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Due to battery-operated sensor nodes, wireless sensor networks (WSNs) struggle with 

energy efficiency. Energy-efficient data transmission and sink routing in WSNs are 

challenging due to resource constraints. Clustering, on the other hand, may greatly 

extend network life. Therefore, WSN needs an energy-efficient routing system with 

optimal route selection. The NP-Hard characteristic of clustering is addressed by this 

research's cluster-based routing approach employing Improved Particle Swarm 

Optimisation to increase network lifetime and energy conservation. The proposed IPSO 

algorithm optimizes the cluster formation process by considering node residual energy, 

distance to the base station, and inter-cluster communication efficiency. Additionally, an 

adaptive routing mechanism is integrated to ensure energy-aware data transmission, 

minimizing energy dissipation across the network. The performance of the proposed 

IPSO method is evaluated against conventional PSO, LEACH, and other metaheuristic-

based approaches in terms of certain parameters and found that IPSO achieves 97.8% of 

network lifetime, 95.3% of total residual energy, 5.8Mbps of throughput, 99.5% of PDR 

and 11.4% of energy consumption. 
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1. INTRODUCTION

Recently, wireless communications have gained 

prominence due to their strong and versatile capabilities for 

information transmission. Wireless communications denote 

the relationship between mobility and connection, utilising 

the atmosphere as a transmission channel [1]. WSN are the 

predominant technology among current wireless systems. 

The operation of wireless sensor networks requires effective 

computational and energetical operations. In these 

circumstances, communication protocols serve as systematic 

frameworks that ensure the efficacy of these activities. A 

WSN comprises a collection of electromechanical devices 

spread throughout a specified geographical area. These 

components can furnish significant insights regarding the 

region of their distribution. This data is exchanged between 

network sensors via a transmission channel [2]. Battery 

management affects wireless sensor performance. Since it 

influences energy autonomy, this is crucial. Information 

processing is improved by BSs' centralisation. WSNs term 

the BS the sink or fusion centre for its aggregation. 

Popular routing techniques with intriguing features like 

scalability and efficiency in communications are cluster-

based or hierarchical routing. WSN energy conservation 

methods include hierarchical routing ideas. Hierarchical 

processing and transmission are only possible with high-

energy nodes [3]. In contrast, low-energy nodes collect data 

near the aim. Hierarchical routing reduces cluster energy 

utilisation by aggregating information. Hierarchical routing 

consolidates processes to reduce sink transmission packet 

size [4]. Nodes may extend network lifespan and 

architectural scalability when given tasks. Specialised nodes 

serve as cluster-based or hierarchical reference points. 

Scalability matters in WSNs. Early assumptions prevent 

many routing algorithms from solving this challenge. 

Cluster-based protocols span the area with one sink and 

several cluster heads in a typical WSN design [5]. This 

design limits WSN scalability, resulting in expensive energy 

use. Increasing the network's nodes or impact breadth causes 

energy overload and information transmission bottlenecks. 

Node energy conservation is essential for a good protocol. 

The goal is to increase battery charging frequency [6]. 

Recharging is difficult or impossible, thus this is crucial. This 

system distributes power consumption across nodes utilising 

internal software processes [7]. Each node performs two 

tasks in hierarchical routing. These operating modes save 

energy. When this architecture is used at all levels, cluster 

head and general sensor transmission modes may be 

significant [8]. Conversely, optimisation tactics like 

metaheuristic procedures pertain to techniques capable of 

addressing complicated systems. These algorithms are based 

on biological or social events, which might be considered 

search strategies. The literature presents numerous 

metaheuristic techniques due to its wide application 

possibilities [9]. DE, Genetic Algorithms, Artificial Bee 

Colony (ABC), Gravitational Search Algorithm (GSA), and 

Grey Wolf Optimiser are metaheuristic systems. No 

continuity, differentiability, convexity, or beginning 
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conditions are assumed for metaheuristics [10]. These 

qualities show the main advantages over other optimising 

methods. Although promising, these methods still create 

hurdles when used to high multimodal formulations. 

