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Wind Energy Conversion Systems (WECS), which predominantly rely on wind turbines.
WECS can be divided into two main categories based on their interaction with power grids:
grid-connected systems and stand-alone wind energy systems. Currently, most wind
energy installations are grid-connected, facilitating efficient integration and distribution of
the generated electricity. The control systems for WECS are intricate, necessitating
advanced optimization methods to improve the effectiveness of wind energy conversion.
This paper introduces an innovative approach to crafting an adaptive optimal controller
based on Adaptive Dynamic Programming (ADP), aimed at enhancing energy conversion
efficiency for grid-connected wind energy systems that use Permanent Magnet
Synchronous Generators (PMSG). The proposed controller leverages reinforcement
learning techniques along with Lyapunov stability analysis to guarantee dependable
performance across a range of operational scenarios. To demonstrate the controller's
effectiveness, we implemented and simulated a complete system comprising both the
WECS and the controller in the Matlab and Simulink environments. The outcomes of these
simulations will be evaluated to determine the controller's performance and its potential to
boost the overall operational efficiency of wind energy systems.
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1. INTRODUCTION output. In this phase, the turbine is finely tuned to capture wind
energy most effectively. This operational region is reached

Wind energy is a very important research field nowadays, when wind speeds are consistently high and stable, enabling

especially in the context of the world's efforts to switch to the turbine to perform at its best.

renewable energy sources to replace increasingly depleted

conventional energy sources. WECS consist of many Power (P)} Power Power

aerodynamic, mechanical and electrical components. The maximum || regulation

performance of this system depends on several important 'L

factors, including the installation location, wind speed and Pow| —=—

Full load
region

especially the type of generator. Among these factors, wind P}Imal load
speed is continuously variable during operation, while other
factors are usually precisely determined during the design and ~
construction phase' Vowin Vizee Varaw Wind Spﬁ&d’ﬂj

In a wind turbine system, the operational phases are
categorized into two primary areas: the partial load region and
the full load region, as illustrated in Figure 1.

The partial load region refers to the operational state where
the wind turbine functions below its rated capacity. During this
phase, the turbine's efficiency is hindered by insufficient wind
or other conditions that limit power output. This region
typically occurs under low or fluctuating wind conditions,
necessitating adjustments to the blade pitch to enhance
performance. Conversely, the full load region represents the
state in which the wind turbine achieves its maximum power

Figure 1. Partial load region and full load region of wind
turbine

Modeling and control in WECS focus on exploiting the
dynamic characteristics of wind turbines and designing
optimal control systems to increase energy production. This
process typically involves analyzing the dynamic
characteristics of PMSG, as well as implementing control
strategies to improve the stability and efficiency of the system.
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This is essential to ensure efficient and reliable operation of
WECS. Modeling of wind turbines can be performed through
simulation methods, which allow analysis of their static and
dynamic characteristics, thereby optimizing performance and
evaluating feasibility under different conditions. Current
research also focuses on the control architecture of these
systems, including blade regulation and drive mechanisms [1,
2]. In wind turbine control, various methods are applied,
including conventional, nonlinear, and intelligent control
methods. Proportional-Integral-Derivative (PID) control is
one of the most common methods in the industry. PID
regulates the rotational speed of the turbine through three
components: proportional (P), integral (I), and derivative (D),
to maintain a stable rotational speed and minimize errors [3,
4]. In the study [3], a new design procedure for a decoupled PI
controller for a wind turbine using a PMSG is presented. The
findings demonstrate that the proposed method successfully
recovers nominal performance levels, even in the presence of
model uncertainties, while simultaneously enhancing
performance during the transient phase of operation. In
contrast, Tripathi et. al [4] emphasizes the evaluation of a wind
turbine control system that employs Permanent Magnet
Synchronous Generators (PMSG). This study specifically
highlights the significance of tuning the Proportional-Integral
(PI) controller parameters, with a focus on achieving a desired
damping ratio. Such tuning is essential for enhancing both the
performance and stability of the system under various real-
world operating conditions. Moreover, adaptive control
mechanisms offer a promising solution by automatically
adjusting controller parameters over time in response to
changing operating conditions or fluctuations in turbine
dynamics, as noted in references [5, 6]. Although this
approach necessitates a precise model of the system, it has the
potential to significantly improve performance, particularly
under unstable conditions. In reference [5], a novel adaptive
control strategy is introduced, aimed at enhancing the
performance of small wind turbines equipped with PMSGs
operating in region II. This method utilizes a reference model
to fine-tune control parameters, thereby optimizing energy
efficiency while ensuring that the system remains within
operational limits. Reference [6] provides an analysis of the
performance of a wind turbine system using adaptive dynamic
range control. This innovative control technique is primarily
applied to power converters, resulting in improved
performance and responsiveness in handling grid energy
generated from wind turbines. Overall, these studies contribute
valuable insights into the optimization of wind turbine control
systems, highlighting the effectiveness of adaptive strategies
in ensuring robust and efficient energy production. This can
lead to better operating efficiency and minimize power
fluctuations. Optimal control uses real-time algorithms to
optimize the blade angle and rotation speed with the goal of
achieving maximum efficiency [7, 8]. In the study [7], the
optimal control methods for WECS are reviewed, focusing on
power optimization and multi-purpose criteria. It aims to
provide an overview of different control methods aimed at

