

The accuracy of the combined model was 0.983, while the 

individual encoders achieved accuracy scores of 0.925 for ViT 

Encoder and 0.86 for ZigZag Encoder for Avenue Dataset. It 

could be because the model has augmented its ability to 

classify the anomalies with higher accuracy. The precision 

also increased from 0.918 for the ViT Encoder and 0.9 for the 

ZigZag Encoder to 0.976 in the combined model, which 

implies better actual positive cases and fewer false positives. 

Sensitivity increased from 0.917 of ViT Encoder and 0.8 with 

ZigZag Encoder to the combined approach of 0.967, reflecting 

how the model is better able to identify true anomalies with 

less missed detection. With a specificity of 0.968, the 
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combined model outperformed the individual encoders, which 

had scores = 0.9182 and 0.92, respectively. Furthermore, the 

F-Measure rose to 0.973, demonstrating a solid balance 

between both accuracy and recall, up from the values: 0.9176 

for ViT Encoder and 0.84 for ZigZag Encoder. MCC also 

showed good improvement, rising up to 0.988 from the values 

of 0.9264 of ViT Encoder and 0.71 at ZigZag Encoder, 

indicating the stability of the combined approach. NPV 

increased to 0.979 as compared to 0.9258 of ViT Encoder and 

0.83 of ZigZag Encoder which increased the accuracy of 

prediction for non-anomalous instances. FPR reduced to 0.025 

from 0.098 of ViT Encoder and 0.08 at ZigZag Encoder, and 

FNR decreased to 0.015, but for individual encoders, FNR was 

0.093 and 0.21 respectively, hence showing more accuracy in 

detection of actual anomalies. Lastly, the Gmean increased 

from 0.945 for the ViT Encoder to 0.8455 for the ZigZag 

Encoder and increased to 0.978 in the combined model, further 

proving the better performance of the integrated approach in 

the Avenue Dataset. The graphical analysis for the comparison 

of individual and combined approach in Avenue Dataset is 

depicted in the Figure 14.  

The efficacy of this combined approach is highlighted by 

the ablation study on the ShanghaiTech dataset is illustrated in 

Table 3, which shows significant gains when integrating the 

ViT Encoder and ZigZag Encoder with a decoder. Table 3 

presents a comparison analysis of the ShanghaiTech dataset. 

In the Shanghai Tech Dataset, the combined model scored 

an impressive accuracy of 0.9898 compared to individual 

encoders with 0.95 for the ViT Encoder and 0.84 for the 

ZigZag Encoder. Precision was increased to 0.9778 in the 

combined model from 0.9 and 0.86 for the ViT and ZigZag 

Encoders, which illustrates an increased efficiency for the 

identification of true positives and lowered false positives. The 

sensitivity improved to 0.9856, which means that the model 

was much more sensitive to true anomalies and had fewer 

missed detections, which is higher than ViT Encoder's 0.915 

and ZigZag Encoder's 0.79. Specificity was very high at 

0.9725 for the combined model compared to the individual 

encoders' scores of 0.925 and 0.84, which reflected an 

improved performance in correctly identifying true negatives. 

In addition, F-Measure increased up to 0.9756 and MCC 

significantly up to 0.9878, which indicates the strength of the 

combined approach. The NPV was increased to 0.9789, 

indicating the stronger ability to predict the cases that are not 

anomalous. Moreover, the value of FPR is reduced up to 

0.0123 and FNR to 0.0212, which shows more abilities for the 

correct detection of negative and positive cases. More 

precisely, the Gmean of 0.982 further underlines better 

performance of the integrated approach with regard to better 

sensitivity and specificity balance. The graphical analysis for 

the comparison of individual and combined approach in 

Shanghai Tech Dataset is depicted in the Figure 15. 

 

 
 

Figure 15. Graphical analysis on the Shanghai Tech Dataset 

 

 
(a) 
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(c) 

 

Figure 16. Performance metrics: (a) Dataset 1, (b) Dataset 2, (c) Dataset 3 

 

The performance of four encoder structures (VIT Encoder, 

Zigzag Encoder, Without Shift-Inception, and IQ-PDVNet) 

for different evaluation metrics. IQ-PDVNet generally has 

high performance, achieving maximum or second-highest 

values in metrics such as Accuracy, Precision, Sensitivity, and 

Gmean. VIT Encoder also shows competitive performance in 

multiple metrics for both datasets. Zigzag Encoder and 

Without Shift-Inception have more inconsistent performance, 

with some trailing the other two encoders based on metric and 

dataset. IQI and HRA metrics have low scores for all encoders 

on both datasets, suggesting they may be more challenging 

parts of the task. The Gmean metric indicates good overall 

performance of IQ-PDVNet. Although there are individual 

variations between datasets, the overall trend in relative 

performance among IQ-PDVNet and VIT Encoder is largely 

comparable, suggesting that architectural decisions in IQ-

PDVNet contribute to strong performance across different 

datasets and tasks. 

