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In today's energy sector, wind power has risen to prominence as a key renewable resource, 

appreciated for its eco-friendliness, sustainability, and minimal environmental footprint. 

Over recent decades, its adoption has surged, making it the fastest-growing option among 

renewable energy sources. Wind energy is captured and transformed into electricity via 

Wind Energy Conversion Systems (WECS), which predominantly rely on wind turbines. 

WECS can be divided into two main categories based on their interaction with power grids: 

grid-connected systems and stand-alone wind energy systems. Currently, most wind 

energy installations are grid-connected, facilitating efficient integration and distribution of 

the generated electricity. The control systems for WECS are intricate, necessitating 

advanced optimization methods to improve the effectiveness of wind energy conversion. 

This paper introduces an innovative approach to crafting an adaptive optimal controller 

based on Adaptive Dynamic Programming (ADP), aimed at enhancing energy conversion 

efficiency for grid-connected wind energy systems that use Permanent Magnet 

Synchronous Generators (PMSG). The proposed controller leverages reinforcement 

learning techniques along with Lyapunov stability analysis to guarantee dependable 

performance across a range of operational scenarios. To demonstrate the controller's 

effectiveness, we implemented and simulated a complete system comprising both the 

WECS and the controller in the Matlab and Simulink environments. The outcomes of these 

simulations will be evaluated to determine the controller's performance and its potential to 

boost the overall operational efficiency of wind energy systems. 
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1. INTRODUCTION

Wind energy is a very important research field nowadays, 

especially in the context of the world's efforts to switch to 

renewable energy sources to replace increasingly depleted 

conventional energy sources. WECS consist of many 

aerodynamic, mechanical and electrical components. The 

performance of this system depends on several important 

factors, including the installation location, wind speed and 

especially the type of generator. Among these factors, wind 

speed is continuously variable during operation, while other 

factors are usually precisely determined during the design and 

construction phase. 

In a wind turbine system, the operational phases are 

categorized into two primary areas: the partial load region and 

the full load region, as illustrated in Figure 1. 

The partial load region refers to the operational state where 

the wind turbine functions below its rated capacity. During this 

phase, the turbine's efficiency is hindered by insufficient wind 

or other conditions that limit power output. This region 

typically occurs under low or fluctuating wind conditions, 

necessitating adjustments to the blade pitch to enhance 

performance. Conversely, the full load region represents the 

state in which the wind turbine achieves its maximum power 

output. In this phase, the turbine is finely tuned to capture wind 

energy most effectively. This operational region is reached 

when wind speeds are consistently high and stable, enabling 

the turbine to perform at its best. 

Figure 1. Partial load region and full load region of wind 

turbine 

Modeling and control in WECS focus on exploiting the 

dynamic characteristics of wind turbines and designing 

optimal control systems to increase energy production. This 

process typically involves analyzing the dynamic 

characteristics of PMSG, as well as implementing control 

strategies to improve the stability and efficiency of the system. 
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This is essential to ensure efficient and reliable operation of 

WECS. Modeling of wind turbines can be performed through 

simulation methods, which allow analysis of their static and 

dynamic characteristics, thereby optimizing performance and 

evaluating feasibility under different conditions. Current 

research also focuses on the control architecture of these 

systems, including blade regulation and drive mechanisms [1, 

2]. In wind turbine control, various methods are applied, 

including conventional, nonlinear, and intelligent control 

methods. Proportional-Integral-Derivative (PID) control is 

one of the most common methods in the industry. PID 

regulates the rotational speed of the turbine through three 

components: proportional (P), integral (I), and derivative (D), 

to maintain a stable rotational speed and minimize errors [3, 

4]. In the study [3], a new design procedure for a decoupled PI 

controller for a wind turbine using a PMSG is presented. The 

findings demonstrate that the proposed method successfully 

recovers nominal performance levels, even in the presence of 

model uncertainties, while simultaneously enhancing 

performance during the transient phase of operation. In 

contrast, Tripathi et. al [4] emphasizes the evaluation of a wind 

turbine control system that employs Permanent Magnet 

Synchronous Generators (PMSG). This study specifically 

highlights the significance of tuning the Proportional-Integral 

(PI) controller parameters, with a focus on achieving a desired 

damping ratio. Such tuning is essential for enhancing both the 

performance and stability of the system under various real-

world operating conditions. Moreover, adaptive control 

mechanisms offer a promising solution by automatically 

adjusting controller parameters over time in response to 

changing operating conditions or fluctuations in turbine 

dynamics, as noted in references [5, 6]. Although this 

approach necessitates a precise model of the system, it has the 

potential to significantly improve performance, particularly 

under unstable conditions. In reference [5], a novel adaptive 

control strategy is introduced, aimed at enhancing the 

performance of small wind turbines equipped with PMSGs 

operating in region II. This method utilizes a reference model 

to fine-tune control parameters, thereby optimizing energy 

efficiency while ensuring that the system remains within 

operational limits. Reference [6] provides an analysis of the 

performance of a wind turbine system using adaptive dynamic 

range control. This innovative control technique is primarily 

applied to power converters, resulting in improved 

performance and responsiveness in handling grid energy 

generated from wind turbines. Overall, these studies contribute 

valuable insights into the optimization of wind turbine control 

systems, highlighting the effectiveness of adaptive strategies 

in ensuring robust and efficient energy production. This can 

lead to better operating efficiency and minimize power 

fluctuations. Optimal control uses real-time algorithms to 

optimize the blade angle and rotation speed with the goal of 

achieving maximum efficiency [7, 8]. In the study [7], the 

optimal control methods for WECS are reviewed, focusing on 

power optimization and multi-purpose criteria. It aims to 

provide an overview of different control methods aimed at 

optimizing the dynamic behavior of multi-speed wind turbines. 