optimizing the dynamic behavior of multi-speed wind turbines.

In the study [8], an optimal strategy for controlling and
operating wind turbines to provide frequency support to the
grid was proposed. This strategy is implemented through the
development of frequency support capabilities of permanently
synchronous generators (PMSG) connected to the power
system. It includes controlling the active power to participate
in the frequency regulation of the grid. In the study [9], an

806

optimal strategy for operating wind farms to maintain
frequency regulation reserve, considering wake effects, was
proposed. This study focuses on the trade-off between power
output and frequency regulation reserve capacity of wind
farms. In the study [10], an optimal strategy for operating wind
farms to maintain frequency regulation reserve, considering
wake effects, was proposed. This study focuses on the trade-
off between power output and frequency regulation reserve
capacity of wind farms. Robust control of WECS is designed
to withstand large wind variations, network disturbances, and
parameter uncertainties [11-13]. Several studies have
developed robust control algorithms and implemented these
techniques using hardware such as FPGAs [14, 15]. These
approaches aim to increase the reliability and performance of
WECS under unstable operating conditions. Research on
fuzzy control or neural networks and adaptive control allows
turbines to adjust to changing wind conditions [16-21]. These
methods are capable of handling uncertainties and
nonlinearities in the behavior of wind turbines. Using fuzzy
logic rules, the system can make decisions based on imprecise
values. In the study [18] presents a Takagi-Sugeno (T-S) fuzzy
control system for a Wind Energy Conversion System (WECS)
utilizing a Permanent Magnet Synchronous Generator
(PMSGQG), designed through the Linear Matrix Inequality (LMI)
method. This approach optimizes system stability and
performance under uncertain conditions, leveraging the
flexibility of fuzzy control and logic rules to precisely meet
design criteria. Additionally, recent research explores machine
learning techniques to enhance wind turbine control by
enabling models to learn from real data and improve their
performance [22-25]. Each method has unique advantages and
drawbacks, making it crucial to select the right approach based
on the system’s specific needs and operating environment.
Moreover, intelligent control methods utilizing reinforcement
learning are being developed to optimize operational
efficiency. Techniques such as torque control and multiple-
input-multiple-output (MIMO) systems have been enhanced
with advanced reinforcement learning algorithms to improve
wind energy extraction, particularly in response to fluctuating
wind speeds, thereby boosting the efficiency of PMSG-based
systems. This paper combines these control strategies,
employing neural networks for system state estimation and
designing a controller based on the Adaptive Dynamic
Programming (ADP) technique to optimize output power and
enhance stability amid changing wind conditions. The overall
WECS model is illustrated in Figure 2.
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Figure 2. Overall model of WECS

2. MODELING OF WECS

This section will present the dynamic modeling process of
the WECS. The modeling will be performed for each



subsystem, and then the models of these subsystems will be
combined into a nonlinear model of the entire WECS. The
WECS consists of many different physical components. These
systems can be divided into two different groups: the electrical
components group and the mechanical components group. In
terms of dynamics, the WECS consists of four types of
dynamics: the aerodynamics of the rotor, the structural
dynamics of the blades and turbine tower, the dynamics of the
drive, and the dynamics of the generator. The block diagram

of the WECS modeling is shown in Figure 3. However, in
terms of control objectives, only the dynamics of the rotor,
drive, and generator are modeled.