Consequently, the contributions of this study are as follows: 

To develop a hybrid clustering model that leverages PSO 

to optimize the selection of medoids in K-Medoids, reducing 

sensitivity to initial medoid selection [11]. Especially, under 

adaptive K-Medoids-PSO model the number of clusters (K) 

is dynamically determined instead of being predefined. 

To adopt priority-based TDMA scheduler that assigns slots 

based on QoS parameters such as delay, reliability, and 

packet size [12]. 

The subsequent portions of the paper are organised as 

follows. The related work is detailed in Section 2. Section 3 

delineates our clustering algorithm. Section 4 presents the 

numerical simulations of this methodology in comparison to 

other established methods. The findings are addressed in 

Section 5. 

 

 

2. RELATED WORKS  

 

The implementation of a new and effective dual CH 

routing technique in the study [13] extends the lifespan of 

WSNs. The CH selection model uses a modified attack 

power-based hybridisation of sailfish and whale optimisation 

(MAP-HSWO) to choose the best paths. In the study [14], 

Sail Fish (SFO) and Spotted Hyena Optimisation use 

advanced meta-heuristic techniques. This integrated strategy 

uses SFO's fast exploration for clustering and CH selection. 

A modified cheetah optimisation algorithm is used to create 

an energy-aware cluster strategy (MCOA-EACA) for WSN 

in the study [3]. The MCOAEACA method clusters WSN 

nodes and chooses a CH to extend network lifespan. 

Following cheetah hunting, the MCOA-EACA technique 

solves WSN challenges with agility and efficiency. 

Choudhary and Barwar [15] proposed two-phase. First, WSN 

clustering using reinforcement learning (RL) enables nodes 

to automatically adjust their clustering methods, making 

network designs more flexible and efficient. PSO may also 

be used to choose WSN cluster heads to improve cluster 

formation. References [16, 17] develop a Metaheuristics 

Cluster-based Routing Technique for Energy-Efficient 

WSNs. It uses IABO routing. To find the best WSN routes, 

the IABO approach uses residual energy and distance factor 

to create a fitness function. In studies [18-20], CH 

optimisation is a non-deterministic polynomial (NP) hard 

problem. The selection of the appropriate routing path 

enhances both the network's longevity and its energy 

efficiency. This study presents a strategy that integrates 

multi-swarm optimisation (MSO), also known as multi-PSO, 

with Tabu search (TS) methodologies. The proposed system 

selects efficient cluster heads, hence enhancing routing 

optimisation and prolonging network lifespan. 

Despite significant advancements, several limitations 

persist in existing WSN clustering and routing techniques. 

Dual CH routing mechanisms increase computational 

complexity and may lead to excessive energy consumption if 

not optimized. Hybrid metaheuristic approaches, such as the 

combination of Sailfish and Spotted Hyena Optimization, 

often suffer from local optima stagnation and require 

extensive parameter tuning. Energy-aware clustering 

methods inspired by animal behaviors may not adapt well to 

varying node densities and often lack real-time energy 

balancing mechanisms. Reinforcement learning-based 

clustering introduces high computational overhead and 

requires large training datasets, while PSO-based CH 

selection is prone to premature convergence. Hence, K-

Medoids Improved Particle Swarm Optimization (K-Medoids 

IPSO) algorithm can be employed. Unlike dual CH-based 

mechanisms that introduce redundancy and excessive energy 

consumption, K-Medoids ensures optimal CH selection by 

minimizing intra-cluster distances and balancing energy 

distribution among nodes. IPSO further refines CH selection 

by dynamically adjusting PSO parameters to prevent 

premature convergence. 

 

 

3. PROPOSED MODEL 

 

The developed clustering approach uses two evolutionary 

algorithms. CH and cluster member nodes are selected using 

PSO. Euclidean distance determines the optimal CH sensor-

sink route. Figure 1 demonstrates how the source node sends 

data to the sink node after finding the optimum CH-sink path. 