In the study [8], an optimal strategy for controlling and 

operating wind turbines to provide frequency support to the 

grid was proposed. This strategy is implemented through the 

development of frequency support capabilities of permanently 

synchronous generators (PMSG) connected to the power 

system. It includes controlling the active power to participate 

in the frequency regulation of the grid. In the study [9], an 

optimal strategy for operating wind farms to maintain 

frequency regulation reserve, considering wake effects, was 

proposed. This study focuses on the trade-off between power 

output and frequency regulation reserve capacity of wind 

farms. In the study [10], an optimal strategy for operating wind 

farms to maintain frequency regulation reserve, considering 

wake effects, was proposed. This study focuses on the trade-

off between power output and frequency regulation reserve 

capacity of wind farms. Robust control of WECS is designed 

to withstand large wind variations, network disturbances, and 

parameter uncertainties [11-13]. Several studies have 

developed robust control algorithms and implemented these 

techniques using hardware such as FPGAs [14, 15]. These 

approaches aim to increase the reliability and performance of 

WECS under unstable operating conditions. Research on 

fuzzy control or neural networks and adaptive control allows 

turbines to adjust to changing wind conditions [16-21]. These 

methods are capable of handling uncertainties and 

nonlinearities in the behavior of wind turbines. Using fuzzy 

logic rules, the system can make decisions based on imprecise 

values. In the study [18] presents a Takagi-Sugeno (T-S) fuzzy 

control system for a Wind Energy Conversion System (WECS) 

utilizing a Permanent Magnet Synchronous Generator 

(PMSG), designed through the Linear Matrix Inequality (LMI) 

method. This approach optimizes system stability and 

performance under uncertain conditions, leveraging the 

flexibility of fuzzy control and logic rules to precisely meet 

design criteria. Additionally, recent research explores machine 

learning techniques to enhance wind turbine control by 

enabling models to learn from real data and improve their 

performance [22-25]. Each method has unique advantages and 

drawbacks, making it crucial to select the right approach based 

on the system’s specific needs and operating environment. 

Moreover, intelligent control methods utilizing reinforcement 

learning are being developed to optimize operational 

efficiency. Techniques such as torque control and multiple-

input-multiple-output (MIMO) systems have been enhanced 

with advanced reinforcement learning algorithms to improve 

wind energy extraction, particularly in response to fluctuating 

wind speeds, thereby boosting the efficiency of PMSG-based 

systems. This paper combines these control strategies, 

employing neural networks for system state estimation and 

designing a controller based on the Adaptive Dynamic 

Programming (ADP) technique to optimize output power and 

enhance stability amid changing wind conditions. The overall 

WECS model is illustrated in Figure 2. 

 

 
 

Figure 2. Overall model of WECS 

 

 

2. MODELING OF WECS  

 

This section will present the dynamic modeling process of 

the WECS. The modeling will be performed for each 
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subsystem, and then the models of these subsystems will be 

combined into a nonlinear model of the entire WECS. The 

WECS consists of many different physical components. These 

systems can be divided into two different groups: the electrical 

components group and the mechanical components group. In 

terms of dynamics, the WECS consists of four types of 

dynamics: the aerodynamics of the rotor, the structural 

dynamics of the blades and turbine tower, the dynamics of the 

drive, and the dynamics of the generator. The block diagram 

of the WECS modeling is shown in Figure 3. However, in 

terms of control objectives, only the dynamics of the rotor, 

drive, and generator are modeled. 

 

2.1 Aerodynamic modeling of wind turbines 

 

Figure 4 illustrates the aerodynamic model of a wind turbine. 

Its main role is to convert the energy from the wind into 

mechanical energy for the turbine. 