2.1 Aerodynamic modeling of wind turbines
Figure 4 illustrates the aerodynamic model of a wind turbine.

Its main role is to convert the energy from the wind into
mechanical energy for the turbine.

Power
Grid

converter

( Wind Turbine

L Control system

Figure 3. Block diagram of WECS modeling

Tz

Figure 4. Aerodynamics of wind turbines

When the wind moves through the turbine's sweep area, it
produces forces that impact the turbine. These forces include
the thrust force acting on the shaft and blades, along with the
torque that drives the rotor's rotation. The thrust force Fi, the
torque Ty, and the mechanical power P, generated are defined
as follows [26, 27]:

1
Fr =§P7TR3V2CT(/L,3) (1)
Tr = ! R3V?C, (A 2
R —EP” Q( B 2
1 2173
P =S pnR7V Cp(1,B) 3)

where, p represents the air density, R denotes the swept radius,
V indicates the wind speed, Cy(4,B) refers to the torque
coefficient, and Cp(4,B) signifies the power conversion
coefficient. Both the torque and mechanical power are
influenced by the tip-speed ratio (TSR) A and the pitch angle
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B. The TSR A is defined as the ratio of the velocity of the blade
tips to the wind speed:

_ wgR
A= %

“4)

where, wp represents the rotor's angular velocity. The
connection between the torque coefficient and the power
coefficient is defined as follows:

Cp(4,B) = Ao (4, ) )

2.2 Dynamic modeling of the drive system

The primary role of the drive is to convey mechanical
energy from the rotor to the generator. Figure 5 shows a block
diagram of the drive. In this system, the input signals consist
of the torques from both the turbine and the generator, while
the output signals represent the angular velocities of these
components.

T R ) g
Driver train >
® amics e
R dyn
J

Figure 5. Block diagram of the drive

Depending on the control purpose, the drive can be modeled
as a rigid or elastic model. For small-capacity wind power
systems, to simplify the modeling process, a rigid model is
often used to describe the drive dynamics. This rigid model is
illustrated in Figure 6.



Rotor shaft

Gearbox

Figure 6. Rigid model of the actuator

The rigid model of the drive consists of two rigid shafts
connected to each other through a velocity multiplier. These
rigid shafts include the shaft connected to the rotor receiving
the turbine torque Ty, with a low velocity wg, and the shaft
connected to the generator receiving the generator torque Ty,
with a high velocity w;. The rotor and the generator are
considered as rigid bodies with moments of inertia J; and J;
respectively. The velocity multiplier consists of two gears with
inertias J; and Jy respectively, with a velocity conversion
efficiency 1 and a velocity receiving ratio i. The dynamics of
this model can be described by a first-order differential
equation converted to the generator side as follows [26]:

(6)

where, [}, is the equivalent torque converted to the generator
side and is calculated as follows:

Jn=0U, +]R) 2R +Ju +Jg (7

If converted to the turbine side, the kinematic equation of
the drive can be written as follows:

1 iT
n, ¢

LR

Wg = ®)

where, J; is the equivalent moment converted to the turbine
side and is calculated as follows:

i2

Ji=Uu +]G)%+]L +Jr Q)

2.3 Modeling of PMSG

The control structure for WECS is divided into many
control loops to ensure stable and continuous power supply to
loads and grid connection. In this section, we only focus on
designing a controller to optimize the energy conversion
process for wind turbines, so we only model the dynamics of
the wind turbine, drive and generator as shown in Figure 7.