Figure 16 illustrates the performance metrics Accuracy, 

Precision, Sensitivity, Specificity, F-Measure, MCC, NPV, 

FNR, FPR, and G-Mean evaluated on Dataset 1, Dataset 2, and 

Dataset 3 using four models: ViT Encoder, ZigZag Encoder, 

Without DiMS Inception, and X2_PDDVNet 

 

4.5 Comparing the performance of different loss function 

models  

 

The performance metrics of several models applied to a 

segmentation task are shown in Table 3, which is assessed 

using three distinct loss functions: Dice loss, focal loss, or a 

mix of the two (Focal + Dice Loss). Accuracy, Mean Average 

Precision (mAP), and Mean Intersection over Union (mIoU) 

are among the parameters that are presented. Table 4 presents 

a performance comparison of various loss functions. 

For the U-Net model, the mIoU is 0.89, mAP is 0.86, and 

accuracy is 90.80% using Focal loss. If Dice Loss is used, the 

performance is a bit worse, with an mIoU of 0.88, mAP of 

0.85, and an accuracy of 90.03%. However, the performance 

of U-Net gets enhanced to a much greater extent when both 

loss functions are used, with an mIoU of 0.90, mAP of 0.90, 

and an accuracy of 92.76%. A strong competing model is also 

developed for the ViT by presenting an mIoU of 0.90, mAP of 

0.91, and an accuracy of 92.40% using Focal Loss. The model 

develops its performance a little while applying Dice Loss as 

indicated in the mIoU at 0.91, mAP at 0.90, and an accuracy 

of 92.77%. Again, the best performer for this model is Focal 

Loss with Dice Loss, as mIoU was 0.90, mAP was 0.92, and 

an accuracy of 93.78%. Swin Transformer with Focal Loss 

brought out the result of an mIoU of 0.923, mAP of 0.906, and 

an accuracy of 93.55%. Again, better performance is offered 

by the use of Dice Loss: the mIoU reached 0.9353, mAP as 

0.9213, and an accuracy of 92.80%. The further combination 

of the both the loss functions results in the performance to 

achieve an mIoU of 0.943, mAP of 0.9323, and the accuracy 

as 93.44%. However, CNN-BiLSTM had a lower overall score 

with Focal Loss, an mIoU of 0.8376, a mAP of 0.8972, and 
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accuracy of 89.47% were obtained. Using Dice Loss, a small 

improvement is seen with mIoU of 0.8456, mAP of 0.8866, 

and accuracy of 88.38%. Focal + Dice Loss had a marginally 

improved mIoU of 0.8645, mAP of 0.856, and accuracy of 

89.53%. The X2_PDDVnet architecture has proved to be the 

best since it provides results of an mIoU of 0.9435, mAP of 

0.9543, and accuracy of 97.44% Focal Loss. It was even 

observed that the usage of Dice Loss resulted in mIoU of 

0.9536, mAP of 0.9654, and accuracy of 97.34%. Best 

performance is found in combination of both with the 

impressive results, including a maximum IoU of 0.9642, and 

mAP of 0.91, with 98.42% of accuracy. Figure 17 (a), (b) and 

(c) depict the training and validation accuracy and loss graphs 

for the three datasets.  

 