 

 
 

Figure 3. Block diagram of WECS modeling 

 

 
 

Figure 4. Aerodynamics of wind turbines 

 

When the wind moves through the turbine's sweep area, it 

produces forces that impact the turbine. These forces include 

the thrust force acting on the shaft and blades, along with the 

torque that drives the rotor's rotation. The thrust force 𝐹𝑇, the 

torque 𝑇𝑅, and the mechanical power 𝑃𝑅 generated are defined 

as follows [26, 27]: 

 

𝐹𝑇 =
1

2
𝜌𝜋𝑅3𝑉2𝐶𝑇(𝜆, 𝛽) (1) 

 

𝑇𝑅 =
1

2
𝜌𝜋𝑅3𝑉2𝐶𝑄(𝜆, 𝛽) (2) 

 

𝑃𝑅 =
1

2
𝜌𝜋𝑅2𝑉3𝐶𝑃(𝜆, 𝛽) (3) 

 

where, 𝜌 represents the air density, 𝑅 denotes the swept radius, 

𝑉  indicates the wind speed, 𝐶𝑄(𝜆, 𝛽)  refers to the torque 

coefficient, and 𝐶𝑃(𝜆, 𝛽)  signifies the power conversion 

coefficient. Both the torque and mechanical power are 

influenced by the tip-speed ratio (TSR) 𝜆 and the pitch angle 

𝛽. The TSR 𝜆 is defined as the ratio of the velocity of the blade 

tips to the wind speed: 

 

𝜆 =
𝜔𝑅𝑅

𝑉
 (4) 

 

where, 𝜔𝑅  represents the rotor's angular velocity. The 

connection between the torque coefficient and the power 

coefficient is defined as follows: 

 

𝐶𝑃(𝜆, 𝛽) = 𝜆𝐶𝑄(𝜆, 𝛽) (5) 

 

2.2 Dynamic modeling of the drive system 

 

The primary role of the drive is to convey mechanical 

energy from the rotor to the generator. Figure 5 shows a block 

diagram of the drive. In this system, the input signals consist 

of the torques from both the turbine and the generator, while 

the output signals represent the angular velocities of these 

components. 

 

 
 

Figure 5. Block diagram of the drive 

 

Depending on the control purpose, the drive can be modeled 

as a rigid or elastic model. For small-capacity wind power 

systems, to simplify the modeling process, a rigid model is 

often used to describe the drive dynamics. This rigid model is 

illustrated in Figure 6. 
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Figure 6. Rigid model of the actuator 

 

The rigid model of the drive consists of two rigid shafts 

connected to each other through a velocity multiplier. These 

rigid shafts include the shaft connected to the rotor receiving 

the turbine torque 𝑇𝑅, with a low velocity 𝜔𝑅, and the shaft 

connected to the generator receiving the generator torque 𝑇𝐺 , 

with a high velocity 𝜔𝐺 . The rotor and the generator are 

considered as rigid bodies with moments of inertia 𝐽𝑅 and 𝐽𝐺 

respectively. The velocity multiplier consists of two gears with 

inertias 𝐽𝐿  and 𝐽𝐻  respectively, with a velocity conversion 

efficiency 𝜂 and a velocity receiving ratio 𝑖. The dynamics of 

this model can be described by a first-order differential 

equation converted to the generator side as follows [26]: 

 

𝜔̇𝐺 =
𝜂

𝑖𝐽ℎ
𝑇𝑅 −

1

𝐽ℎ
𝑇𝐺  (6) 

 

where, 𝐽ℎ is the equivalent torque converted to the generator 

side and is calculated as follows: 

 

𝐽ℎ = (𝐽𝐿 + 𝐽𝑅)
𝜂

𝑖2
𝑇𝑅 + 𝐽𝐻 + 𝐽𝐺 (7) 

 

If converted to the turbine side, the kinematic equation of 

the drive can be written as follows: 

 

𝜔̇𝑅 =
1

𝐽𝑙
𝑇𝑅 −

𝑖

𝜂𝐽𝑙
𝑇𝐺  (8) 

 

where, 𝐽𝑙  is the equivalent moment converted to the turbine 

side and is calculated as follows: 

 

𝐽𝑙 = (𝐽𝐻 + 𝐽𝐺)
𝑖2

𝜂
+ 𝐽𝐿 + 𝐽𝑅 (9) 

 

2.3 Modeling of PMSG 

 

The control structure for WECS is divided into many 

control loops to ensure stable and continuous power supply to 

loads and grid connection. In this section, we only focus on 

designing a controller to optimize the energy conversion 

process for wind turbines, so we only model the dynamics of 

the wind turbine, drive and generator as shown in Figure 7. 

 

 
 

Figure 7. WECS model 

 

The type of generator commonly used in WECS is the 

PMSG. The mathematical model of the PMSG generator in the 

𝑑, 𝑞 coordinate system is given as follows [3, 26, 27]: 

 

{
 
 

 
 𝑑𝑖𝑑

𝑑𝑡
= −

𝑅𝑠
𝐿𝑑
𝑖𝑑 +

𝑝𝐿𝑞

𝐿𝑑
𝑖𝑞𝜔𝐺 −

1

𝐿𝑑
𝑢𝑑

𝑑𝑖𝑞

𝑑𝑡
= −

𝑅𝑠
𝐿𝑞
𝑖𝑞 −

𝑝

𝐿𝑞
(𝐿𝑑𝑖𝑑 − 𝜙𝑚)𝜔𝐺 −

1

𝐿𝑞
𝑢𝑞

 (10) 

 

where, 𝑖𝑑, 𝑖𝑞  are the stator current 𝑑, 𝑞; 𝑢𝑑, 𝑢𝑞 are the stator 

input voltage 𝑑, 𝑞; 𝐿𝑑, 𝐿𝑞 are the stator inductance 𝑑, 𝑞; 𝑅𝑠 is 

the stator resistance; 𝑝 is the number of pole pairs; 𝜙𝑚 is the 

magnetic flux; 𝜔𝐺  is the generator speed. 