 

 
 

Figure 1. Architecture of the proposed scheme 

 

3.1 Network model 

 

This research analyses the random placement of n sensor 

nodes in an M×M square area (A). Network premises are as 

follows. 

• All SN share the same beginning energy. 

• SN use GPS or other localization technologies to 

determine their position. 

• All SN are fixed after deployment. 

• All SN have the same transmission range and are 

aware of their leftover energy. 

• SN modify energy usage depending on receiver 

distance. 

• Each node has a distinct ID. 

• The static BS is located at the square area's edge. 
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3.2 Energy model 

 

Most radio nodes require energy at the transmitter, power 

amplifier, and receiver. The model employs transmitter-

receiver distance-based free space and multi-path fading 

channels. Node energy consumption is proportional to d^2 if 

propagation distance d is less than threshold distance d_0, 

else d^4. Eq. (1) calculates the energy required to convey a l-

bit packet d from transmitter to receiver, 

 

𝐸𝑇(𝑙, 𝑑) = 𝑙. 𝐸𝑒𝑙𝑒𝑐 + {
𝑙 × 𝜀𝑓𝑠 × 𝑑2, 𝑑 < 𝑑0

𝑙 × 𝜀𝑚𝑝 × 𝑑4, 𝑑 ≥ 𝑑0

 (1) 

 

where, 𝐸𝑒𝑙𝑒𝑐 is the energy used by an SN to send or receive 

1-bit data, while 𝜀𝑓𝑠  and 𝜀𝑚𝑝  are the free-space and multi-

path fading amplifier coefficients. Receive energy is given by 

 

𝐸𝑟𝑥(𝑙) = 𝑙. 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑤𝑎𝑘𝑒_𝑟𝑥 (2) 

 

Aggregation energy is given as 

 

𝐸𝑑𝑎(𝑙) = 𝑙. 𝐸𝑑𝑎 (3) 

 

Eq. (2) calculates 𝑑0, 

 

𝑑0 = √𝜀𝑓𝑠/𝜀𝑚𝑝 (4) 

 

Here, ε_fs and ε_mp are amplifier parameters. The free-

space model is used for sensor node energy consumption 

when d<d0, using εfs as the amplifier value. Sensor node 

energy consumption is calculated using the multi-path fading 

model and amplifier value εmp when d≥d0. This study limits 

node transmission distance to d0 to guarantee that nodes in 

the same cluster are within the transmission range of the 

proposed PSO-based uneven dynamic clustering technique. 
 

3.3 Proposed K-Medoids IPSO based clustering 
 

Each sensor node cluster in the wireless sensor network 

receives a CH. The BS receives cluster node data from the 

CH. This work proposes K-Medoids WSN clustering. All 

sensors are clustered using K-Medoids. Clusters of K-

Medoids represent one item. Medoid centres cluster. K-

Medoids connected to the cluster node determine the middle 

and shortest distance between clusters. The sensor nodes 

communicate better, consume less energy, and detect cluster 

centres, reducing packet delays. K-Medoids are efficient and 

converge at step count. K-Medoids IPSO clustering follows 

these phases: 

Step 1: Select k input data points at random. 

Step 2: Each data point goes to the cluster with the nearest 

centre. 

Step 3: Add all cluster ‘i’ data points' distances. Specify 

the i cluster centre point to reduce estimated distance from 

other locations. 

Step 4: Repeat 1 and 3 until convergence, or the center 

point stops moving. 

Each WSN grouping requires sensor node clustering and 

CH selection. The CH's major task is sending cluster node 

data to the BS. Finding precise centroids using K-Medoids 

reduces power consumption, packet latency, and sensor node 

performance. The problem is addressed by choosing the 

bestone from numerous solutions. In PSO, target value or 

condition, gbest, and stopping value are always recorded. 