Table 4. Performance comparison of various loss function 

 
Model Loss Function mIoU mAP Accuracy 

U-Net Cross-Entropy 0.85 0.8 89.50% 

U-Net Dice Loss 0.87 0.84 91.03% 

U-Net Cross-Entropy + Dice Loss 0.89 0.86 90.80% 

Vision Transformer Cross-Entropy 0.88 0.89 92.10% 

Vision Transformer Dice Loss 0.92 0.91 91.89% 

Vision Transformer Cross-Entropy + Dice Loss 0.9 0.91 92.40% 

Swin Transformer Cross-Entropy 0.91 0.89 93.00% 

Swin Transformer Dice Loss 0.93 0.92 92.68% 

Swin Transformer Cross-Entropy + Dice Loss 0.94 0.93 93.44% 

CNN-BiLSTM Cross-Entropy 0.83 0.88 88.56% 

CNN-BiLSTM Dice Loss 0.85 0.87 88.38% 

CNN-BiLSTM Cross-Entropy + Dice Loss 0.86 0.86 89.47% 

TimeSformer Cross-Entropy 0.91 0.92 93.30% 

TimeSformer Dice Loss 0.93 0.93 93.80% 

TimeSformer Cross-Entropy + Dice Loss 0.94 0.93 93.50% 

CNN-ViT-TSAN Cross-Entropy 0.87 0.89 92.45% 

CNN-ViT-TSAN Dice Loss 0.91 0.92 91.70% 

CNN-ViT-TSAN Cross-Entropy + Dice Loss 0.92 0.93 92.80% 

Proposed Cross-Entropy 0.94 0.95 97.12% 

Proposed Dice Loss 0.95 0.97 97.34% 

Proposed Cross-Entropy + Dice Loss 0.96 0.97 98.42% 

 

 
(a) 

 

 
(b) 
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(c) 

 

Figure 17. Training validation accuracy and loss for UCSD dataset, Avenue Dataset, and Shanghai dataset 

 

Across the UCSD, Avenue, and Shanghai datasets, the 

model demonstrates consistent improvement in both accuracy 

and loss metrics, which reflects the robust learning and 

generalization capability of the model. For the UCSD dataset, 

the testing accuracy starts at 0.850 and increases to 0.990. 

Validation accuracy increases from 0.825 to approximately 

0.950, with strong generalization to unseen data. Testing and 

validation loss of UCSD also improve progressively. Their 

values decrease from 0.450 to 0.100 and from 0.500 to 0.150, 

respectively. The training accuracy begins at 0.920 and peaks 

at 0.980, while validation accuracy follows, beginning around 

0.900 and peaking at 0.960, indicating good learning and 

generalization. Training and validation loss both steadily 

decrease, from 0.450 to 0.100 and 0.500 to 0.150, respectively, 

indicating decreased error in the training and validation data. 

Similarly, for the Shanghai dataset, the accuracy of the training 

set is from 0.920 to 0.980, and validation accuracy is from 

0.900 to 0.960 and demonstrates strong generalization ability. 

The training loss is reduced from 0.450 to 0.100 and the 

validation loss from 0.500 to 0.150, showing the errors are 

further minimized. At the end of training, the model can attain 

near-peak accuracy values at 0.990 for testing and 0.960 for 

validation; it also reduces losses consistently to about 0.100 on 

testing and 0.150 on validation, which hints towards the high 

performance and generalization capability of the model. 

 

 

5. CONCLUSION 

 

A new video anomaly detection approach is proposed in this 

paper, known as X2_PDDVnet, which is an integration of a 

dual-path architecture based on a ViT and an AlexNet-based 

CNN with the enhancement of a ZigZag path learning method. 

This dual-path setup enables the model to capture effective 

global and local spatial patterns uniquely, with the focus of the 

ViT encoder on global relationships between frames and the 

ZigZag-enhanced AlexNet exploiting dilated convolutions for 

an extended receptive field. More robustness is provided by 

adding a DiMS-Inception network with multi-scale dilated 

convolutions, allowing the model to detect anomalies at 

different scales in video frames. The X2_PDDVnet model was 

thus presented to emerge with remarkable accuracy, precision, 

and sensitivity, especially achieving its peak accuracy of 

0.9898 on the ShanghaiTech dataset. The integration of 

explainable AI techniques, such as Grad-CAM and LIME, into 

video anomaly detection, which helps explain visually why the 

model took its decision, is innovative in this work. Extensive 

testing on three datasets: UCSD, Avenue, and ShanghaiTech, 

showed X2_PDDVnet outperformed all baseline models on 

the different metrics, including F-measure, specificity, MCC, 

NPV, G-mean, and even with a lower FPR. The ablation study 

also shows the benefits of a dual-path architecture, because 

combined ViT and ZigZag encoders resulted in better 

performance metrics in all datasets, proving the viability of 

multi-encoder architectures for robust feature extraction. 

Furthermore, when tested with varied loss functions, the 

combined Focal and Dice Loss produced higher mIoU, mAP, 

and accuracy for segmentation tasks, hence demonstrating the 

importance of tailored loss functions for optimal model 

training. Future work could explore the expansion of this 

framework to various anomaly detection scenarios, further 

optimizing computational efficiency and adaptability to 

diverse environmental conditions. 
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