 

2.4 Dynamic model of WECS 

 

By integrating the dynamics of the wind turbine, drive, and 

generator discussed earlier, we derive the dynamic model of 

the WECS utilizing a PMSG as follows [3]: 

 

{
  
 

  
 𝜔̇𝐺 =

𝜂

𝑖𝐽ℎ
𝑇𝑅 −

1

𝐽ℎ
𝑝𝜙𝑚𝑖𝑞

𝑑𝑖𝑑
𝑑𝑡

= −
𝑅𝑠
𝐿𝑑
𝑖𝑑 +

𝑝𝐿𝑞

𝐿𝑑
𝑖𝑞𝜔𝐺 −

1

𝐿𝑑
𝑢𝑑

𝑑𝑖𝑞

𝑑𝑡
= −

𝑅𝑠
𝐿𝑞
𝑖𝑞 −

𝑝

𝐿𝑞
(𝐿𝑑𝑖𝑑 − 𝜙𝑚)𝜔𝐺 −

1

𝐿𝑞
𝑢𝑞

 (11) 

 

where, 𝑇𝐺 = 𝑝𝜙𝑚𝑖𝑞 

Let the state variable vector 𝑥 = [𝑥1 𝑥2 𝑥3]𝑇 , where 

𝑥1 = 𝜔𝑟𝑒𝑓 − 𝜔𝐺; 𝑥2 = 𝑖𝑑𝑟𝑒𝑓 − 𝑖𝑑; 𝑥3 = 𝑖𝑞𝑟𝑒𝑓 − 𝑖𝑞. 

 

⇒ 𝑥̇ = [

𝑥̇1
𝑥̇2
𝑥̇3

] = [

𝜔̇𝑟𝑒𝑓 − 𝜔̇𝐺
𝑖̃𝑑𝑟𝑒𝑓 − 𝑖̃𝑑
𝑖̃𝑞𝑟𝑒𝑓 − 𝑖̃𝑞

] 

=

[
 
 
 
 
 
 𝜔̇𝑟𝑒𝑓 −

𝜂

𝑖𝐽ℎ
𝑇𝑅 +

1

𝐽ℎ
𝑝𝜙𝑚𝑖𝑞

𝑖̃𝑑𝑟𝑒𝑓 +
𝑅𝑠
𝐿𝑑
𝑖𝑑 −

𝑝𝐿𝑞

𝐿𝑑
𝑖𝑞𝜔𝐺 +

1

𝐿𝑑
𝑢𝑑

𝑖̃𝑞𝑟𝑒𝑓 +
𝑅𝑠
𝐿𝑞
𝑖𝑞 +

𝑝

𝐿𝑞
(𝐿𝑑𝑖𝑑 − 𝜙𝑚)𝜔𝐺 +

1

𝐿𝑞
𝑢𝑞
]
 
 
 
 
 
 

 

(12) 

 

The dynamic model (12) is written as follows: 

 

{
𝑥̇ = ℱ(𝑥, 𝑢)
𝑦 = 𝒞𝑥

 (13) 

 

where, 𝐹(𝑥, 𝑢) =

[
 
 
 
 𝜔̇𝑟𝑒𝑓 −

𝜂

𝑖𝐽ℎ
𝑇𝑅 +

1

𝐽ℎ
𝑝𝜙𝑚𝑖𝑞

𝑖̃𝑑𝑟𝑒𝑓 +
𝑅𝑠

𝐿𝑑
𝑖𝑑 −

𝑝𝐿𝑞

𝐿𝑑
𝑖𝑞𝜔𝐺 +

1

𝐿𝑑
𝑢𝑑

𝑖̃𝑞𝑟𝑒𝑓 +
𝑅𝑠

𝐿𝑞
𝑖𝑞 +

𝑝

𝐿𝑞
(𝐿𝑑𝑖𝑑 − 𝜙𝑚)𝜔𝐺 +

1

𝐿𝑞
𝑢𝑞]
 
 
 
 

; 

𝑢 = [
𝑢𝑑
𝑢𝑞
] is the control signal vector. 

 

 

3. CONTROLLER DESIGN FOR WECS 

 

3.1 ADP based controller design 

 

In this section, we develop a controller using the ADP 

method to enhance the energy conversion process for the 
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WECS. For optimal output control problems, the goal is to 

design an optimal controller for system (13) to minimize the 

infinite cost function [28]. 

 

𝒱(𝑥) = ∫ (𝑢𝑇ℛ𝑢 + 𝑦𝑇𝒬𝑦)
∞

𝑡

𝑑𝑡 (14) 

 

where, 𝒬 and ℛ are positive definite matrices. 