Every PSO particle contains this information: 

• Global solution data 

• Velocity value indicates data change quantity 

• Best value 

 

3.3.1 Cluster formation 

The cluster is established by the base station or sink via 

centralised clustering. The BS sends information gathering 

messages to all sensor nodes, which send node information to 

the BS, including node id, location (X and Y distance from 

the BS), energy loss and energy loss ratio (velocity), and 

current energy: 

Step 1. Transformation of the issue into the PSO 

framework, whereby each PSO particle has two dimensions: 

location and velocity. 

Step 2. Fitness function valuation. The proposed PSO-

based clustering fitness function maximises member node 

average distance and energy relative to the cluster head and 

headcount. The formula below calculates particle fitness: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 𝐹𝑣 =∝𝐼 (5) 

 

=
∑ 𝑑𝑛

𝑖=0 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, 𝑚𝑒𝑚𝑏𝑒𝑟 𝑖)

𝑛
+∝2 (6) 

 

=
∑ 𝐸(𝑚𝑒𝑚𝑏𝑒𝑟 𝑖)𝑛

𝑖=0

𝐸(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒)
 

+(1 −∝1−∝2).
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 
𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒

 
(7) 

 

where, ∝1 and ∝2 represent the weighting parameters and n 

indicates the number of individuals included inside the 

cluster. 

Step 3. New particle formation from solution. Creating 

new particles from existing ones is novel particle generation. 

A particle's current velocity is used to estimate its new 

velocity, which is the rate of change in its position. New 

velocity is calculated as follows: 

 

𝑛𝑒𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝜔∗𝑜𝑙𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
+ 𝜔1(𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
− 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
+ 𝜔2(𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
− 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

(8) 

 

Here, ω represents the inertia weight, whereas 𝜔1 and 𝜔2 

denote fundamental tuning parameters of PSO. Inertia weight 

ω ontrols how much of the previous velocity is retained. A 

higher value encourages global exploration, while a lower 

value promotes local exploitation. Cognitive coeffecint 𝜔1 

affects the particle's inclination to return to its favourite spot. 

Social coeffecient 𝜔2  guides the particle toward the global 

best-known position. A commonly used setting includes a 

constriction factor or values such as ω=0.729, 𝜔1 = 𝜔2 =
1.49445 ensure convergence stability. 

The estimation of the particle's new location is as follows: 

 

𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑜𝑙𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑛𝑒𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (9) 

 

Step 4. The fitness function in Step 2 calculates the fitness 

value for new particles using their velocity and position. 
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Step 5. The following iteration uses the best particle fitness 

value from the old and new ones.  

New fitness value > previous fitness value 

select new particle 

else 

old particle is forwarded to next iteration 

Step 6. There is one local best answer every iteration. The 

particle having the highest fitness in the current iteration is 

the local optimal solution. 

Step 7. The particle's global best solution is its maximum 

local best solution throughout all repetitions. Solutions 

cluster. SN receives a base station cluster-announcement 

message that creates the cluster via PSO. Every node begins a 

CH selection cycle after receiving this message. Each CM 

chooses a CH to form efficient and balanced clusters based 

on a unique cost function that considers distance to CH, 

residual energy, and CH member deviation, illustrated as: 

 

𝑐𝑜𝑠𝑡𝑡 =
𝐸𝑟𝑒𝑠(𝑖)

𝐷𝑡0𝐶𝐻(𝑗) × |𝑁𝐷(𝐶𝐻𝑗) −
∑ 𝑁𝐷(𝐶𝐻𝑗)𝑘

𝑗=1

𝑘
|

 
(10) 

 

where, D_t0 CH(j) represents the distance among CM(i) and 

its candidate (CH)_j, and k represents the number of CHs. 

Additionally, ND(CH_j) represents CM(i)'s candidate's node 

degree. First, the final picked CH broadcasts its ID and node 

degree inside its communication range. The node degree is 

unitless, but it is being multiplied by a cost term with energy 

units (e.g., Joules/bit). Each CM estimates cost. The CM will 

proclaim itself as a CH when k=0, meaning no CH message 

is received. Therefore, optimum clusters are constructed with 

higher-cost CHs and CMs. Data transfer after cluster 

formation is particularly important for WSN energy saving 

since inappropriate transmission causes failure or collision. 