Gear box
PMSG
% Grid
g
Wz
[ :
— 1 Control system
Figure 7. WECS model
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The type of generator commonly used in WECS is the
PMSG. The mathematical model of the PMSG generator in the
d, q coordinate system is given as follows [3, 26, 27]:

dig _ _Rs,  Plq, 1.
dt Ly Ly ¢ L, ¢ (10)
di R
1=_= _(Lald ¢m)wG_L_uq

dt - Ly 1 L, .
where, iy, i, are the stator current d, q; ug, U, are the stator
input voltage d, q; Lg, L, are the stator inductance d, g; R; is
the stator resistance; p is the number of pole pairs; ¢,, is the
magnetic flux; w; is the generator speed.

2.4 Dynamic model of WECS
By integrating the dynamics of the wind turbine, drive, and

generator discussed earlier, we derive the dynamic model of
the WECS utilizing a PMSG as follows [3]:

: U 1 b i
W =T —— i
ST T e
dig R, pLq 1
— ==+ —tiwg ——u
it L, iq » lqWg I d (11)
dig R, . (L ] ) 1
— =——1i, —— (L4t wg = U
dt Lq q Lq dtd ¢m G q q
where, Tg = pdmiq
Let the state variable vector x = [¥1 X2 X3]T, where
X1 = Wrer = W} X2 = lgrer — las X3 = lgrer — lg
wref
>x = [le Taref — ld
lqref
W T + i
ref — ] R qum q (12)
g R; . qu . 1
= ld +_ld_—l(1) +_U,d
Lt L T L
. R p .. .
lgref + L_ lg + L_ (Ldld ¢m)wG _uq
L a a Lq
The dynamic model (12) is written as follows:
x = F(x,u)
{ y=Cx (13)
wref TR + p(l’mlq
~ 17 1
where, F(x,u) = larer + G g — E lqwg + 1, Y
. R ) . 1
grer t L—:lq + i Laig — pm)ws + 7o Ya

Uay . .
u= [u ] is the control signal vector.
a

3. CONTROLLER DESIGN FOR WECS
3.1 ADP based controller design

In this section, we develop a controller using the ADP
method to enhance the energy conversion process for the



WECS. For optimal output control problems, the goal is to
design an optimal controller for system (13) to minimize the
infinite cost function [28].

V(x) = fw(uTRu +yTQy) dt (14)

where, Q and R are positive definite matrices.
Since the state of the system is unknown, we will use a state
observer to estimate these states. From Eq. (13) we have:

X = Ax + B(x,u)
{ y=Cx (13)
where, B(x,u) = F(x,u) — Ax; A is the Hurwit matrix, the
system (15) is completely observable.

Using the state observer, the system (15) is represented as:

X =K(y— CX) + AX + B(%,u)
-~ o (16)
y=CX
where, X is the state of the observer; y is the output of the
observer; A — K C is the Hurwitz matrix.
B(x,u) is an undefined nonlinear function. To calculate the
value of B(x, u), we use the following neural network:

B(x,u) — &(x) = W] p(W/ x) (17)

T
x= L’i T] represents the input to the NN; ¢ (.) denotes the

activation function of the NN; gy(x) signifies the
approximation error associated with the bounded NN function;
W, refers to the optimal weight matrix connecting the input
layer to the hidden layer, while W, stands for the optimal
weight matrix linking the hidden layer to the output layer.

The ideal weights of the neural network are unknown so
B(x,u) is approximated by

(18)

where, X is the estimated state vector; Wl s WZ are the
estimated weight matrices.
Then Eq. (16) is rewritten as follows:

- (19)

X=Xy —CR)+ A%+ Wl p(W'z)
y=Cx

Let ¥ = x — X be the state estimation error; ¥ =y — J be
the output estimation error, we have:

X =wWlp(Wlx) + (A - KC)X

W] p(W]'2) + £(x) (20)
y=Cx
Let W,=W,-W, , D=A—-KC , &x)=
Wl p(Wlx) — p(W]2)] + £ (x), Eq. (19) becomes:
{fc =DE+6(x) +15|72T¢(Wf@) @1
y=CXx

Then we have the Hamilton function:
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HEu V) =& u) + VIFR W (22)
where, (%, u) = uTRu + £T0%
The optimal value function is:
V(R = minf r(x,u)dt (23)
t
V*(X) satisfies the HIB equation:
minH (x,u,V;) =0 (24)
where, V§ = av;;;e)
From there we have the optimal controller:
1 AF (X, u)\"
C= oo () (25)
v 2 ou *

The value function is computed by a neural network called
a Critic neural network.