Since the state of the system is unknown, we will use a state 

observer to estimate these states. From Eq. (13) we have: 

 

{
𝑥̇ = 𝒜𝑥 + ℬ(𝑥, 𝑢)

𝑦 = 𝒞𝑥
 (15) 

 

where, ℬ(𝑥, 𝑢) = ℱ(𝑥, 𝑢) − 𝒜𝑥; 𝒜 is the Hurwit matrix, the 

system (15) is completely observable. 

Using the state observer, the system (15) is represented as: 

 

{
𝑥̇̂ = 𝒦(𝑦 − 𝒞𝑥̂) +𝒜𝑥̂ + ℬ(𝑥̂, 𝑢)

𝑦̂ = 𝒞𝑥̂
 (16) 

where, 𝑥̂  is the state of the observer; 𝑦̂ is the output of the 

observer; 𝒜 −  𝒦 𝒞 is the Hurwitz matrix. 

ℬ(𝑥, 𝑢) is an undefined nonlinear function. To calculate the 

value of ℬ(𝑥, 𝑢), we use the following neural network: 

 

ℬ(𝑥, 𝑢) − 𝜀0(𝑥) = 𝒲2
𝑇𝜙(𝒲1

𝑇𝑥) (17) 

 

𝑥 = [𝑥
𝑇

𝑢𝑇
] represents the input to the NN; 𝜙(. ) denotes the 

activation function of the NN; 𝜀0(𝑥)  signifies the 

approximation error associated with the bounded NN function; 

𝒲1 refers to the optimal weight matrix connecting the input 

layer to the hidden layer, while 𝒲2  stands for the optimal 

weight matrix linking the hidden layer to the output layer. 

The ideal weights of the neural network are unknown so 

ℬ(𝑥, 𝑢) is approximated by 

 

ℬ̂(𝑥̂, 𝑢) = 𝒲̂2
𝑇𝜙(𝒲̂1

𝑇𝑥̂) (18) 

𝑥̂ = [𝑥̂
𝑇

𝑢𝑇
] 

 

where, 𝑥̂  is the estimated state vector; 𝒲̂1 , 𝒲̂2  are the 

estimated weight matrices. 

Then Eq. (16) is rewritten as follows: 

 

{
𝑥̇̂ = 𝒦(𝑦 − 𝒞𝑥̂) +𝒜𝑥̂ + 𝒲̂2

𝑇𝜙(𝒲̂1
𝑇𝑥̂)

𝑦̂ = 𝒞𝑥̂
 (19) 

 

Let 𝑥̃ = 𝑥 − 𝑥̂ be the state estimation error; 𝑦̃ = 𝑦 − 𝑦̂ be 

the output estimation error, we have: 

 

{

𝑥̇̃ = 𝒲2
𝑇𝜙(𝒲1

𝑇𝑥) + (𝒜 − 𝐾𝐶)𝑥̃

−𝒲̂2
𝑇𝜙(𝒲̂1

𝑇𝑥̂) + 𝜀0(𝑥)

𝑦̃ = 𝐶𝑥̃

 (20) 

 

Let 𝒲̃2 = 𝒲2 − 𝒲̂2 , 𝒟 = 𝒜 −  𝒦 𝒞 , 𝛿(𝑥) =

𝒲2
𝑇[𝜙(𝒲1

𝑇𝑥) − 𝜙(𝒲̂1
𝑇𝑥̂)] + 𝜀0(𝑥), Eq. (19) becomes: 

 

{
𝑥̇̃ = 𝒟𝑥̃ + 𝛿(𝑥) + 𝒲̃2

𝑇𝜙(𝒲̂1
𝑇𝑥̂)

𝑦̃ = 𝒞𝑥̃
 (21) 

 

Then we have the Hamilton function: 

ℋ(𝑥̂, 𝑢, 𝒱𝑥) = 𝑟(𝑥̂, 𝑢) + 𝒱𝑥
𝑇ℱ(𝑥̂, 𝑢) (22) 

 

where, 𝑟(𝑥̂, 𝑢) = 𝑢𝑇ℛ𝑢 + 𝑥̂𝑇𝒬𝑥̂ 

The optimal value function is: 

 

𝒱∗(𝑥̂) = 𝑚𝑖𝑛∫ 𝑟(𝑥̂, 𝑢)
∞

𝑡

𝑑𝑡 (23) 

 

𝒱∗(𝑥̂) satisfies the HJB equation: 

 

𝑚𝑖𝑛ℋ(𝑥̂, 𝑢, 𝒱𝑥
∗) = 0 (24) 

 

where, 𝒱𝑥
∗ =

𝜕𝒱∗(𝑥)

𝜕𝑥
 

From there we have the optimal controller: 

 

𝑢∗ = −
1

2
ℛ−1 (

𝜕ℱ(𝑥 ̂, 𝑢)

𝜕𝑢
)

𝑇

𝒱𝑥
∗ (25) 

 

The value function is computed by a neural network called 

a Critic neural network. 