Transmission from CMs to CHs using time division multiple 

access (TDMA) improves these issues. 

 

Algorithm 1: Clustering using K-Medoids with a Particle 

swarm optimization  

Network Initialization 

Step 1: Initialize of the WSN S={s1,s2,…sn} 

Step 2: Place BS at (50, 180) 

Step 3: Place all the SNs  

K-Medoids clustering and IPSO CH selection, initiate 

initial K range: K ∈ [2, 5] 

S: Number of swarms; 4 particles 

P: Number of particles in each swarm; 

X × Y: Dimensions of network terrain 

Maximum iteratens=5 

Position X_i and velocity V_i for each particle (node) i 

Randomly initialize k- medoids (candidate cluster heads) 

for each particle 

Calculate the euclidian distance and compute fitness 

function for each particle  

fitness=∑_(i=1)^k ∑_(s_j ϵC_i) d(s_j,mediod (i)  

Update velocity for each particle and find new position 

 Convergence criteria: No significant improvement in 

fitness over 𝑇 iterations, Minimal shift in medoid locations. 

 Termination based on stability: Stability of 𝑘 over 

iterations 

If stopping criteria are met then terminate. Otherwise, go 

back to Step 2 

Finalize optimal medoids as cluster heads and start data 

transmission by schedulling 

 

3.4 Data transmission process by scheduling 

 

When many CH nodes carry a packet of data, it will 

collide, and forwarding to a less-than-ideal CH node 

diminishes WSN efficiency. We must give each CH node a 

forwarding priority and ensure that the best one may send 

packets first to enable packets to go via the worldwide 

optimum routing channel and avoid packet collisions. A 

greater U value results in a shorter holding time in this 

technique. For temporal efficiency, we employ data transfers 

between neighbouring nodes, consider node i's relative U 

value, and create as: 

 

𝑓(𝑈) = {
𝑈 − 𝑈𝑙𝑎𝑠𝑡 , 𝑈 < 𝑈𝑙𝑎𝑠𝑡  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑈 < 0

0, 𝑈 ≥ 𝑈𝑙𝑎𝑠𝑡
 (11) 

 

where, U_last is the ideal relay node sender's last 

transmission U value. The minimum propagation delay 

(t_(max)) with propagation speed v is 

 

𝑡(𝑚𝑎𝑥) =
𝑅

𝑣
 (12) 

 

The waiting time ensures that node 2 receives the packet 

from node 1 before passing it and reduces duplicated 

transmission. 

 

𝛿 ≥ 𝑡𝑎𝑛ℎ[−𝑓(𝑈1)] − 𝑡𝑎𝑛ℎ[−𝑓(𝑈2)] (13) 

 

The retention duration of each node i is determined by  

 

𝑡𝑖 = 𝑡𝑎𝑛ℎ[−𝑓(𝑄𝑖)]. (
2𝑡𝑚𝑎𝑥

𝛿
) (14) 

 

Initially, devices with 0 or less energy were considered 

dead and unable to deliver data. If they are in the base 

station's transmission range and have the highest U-value in 

their region, devices may connect directly without an 

intermediate device. If the CH is likewise far away, devices 

remote from the base station may nevertheless submit 

packets to it via a neighboring cluster device. 