V(&) = &%) + W p(Wi%) (26)
where, W, is the ideal weight matrix for the hidden layer to
the output layer, W,, is the ideal weight matrix for the input
layer to the hidden layer of the Critic neural network.

The output of the Critic neural network is calculated as
follows:
V@) =Wl o(WhD) =Wl ¢(2) 27
where, W, is the estimated weight matrix of W,, z = W[ %.
The Hamiltonian function is approximated by the equation:

H(EuW,) =rEuw) + WIVoF (%, u) = e, (28)
=>e, =r®& u) + WIVepx = e, (29)

The Critic neural network weight update rule is calculated
as follows:

W, = —aw+1)2(<ﬂﬂ7¢ +r(®u)) (30)
Then the control law is approximated as follows:
PR (M)T VoTW (1)
2 ou ¢

3.2 Proving the stability of closed loop systems

Consider the stability of closed-loop systems using
Lyapunov candidate functions [28].

L s T Lot
L(x) = ﬂwﬂ W, +alx"x+ BV (x)) + 5% Px
1 SO 1 IO
+§tr(W1TW1) +Etr(W2TW2)

First derivative of Lyapunov function we have:



VIW, + 2ax"x + ay(—xTQ,x — 4T RQ) — Psrs

2
+xP(W]p(W]'2) + Q)
+tr {W1 sgn(2)yT LW} ( —o(Wf x))

W 6,15 (W, — W)}
+ tr{W] (W] 2)5™1
+ W oIl (W, — W)}
N X e
£= oW (s - b )
+ 2axT(Ax + Wi p(W]'x) + ¢)
+ ay(—xTQ.x — 4TRA) — ngf
+ tr {Wfsgn(@)ylesz (Ik - O'(WlTX))
+ Wl 6,171 (W, — )}
+ %P (W] p(W2) +¢)
+ tr{W] (W] 2)5™l
+ W70, 17Il(W, — W)}
U
= LWy - Wiy

h
Ql'—‘

+a [xTx
+ (Ax + Wl p(Wlx) + E)T(cﬂx
+ W]l dp(Wix) +¢)
+y(—xTQ.x — ﬁTRﬁ)]
+ [cullPllliel + (6, — %)%
+ (8, — DKZ — (6, — KD (%, — |[W])*
= (0, = D% = [W]))°
= (@] - 12 1)°] i
£ Amm[(cﬂcluyuz

2
£ < w2l ]| - Wz -
+dl3l
+a[(1+ 311A1)]x] 2
+ 3| Wi (Wl )| + 3lell”
Y Amin (Qc )||x||2 ~ VAR 1211?]

£ < W0 1840 = [WEs [ = & Aminl(©TCNNFI?
+d||yll
= a[(Amin(@2)) — 1 = 3IIAI x|
=~ VAmin RN +3Wi )y +3eii]
- 94 p
(Il -2) + %25 e
+d]1yll
= a[(Anin(Q0)) = 1= 3lIAI|1xI?
. ~ VAminRNIAI? + 3Wii i + 3ei]
£ 2 =a(YAmin(Q2) = 1 = 3IIAN) ]|

~ £ dnml©) NI -

(|wrwl|-—)2-
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This completes the proof.
The block diagram of the closed-loop control system is
shown in Figure 8.
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} Critic Network
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Figure 8. Block diagram of closed loop control system

4. SIMULATION VERIFICATION

Simulation of wind turbine systems using PMSG plays an
important role in studying and evaluating the performance of
this renewable energy technology. To set up a simulation
scenario for the WECS on MATLAB software, we first set up
a wind turbine model with the technical parameters presented
in Table 1 [27].