 

𝒱∗(𝑥̂) =  𝜀𝑐(𝑥̂) +𝒲𝑐
𝑇𝜙(𝒲𝑐1

𝑇 𝑥̂) (26) 

 

where, 𝒲𝑐 is the ideal weight matrix for the hidden layer to 

the output layer, 𝒲𝑐1 is the ideal weight matrix for the input 

layer to the hidden layer of the Critic neural network. 

The output of the Critic neural network is calculated as 

follows: 

 

𝒱̂(𝑥̂) = 𝒲̂𝑐
𝑇𝜙(𝒲𝑐1

𝑇 𝑥̂) = 𝒲̂𝑐
𝑇𝜙(𝑧) (27) 

 

where, 𝒲̂𝑐 is the estimated weight matrix of 𝒲𝑐, 𝑧 = 𝒲𝑐1
𝑇 𝑥̂. 

The Hamiltonian function is approximated by the equation: 

 

ℋ(𝑥̂, 𝑢, 𝒲̂𝑐) = 𝑟(𝑥̂, 𝑢) + 𝒲̂𝑐
𝑇∇𝜙ℱ(𝑥̂, 𝑢) = 𝑒𝑐 (28) 

 

⇒ 𝑒𝑐 = 𝑟(𝑥̂, 𝑢) + 𝒲̂𝑐
𝑇∇𝜙𝑥̇̂ = 𝑒𝑐 (29) 

 

The Critic neural network weight update rule is calculated 

as follows: 

 

𝒲̇̂𝑐 = −𝛼
𝜑

(𝜑𝑇𝜑 + 1)2
(𝜑𝑇𝒲̂𝑐 + 𝑟(𝑥̂, 𝑢)) (30) 

 

Then the control law is approximated as follows: 

 

𝑢̂ = −
1

2
ℛ−1 (

𝜕ℱ̂(𝑥 ̂, 𝑢)

𝜕𝑢
)

𝑇

∇𝜙𝑇𝒲̂𝑐 (31) 

 

3.2 Proving the stability of closed loop systems 

 

Consider the stability of closed-loop systems using 

Lyapunov candidate functions [28]. 

 

ℒ(𝑥) =
1

2𝛼
𝒲̃𝑐

𝑇𝒲̃𝑐 + 𝛼(𝑥
𝑇𝑥 + 𝛽𝒱(𝑥)) +

1

2
𝑥̃𝑇𝒫𝑥̃

+
1

2
𝑡𝑟(𝒲̃1

𝑇𝒲̃1) +
1

2
𝑡𝑟(𝒲̃2

𝑇𝒲̃2) 

 

First derivative of Lyapunov function we have: 
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ℒ̇ =
1

𝛼
𝒲̃𝑐

𝑇𝒲̇̃𝑐 + 2𝛼𝑥
𝑇𝑥̇ + 𝛼𝛾(−𝑥𝑇𝒬𝑐𝑥 − 𝑢̂

𝑇ℛ𝑢̂) −
𝜌

2
𝑥̃𝑇𝑥̃

+ 𝑥̃𝒫(𝒲̃2
𝑇𝜙(𝒲̂1

𝑇𝑥̂) + 𝜁)

+ 𝑡𝑟 {𝒲̃1
𝑇𝑠𝑔𝑛(𝑥̂)𝑦̃𝑇𝑙2𝒲̂2

𝑇 (𝐼𝑘 − 𝜎(𝒲̂1
𝑇𝑥̂))

+ 𝒲̃1
𝑇𝜃2‖𝑦̃‖(𝒲1 − 𝒲̃1)}

+ 𝑡𝑟{𝒲̃2
𝑇𝜙(𝒲̂1

𝑇𝑥̂)𝑦̃𝑇𝑙1
+ 𝒲̃2

𝑇𝜃1‖𝑦̃‖(𝒲1 − 𝒲̃1)} 

ℒ̇ =
1

𝛼
𝒲̃𝑐

𝑇 ( 𝛼𝜓1
𝜗

𝜓2
−  𝛼𝜓1𝜓1

𝑇𝒲̃𝑐)

+ 2𝛼𝑥𝑇(𝒜𝑥 +𝒲2
𝑇𝜙(𝒲1

𝑇𝑥) + 𝜀)

+ 𝛼𝛾(−𝑥𝑇𝒬𝑐𝑥 − 𝑢̂
𝑇ℛ𝑢̂) −

𝜌

2
𝑥̃𝑇𝑥̃

+ 𝑡𝑟 {𝒲̃1
𝑇𝑠𝑔𝑛(𝑥̂)𝑦̃𝑇𝑙2𝒲̂2

𝑇 (𝐼𝑘 − 𝜎(𝒲̂1
𝑇𝑥̂))

+ 𝒲̃1
𝑇𝜃2‖𝑦̃‖(𝒲1 − 𝒲̃1)}

+ 𝑥̃𝒫(𝒲̃2
𝑇𝜙(𝒲̂1

𝑇𝑥̂) + 𝜁)