 

 

4. PERFORMANCE ANALYSIS  

 

This section examines the parameters of the sensing nodes' 

results using the proposed method. The effectiveness of 

wireless sensing networks using the Enhanced Improved 

Particle Swarm Optimization (IPSO) is compared with other 

existing known algorithms, including MAP-HSWO [13], 

SFO+SHO [14] and MCOA-EACA [3]. Based on thorough 

modeling tests with virtual sensor nodes, the IPSO algorithm 

improves packet delivery and energy efficiency. The method 

should be simulated to evaluate its efficiency. The simulation 

used MATLAB. Windows 7, 4-GB RAM, and Cori3-4160 

CPU were utilized to simulate the developed method. The 

simulation included two situations. Sink node positions in 

scenarios 1 and 2 are (50, 100 and 50, 200). According to the 

results, Table 1 lists factors for energy reduction. 
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Table 1. Experimental values 

 
Parameters Values 

Number of Nodes 200 

Size of Network 100*100 

Energy Required for Transmitting 40 nJ/bit 

Energy Required for Receiving 20 nJ/bit 

Energy Required for Sensing 12 nJ/bit 

Radius of Sensor 60 

Size of Packet 50 Bytes 

 

• Network lifetime – It refers to the duration until the first 

node depletes its energy to transmit a packet, since the 

loss of a node may result in diminished network 

functionality. 

 

 
 

Figure 2. Graphical representation of the network life time 

 

Figure 2 indicates network lifetime, with number of rounds 

in the x-axis and network lifetime in the y-axis. The existing 

HSWO, SFO+SHO, MCOA-EACA achieves 95.3%, 90.95 

and 84.3% wherein IPSO achieves 97.8%. When analysis the 

proposed IPSO achieves 2.5%, 7.1% and 13.6% better than 

aforementioned existing methods. 

• Total residual energy – Residual energy deviation is 

the difference between the nodes with the highest and lowest 

residual energy divided by the initial energy. This percentage 

is determined as follows: 

 

𝐷𝑅(𝑡) = 100 (
𝐸𝑚𝑎𝑥(𝑛, 𝑡) − 𝐸𝑚𝑖𝑛(𝑛, 𝑡)

∑ 𝐸0(𝑛𝑖)
𝑁
𝑖=1

) (15) 

 

In round t, the nodes with the highest and lowest residual 

energy in the network are E_max (n,t) and E_min (n,t). 

Figure 3 compares total residual energy by round count (x) 

and residual energy (y). The existing HSWO, SFO+SHO, 

MCOA-EACA achieves 90.8%, 92.3% and 82.4% wherein 

IPSO achieves 95.3%. When analysis the proposed IPSO 

achieves 5.5%, 3%, and 13.1% better than aforementioned 

existing methods as shown in Table 2. 

 

Table 2. The below is the comparison of the network life 

time (%) of existing techniques and the proposed method 

(IPSO) 

 
Number of 

Rounds 
HSWO SFO+SHO  

MCOA-

EACA 
IPSO 

200 95.3 91.4 84.8 97.4 

400 95.7 91.5 83.6 97.3 

600 94.3 90.4 84.6 96.7 

800 94.2 90.3 84.2 96.2 

1000 94.6 91.5 84.6 97.3 

 
 

Figure 3. Graphical representation of the total residual 

energy (%) 

 

Table 3. The below is the comparison of the total residual 

energy of existing techniques and the proposed method 

(IPSO) 

 
Number of 

Rounds 
HSWO SFO+SHO  

MCOA-

EACA 
IPSO 

200 90.6 91.3 81.4 96.3 

400 89.4 91.5 82.5 95.7 

600 90.3 92.5 82.5 95.3 

800 90.3 92.6 81.5 95.6 

1000 90.4 92.5 81.4 95.1 

 

• Throughput – It's important to compare the total 

amount of packets transferred to the destination node to 

the simulation procedure's stop time (s_p) and start time 

(s_t). The mean throughput for k trials is derived from 

the following equation. 

 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
1

𝑘

∑ 𝑋𝑖 × 𝑃𝑠
𝑛
𝑖=1

𝑠𝑝 − 𝑠𝑡

×
8

100
 (16) 

 

where, the packet size is P_s. More throughput will be given 

to an algorithm that delivers the same amount of bits faster. 