Table 1. WECS parameters

Parameters Value
Rated Power 5 kW
Magnet Flux Linkage 0.2867 Wb
Stator Inductance 3.55 mH
Stator Resistance 0.3676 Q
Mechanical Inertia 7.856 kg.m?
Optimal tip-speed ration 8.1
Rotor Radius of Blades 1.84 m
Air Destiny 1.25 kg/m?
Number of Pole Pairs 14

Next, we build a dynamic simulation block for the blades,
using lift and drag equations to determine the relationship
between wind speed and output power. Then, the PMSG
generator will be integrated into the model, and parameters
such as resistance and inductance will be adjusted to match the
characteristics of this generator. The system will also include
a control block to adjust the output frequency and voltage. We
will set up a time-varying wind source, ranging from minimum
to maximum wind speed, to test the turbine's performance
under different conditions. The results of the simulation
process will be recorded in Figures 9 to 17.
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Figure 9. Wind speed profile in scenario 1
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Figure 12. Wind turbine rotor speed tracking in scenario 1

In Figure 9, the green lines illustrate the variations in wind
speed over time: From 0 to 4 seconds, the wind speed is steady
at 8 m/s. Between 4 and 8 seconds, it rises to 12 m/s and
maintains that level throughout. From 8 to 12 seconds, the
wind speed drops back to 8 m/s. It then increases again to 12
m/s from 12 to 16 seconds. Finally, from 16 to 20 seconds, the
wind speed decreases once more to 8 m/s.

Figure 12 shows how the wind turbine rotor speed changes
over time relative to a reference speed. The blue line represents
the actual rotational speed of the wind turbine rotor during the
observation period. The red line represents the reference speed,
which indicates the speed the wind turbine rotor should
achieve to operate efficiently.
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Figure 13. Wind turbine rotor speed tracking error in
scenario 1
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The next simulation scenario shown in Figure 15 indicates
that a thunderstorm or a sudden change in weather may have
occurred, causing a rapid increase in wind speed. The
subsequent fluctuations indicate that the wind is unstable and
may continue to change over time. Low wind speed: From 0
to about 10 seconds, the wind speed fluctuates between 4-6
m/s, indicating very weak winds. Sudden acceleration: From
about 10 seconds, the wind speed suddenly increases to about
16 m/s, indicating a large change in wind conditions. Large
fluctuations: After the increase phase, the wind speed remains
at 16 m/s with small fluctuations, indicating a continuous
change in wind conditions.

Wind speed (m/s)

Time (s)

Figure 15. Wind speed profile in scenario 2
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In Figure 16, the blue line represents the actual rotational
speed of the wind turbine rotor, oscillating around the
reference line (shown as a red dashed line). This highlights the
control error between the actual and target speeds. Figure 17
illustrates the system's performance in tracking the reference
speed over time. The significant reduction in error after
approximately 10 seconds shows the system’s capability to
adapt and effectively maintain accuracy. The alignment
between the actual speed and the reference speed reflects the
ability to optimize the turbine’s performance amidst varying
wind conditions (Figures 18).
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Figure 18. Wind speed profile in scenario 3
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Figure 19 shows the variation of the generator speed over a
period of 60 seconds. The optimal speed (black line) shows the
ideal speed that the generator should achieve. The ADP
control method (red dashed line) shows a relatively good
variation, close to the optimal speed with a small tracking error
of approximately zero (Figures 20 and 21). The Fuzzy control
(green dotted line) has relative stability, but still shows small
fluctuations. The PID control (blue dotted line) shows high
fluctuations and instability, which indicates that
improvements are needed to improve efficiency.



5. CONCLUSIONS

In this study, we have introduced an adaptive optimal
control methodology for a WECS. The control framework
comprises two main elements: a state observer designed with
a neural network and an adaptive optimal controller based on
ADP. The parameters of both the controller and the estimator
are updated using feedback from the Critic neural network,
which operates according to an objective function aimed at
minimizing input error. A key benefit of this control strategy
is its reliance solely on output feedback, eliminating the need
for knowledge of the system's dynamic model. We have
established the stability of the control system and the
convergence of the updated parameters using Lyapunov
stability theory. Simulation results demonstrate that this
adaptive optimal control approach enhances energy output,
ensures stability, and facilitates a swift response to changing
environmental conditions, ultimately improving the
operational efficiency of contemporary wind energy systems.
Looking ahead, the proposed algorithm could be implemented
in practical application models for further testing and
evaluation.
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