+ 𝑡𝑟{𝒲̃2
𝑇𝜙(𝒲̂1

𝑇𝑥̂)𝑦̃𝑇𝑙1
+ 𝒲̃2

𝑇𝜃1‖𝑦̃‖(𝒲1 −𝒲1)} 

⇒ ℒ̇ ≤ 𝒲̃𝑐
𝑇𝜓1

𝜗

𝜓2
− ‖𝒲̃𝑐

𝑇𝜓1‖
2

+ 𝛼 [𝑥𝑇𝑥

+ (𝒜𝑥 +𝒲2
𝑇𝜙(𝒲1

𝑇𝑥) + 𝜀)
𝑇
(𝒜𝑥

+𝒲2
𝑇𝜙(𝒲1

𝑇𝑥) + 𝜀)

+ 𝛾(−𝑥𝑇𝒬𝑐𝑥 − 𝑢̂
𝑇ℛ𝑢̂)]

+ [𝜁𝑀‖𝒫‖‖𝒞‖ + (𝜃1 −𝒦1
2)𝒦2

2

+ (𝜃2 − 1)𝐾3
2 − (𝜃1 −𝒦1

2)(𝒦2 − ‖𝒲̃1‖)
2

− (𝜃2 − 1)(𝒦3 − ‖𝒲̃2‖)
2

− (𝒦1‖𝒲̃1‖ − ‖𝒲̃2‖)
2
] ‖𝑦̃‖

−
𝜌

2
𝜆𝑚𝑖𝑛[(𝒞)

𝑇𝒞]‖𝑦̃‖2 

ℒ̇ ≤ ‖𝒲̃𝑐
𝑇𝜓1‖ ‖

𝜗

𝜓2
‖ − ‖𝒲̃𝑐

𝑇𝜓1‖
2
−
𝜌

2
𝜆𝑚𝑖𝑛[(𝒞)

𝑇𝒞]‖𝑦̃‖2

+ 𝑑‖𝑦̃‖

+ 𝛼 [(1 + 3‖𝒜‖2)‖𝑥‖2

+ 3‖𝒲2
𝑇𝜙(𝒲1

𝑇𝑥)‖
2
+ 3‖𝜀‖2

− 𝛾𝜆𝑚𝑖𝑛(𝒬𝑐)‖𝑥‖
2 − 𝛾𝜆𝑚𝑖𝑛(ℛ)‖𝑢̂‖

2] 

ℒ̇ ≤ ‖𝒲̃𝑐
𝑇𝜓1‖𝜗𝑀 − ‖𝒲̃𝑐

𝑇𝜓1‖
2
−
𝜌

2
𝜆𝑚𝑖𝑛[(𝒞)

𝑇𝒞]‖𝑦̃‖2

+ 𝑑‖𝑦̃‖

− 𝛼[(𝜆𝑚𝑖𝑛(𝒬𝑐)) − 1 − 3‖𝒜‖
2‖𝑥‖2

− 𝛾𝜆𝑚𝑖𝑛(ℛ)‖𝑢̂‖
2 + 3𝒲̅𝑀

2𝜙𝑀
2 + 3𝜀𝑀

2 ] 

ℒ̇ ≤ −(‖𝒲̃𝑐
𝑇𝜓1‖ −

𝜗𝑀
2
)
2

+
𝜗𝑀
2

4
−
𝜌

2
𝜆𝑚𝑖𝑛[(𝒞)

𝑇𝒞]‖𝑦̃‖2

+ 𝑑‖𝑦̃‖

− 𝛼[(𝜆𝑚𝑖𝑛(𝒬𝑐)) − 1 − 3‖𝒜‖
2‖𝑥‖2

− 𝛾𝜆𝑚𝑖𝑛(ℛ)‖𝑢̂‖
2 + 3𝒲̅𝑀

2𝜙𝑀
2 + 3𝜀𝑀

2 ] 

ℒ̇ ≤ −𝛼(𝛾𝜆𝑚𝑖𝑛(𝒬𝑐) − 1 − 3‖𝒜‖
2)‖𝑥‖2

−
𝜌

2
𝜆𝑚𝑖𝑛[(𝒞)

𝑇𝒞]‖𝑦̃‖2 −𝒟𝑚

− (‖𝒲̃𝑐
𝑇𝜓1‖ −

𝜗𝑀
2
)
2

− 𝛼𝛾𝜆𝑚𝑖𝑛(ℛ)‖𝑢̂‖
2

≤ 0 

 

This completes the proof. 

The block diagram of the closed-loop control system is 

shown in Figure 8. 

 
 

Figure 8. Block diagram of closed loop control system 

 

 

4. SIMULATION VERIFICATION 

 

Simulation of wind turbine systems using PMSG plays an 

important role in studying and evaluating the performance of 

this renewable energy technology. To set up a simulation 

scenario for the WECS on MATLAB software, we first set up 

a wind turbine model with the technical parameters presented 

in Table 1 [27].  