 

 
 

Figure 4. Graphical representation of the throughput 

(Mb/sec) 

 

Figure 4 indicates throughput, with number of rounds in 

the x-axis and throughput in the y-axis as shown in Table 3. 
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The existing HSWO, SFO+SHO, MCOA-EACA achieve 

3.6Mbps, 3.5Mbps and 2.8Mbps wherein IPSO achieves 

5.8Mbps. When analysis the proposed IPSO achieves 

2.2Mbps, 2.1Mbps and 3Mbps better than aforementioned 

existing methods as in Table 4. 

• Packet delivery ratio (%) – The percentage of data 

transmitted to the sink node is calculated using PDR. 

WSNs compute it by dividing packets transmitted to sink 

node by data. 

 

𝑃𝐷𝑅 =
∑ 𝑀𝑖

𝑛
𝑖=1

∑ 𝑁𝑖
𝑛
𝑖=1

× 100% (17) 

 

where, M represents the received data packets, whereas N 

symbolizes the sent packets inside the network. 

 

 
 

Figure 5. Graphical representation of the packet delivery 

ratio (%) with nodes 

 

Figure 5 indicates PDR, with number of rounds in the x-

axis and PDR in the y-axis. The existing HSWO, SFO+SHO, 

MCOA-EACA depending in the values showed in Table 5. 

 

Table 4. The below is the comparison of the existing 

techniques and the proposed method (IPSO) 

 
Number of 

Nodes 
HSWO SFO+SHO 

MCOA-

EACA 
IPSO 

20 3.6 4.6 2.1 5.3 

40 3.6 4.7 2.4 5.7 

60 3.7 3.9 2.1 4.6 

80 3.2 3.6 2.6 5.2 

100 3.6 3.6 2.7 5.9 

120 3.6 3.1 2.6 5.2 

140 3.8 3.7 2.6 4.9 

160 3.9 3.2 2.8 5.7 

180 3.5 3.7 2.1 5.1 

200 3.7 3.6 2.6 5.3 

 

Table 5. The below is the comparison throughput of the 

existing techniques and the proposed method (IPSO) 

 
Number of 

Nodes 
HSWO SFO+SHO  

MCOA-

EACA 
IPSO 

100 nodes 92.6 81.5 87.4 99.5 

200 nodes 93.5 80.3 86.9 98.3 

 

The values of Table 6 presented in Figure 6 which 

indicates PDR, with number of rounds in the x-axis and PDR 

in the y-axis. The existing HSWO, SFO+SHO, MCOA-

EACA achieves 93.1%, 81.6% and 87.3% wherein IPSO 

achieves 99.5%. When analysis the proposed IPSO achieves 

6.4%, 23% and 12.2% better than aforementioned existing 

methods. 

 

 
 

Figure 6. Graphical representation of the packet delivery 

ratio (%) with number of rounds 

 

Table 6. The below is the comparison PDR of the existing 

techniques and the proposed method (IPSO) 

 
Number of 

Rounds 
HSWO SFO+SHO  

MCOA-

EACA 
IPSO 

200 92.65 81.5 87.3 99.7 

400 93.5 82.3 87.2 98.4 

600 93.6 81.6 86.8 98.3 

800 92.6 81.5 86.3 99.7 

1000 92.6 81.4 86.2 99.3 

 

• Energy consumption: The energy consumed when 

transmitting data. The outcome is contingent upon the 

transmission power, the duration of the transmission, and 

the energy efficiency of the radio module. 

 

𝐸𝑡𝑟𝑎𝑛𝑠 = 𝑃𝑡𝑟𝑎𝑛𝑠 × 𝑡𝑡𝑟𝑎𝑛𝑠 (18) 

 

where, 𝐸𝑡𝑟𝑎𝑛𝑠=Energy consumed during transmission, 𝑃𝑡𝑟𝑎𝑛𝑠 

transmission power, 𝑡𝑡𝑟𝑎𝑛𝑠 duration of transmission. 

 

 
 

Figure 7. Graphical representation of the energy 

consumption (%) with number of rounds 

 

The values in Table 6 used in Figure 7 HSWO follows 

with a steady performance between 94% and 96%, while 

SFO+SHO maintains around 90%, reflecting moderate 
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efficiency for scenario-1. In contrast, MCOA-EACA shows 

the lowest performance, with network lifetime ranging 

between 83% and 85%, suggesting poor energy management. 

 

Table 7. The below is the comparison energy consumption of 

the existing techniques and the proposed method (IPSO) 

 
Number of 

Rounds 

HSWO SFO+SHO  MCOA-

EACA 

IPSO 

200 21.6 20.4 34.5 12.3 

400 22.5 20.5 33.5 11.5 

600 22.6 21.5 35.2 12.9 

800 21.65 20.6 34.6 11.8 

1000 21.6 19.4 34.5 11.4 

 

 
 

Figure 8. Graphical representation of the energy 

consumption (%) with number of rounds 

 

In Figure 8, based on the values in Table 7 show the 

comparison of energy consumption across multiple rounds 

reveals that the IPSO algorithm achieves the lowest 

consumption, maintaining values around 12% to 14%, 

indicating exceptional energy efficiency. HSWO and 

SFO+SHO exhibit moderate energy usage, averaging 

between 21% and 24%, with minor fluctuations across 

rounds. In contrast, MCOA-EACA consistently consumes the 

most energy, with values ranging from 30% to 33%, 

suggesting inefficient resource utilization for scenario-2. 

The comparison of the existing techniques and the 

proposed method (IPSO) is shown in Table 8. 

 

Table 8. The below is the comparison energy consumption of 

the existing techniques and the proposed method (IPSO) 

 
Number of 

Rounds 
HSWO SFO+SHO  

MCOA-

EACA 
IPSO 

200 23.4 20.7 31.2 12.2 

400 22.4 20.7 31.5 13.3 

600 22.65 19.45 32.5 12.4 

800 22.1 21.4 32.7 12.5 

1000 21.4 20.5 32.8 13.4 

 

The below Table 9 and the graph sketch the overall 

performance of the existing and the proposed techniques in 

Figure 9 and sketch the overall graph for the proposed 

techniques (IPSO) with the highest network lifetime 2.5% 

and with the total residual energy increase of 3.0% and the 

throughput increases with the ratio of 2.3% and the packet 

delivery ratio increase with 6.3% and with the less energy 

consumption of 21%. 

 

Table 9. The below is the overall comparison of the existing 

techniques and the proposed method (IPSO) 

 

Parameters HSWO SFO+SHO  
MCOA-

EACA 
IPSO 

Network lifetime 

(%) 
95.3 90.9 84.3 97.8 

Total residual 

energy (%) 
90.8 92.3 82.4 95.3 

Throughput 

(Mbps) 
3.6 3.5 2.8 5.8 

Packet delivery 

ratio (%) 
93.1 81.6 87.3 99.5 

Energy 

consumption (%) 
21.6 19.4 34.5 11.4 

Computational 

load (%) 
32.6 26.8 21.6 13.5 

Memory usage (%) 16.6 18.4 26.9 9.4 

 

 
 

Figure 9. Graphical representation of the energy 

consumption (%) with number of rounds 

 

 

5. CONCLUSION  

 

The provision of an energy-efficient routing method is one 

of the most significant issues in WSNs. This research 

presents a cluster-based routing system to enhance network 

longevity. The ideal cluster head selection is contingent upon 

several criteria, including remaining energy, available buffer, 

and distance. The PSO-based clustering technique assigned 

members to each CH based on the smallest distance between 

SNs and the CH and the most residual energy. The ideal path 

selection between the cluster head and the sink, characterized 

by energy efficiency, was ascertained by Euclidean distance. 

The comparison of the developed technique with existing 

schemes demonstrates superior network performance of the 

proposed method. This project will focus on creating an 

energy-efficient, cluster-based routing algorithm utilizing 

suitable hybrid metaheuristic optimization techniques. In 

future endeavors, we want to further the developed approach 

for heterogeneous WSN. 
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