 

Table 1. WECS parameters 

 
Parameters Value 

Rated Power 5 kW 

Magnet Flux Linkage 0.2867 Wb 

Stator Inductance 3.55 mH 

Stator Resistance 0.3676 Ω 

Mechanical Inertia 7.856 kg.m2 

Optimal tip-speed ration 8.1 

Rotor Radius of Blades 1.84 m 

Air Destiny 1.25 kg/m3 

Number of Pole Pairs 14 

 

Next, we build a dynamic simulation block for the blades, 

using lift and drag equations to determine the relationship 

between wind speed and output power. Then, the PMSG 

generator will be integrated into the model, and parameters 

such as resistance and inductance will be adjusted to match the 

characteristics of this generator. The system will also include 

a control block to adjust the output frequency and voltage. We 

will set up a time-varying wind source, ranging from minimum 

to maximum wind speed, to test the turbine's performance 

under different conditions. The results of the simulation 

process will be recorded in Figures 9 to 17. 

 

 
 

Figure 9. Wind speed profile in scenario 1 
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Figure 10. Tip speed ratio (TSR) of wind turbine 

 

 
 

Figure 11. Power coefficient of PMSG 

 

 
 

Figure 12. Wind turbine rotor speed tracking in scenario 1 

 

In Figure 9, the green lines illustrate the variations in wind 

speed over time: From 0 to 4 seconds, the wind speed is steady 

at 8 m/s. Between 4 and 8 seconds, it rises to 12 m/s and 

maintains that level throughout. From 8 to 12 seconds, the 

wind speed drops back to 8 m/s. It then increases again to 12 

m/s from 12 to 16 seconds. Finally, from 16 to 20 seconds, the 

wind speed decreases once more to 8 m/s. 

Figure 12 shows how the wind turbine rotor speed changes 

over time relative to a reference speed. The blue line represents 

the actual rotational speed of the wind turbine rotor during the 

observation period. The red line represents the reference speed, 

which indicates the speed the wind turbine rotor should 

achieve to operate efficiently. 

 
 

Figure 13. Wind turbine rotor speed tracking error in 

scenario 1 

 

 
 

Figure 14. Wind turbine pitch angle 

 

The next simulation scenario shown in Figure 15 indicates 

that a thunderstorm or a sudden change in weather may have 

occurred, causing a rapid increase in wind speed. The 

subsequent fluctuations indicate that the wind is unstable and 

may continue to change over time. Low wind speed: From 0 

to about 10 seconds, the wind speed fluctuates between 4-6 

m/s, indicating very weak winds. Sudden acceleration: From 

about 10 seconds, the wind speed suddenly increases to about 

16 m/s, indicating a large change in wind conditions. Large 

fluctuations: After the increase phase, the wind speed remains 

at 16 m/s with small fluctuations, indicating a continuous 

change in wind conditions. 

 

 
 

Figure 15. Wind speed profile in scenario 2 
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Figure 16. Wind turbine rotor speed tracking in scenario 2 

 

 
 

Figure 17. Wind turbine rotor speed tracking error in 

scenario 2 

 

In Figure 16, the blue line represents the actual rotational 

speed of the wind turbine rotor, oscillating around the 

reference line (shown as a red dashed line). This highlights the 

control error between the actual and target speeds. Figure 17 

illustrates the system's performance in tracking the reference 

speed over time. The significant reduction in error after 

approximately 10 seconds shows the system’s capability to 

adapt and effectively maintain accuracy. The alignment 

between the actual speed and the reference speed reflects the 

ability to optimize the turbine’s performance amidst varying 

wind conditions (Figures 18). 

 

 
Figure 18. Wind speed profile in scenario 3 

 
Figure 19. System response to controllers 

 

 
 

Figure 20. Tracking error of the system with the controllers 

 

 
 

Figure 21. Average error of the controllers 

 

Figure 19 shows the variation of the generator speed over a 

period of 60 seconds. The optimal speed (black line) shows the 

ideal speed that the generator should achieve. The ADP 

control method (red dashed line) shows a relatively good 

variation, close to the optimal speed with a small tracking error 

of approximately zero (Figures 20 and 21). The Fuzzy control 

(green dotted line) has relative stability, but still shows small 

fluctuations. The PID control (blue dotted line) shows high 

fluctuations and instability, which indicates that 

improvements are needed to improve efficiency. 
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5. CONCLUSIONS 

 

In this study, we have introduced an adaptive optimal 

control methodology for a WECS. The control framework 

comprises two main elements: a state observer designed with 

a neural network and an adaptive optimal controller based on 

ADP. The parameters of both the controller and the estimator 

are updated using feedback from the Critic neural network, 

which operates according to an objective function aimed at 

minimizing input error. A key benefit of this control strategy 

is its reliance solely on output feedback, eliminating the need 

for knowledge of the system's dynamic model. We have 

established the stability of the control system and the 

convergence of the updated parameters using Lyapunov 

stability theory. Simulation results demonstrate that this 

adaptive optimal control approach enhances energy output, 

ensures stability, and facilitates a swift response to changing 

environmental conditions, ultimately improving the 

operational efficiency of contemporary wind energy systems. 

Looking ahead, the proposed algorithm could be implemented 

in practical application models for further testing and 

evaluation. 
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