
Artificial Intelligence Techniques for Industrial Predictive Maintenance: A Systematic 

Review of Recent Advances 

Khalid Lefrouni* , Saoudi Taibi

Mohammadia School of Engineers, Mohammed V University in Rabat, Rabat 10000, Morocco 

Corresponding Author Email: lefrouni@emi.ac.ma

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580401 ABSTRACT 

Received: 9 March 2025 

Revised: 15 April 2025 

Accepted: 23 April 2025 

Available online: 30 April 2025 

Modern industrial operations are under growing pressure to maximize asset performance, 

reduce expensive downtime, and improve safety. Exploiting progress in sensor technology 

and data analytics, Predictive Maintenance (PdM) presents a forward-looking maintenance 

strategy, moving past conventional reactive or scheduled approaches. This review explores 

the innovative use of Artificial Intelligence (AI), encompassing Machine Learning (ML) 

and Deep Learning (DL), to significantly boost PdM efficiency. Drawing upon a 

methodical analysis of 29 peer-reviewed articles from the last decade, this review 

consolidates the current landscape, major trends, obstacles, and future outlook regarding 

the deployment of AI methods for industrial Predictive Maintenance. The analysis 

indicates a significant tendency towards utilizing DL techniques for sophisticated tasks 

such as Remaining Useful Life (RUL) estimation and anomaly identification. Developing 

fields include employing Deep Reinforcement Learning (DRL) for optimal maintenance 

scheduling, methods for explainability (XAI) for fostering trust, and the convergence of 

PdM with data-driven production planning and emerging Digital Twins. Despite 

substantial advancements, significant hurdles remain concerning data quality and 

accessibility, model interpretability, scalability, system integration, and cybersecurity. 

This review offers a thorough, holistic overview for researchers and industry professionals, 

underscoring the game-changing possibilities of AI within PdM and pinpointing key 

domains that warrant deeper exploration.  

Keywords: 

artificial intelligence, Deep Learning, 

Predictive Maintenance, Machine Learning, 

Industry 4.0 

1. INTRODUCTION

Industrial assets, ranging from manufacturing machinery 

and power generation equipment to transportation systems like 

aircraft and vehicles, represent significant capital investments 

and are critical to operational continuity and economic 

productivity [1-3]. Maintaining these assets effectively is 

paramount, yet traditional maintenance strategies often fall 

short. Reactive maintenance, performed only after a failure 

occurs, leads to unplanned downtime, potential secondary 

damages, safety hazards, and significant economic losses [3-

6]. Preventive maintenance (PvM), on the other hand, operates 

on predetermined schedules, such as fixed time intervals or 

usage counts, regardless of the actual condition of the 

equipment. While it aims to mitigate some failures by 

intervening before they are expected to occur based on these 

schedules, PvM often results in unnecessary interventions on 

healthy equipment or, conversely, fails to prevent unexpected 

breakdowns occurring between scheduled services [2,  3,  5,  

7,  8]. The core limitation of PvM is its reliance on general 

statistical lifespans rather than real-time operational health. 

These shortcomings of both reactive and traditional 

preventive strategies have spurred the transition to Predictive 

Maintenance (PdM). Distinct from PvM's schedule-based 

approach, PdM is a proactive strategy focused on anticipating 

potential failures by continuously monitoring the actual 

equipment condition and scrutinizing operational data [2, 4-6, 

9, 10]. The emergence of Industry 4.0, characterized by the 

widespread adoption of sensors (Internet of Things - IoT), 

sophisticated data analysis techniques, and Artificial 

Intelligence (AI), has greatly enhanced the capabilities of PdM 

[4, 7-9, 11-15]. AI, notably Machine Learning (ML) and Deep 

Learning (DL), provides robust tools to handle immense 

volumes of intricate, high-dimensional sensor data, detect 

subtle indicators signaling degradation, determine fault 

categories, forecast the Remaining Useful Life (RUL) of parts, 

and refine maintenance timelines [6, 10, 13, 16]. By 

harnessing AI, organizations can transition to smarter, data-

informed maintenance strategies, potentially realizing 

significant gains in asset uptime, operational effectiveness, 

safety, and cost savings [1-3, 11, 15, 16]. 

Despite the promise, the practical implementation of AI-

driven PdM faces numerous challenges related to data 

acquisition and quality, algorithm selection and validation, 

model interpretability, system integration, cybersecurity, and 

organizational adoption [8, 9, 15, 17]. Understanding the 

current landscape of AI applications in PdM, identifying 

successful approaches, recognizing persistent challenges, and 

discerning future trends is crucial for both researchers 

developing new methods and practitioners seeking to 

implement these technologies effectively. 

This systematic review endeavors to synthesize the peer-
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reviewed literature published within the past 10 years 

concerning the deployment of AI techniques for industrial 

PdM. Adhering to a defined search and screening process, 29 

relevant publications were selected to explore the following 

research inquiries: 

• Which principal AI methods (ML/DL algorithms and 

strategies) are presently utilized and under 

development for industrial PdM? 

• What are the key industrial application areas and 

specific use scenarios (e.g., fault diagnosis, RUL 

prognosis, scheduling optimization) where AI-driven 

PdM is being implemented? 

• What principal difficulties, constraints, and obstacles 

are faced during the creation and deployment of AI-

powered PdM solutions? 

• What developing patterns, models, and potential 

avenues for future study are highlighted in the existing 

research? 

Through answering these inquiries, this review aims to 

deliver a thorough, empirically grounded summary of the 

current status of AI applications for enhancing PdM, yielding 

useful perspectives for both academic researchers and industry 

practitioners. The rest of this paper is organized as follows: 

Section 2 gives background information on PdM and relevant 

AI concepts. Section 3 describes the conceptual underpinnings 

for AI-driven PdM. Section 4 outlines the systematic review 

methodology applied. Section 5 presents the synthesized 

results from the literature analysis. Section 6 examines the 

implications, challenges, and future paths. Lastly, Section 7 

brings the review to a close. 

 

 

2. BACKGROUND: PREDICTIVE MAINTENANCE 

AND ARTIFICIAL INTELLIGENCE 

 

This section defines the core concepts of Predictive 

Maintenance (PdM) and Artificial Intelligence (AI) as they 

relate to the scope of this review, based on the analyzed 

literature. 

 

2.1 Predictive Maintenance (PdM) 

 

PdM represents a shift from reactive or scheduled 

maintenance towards condition-based, proactive interventions 

[2-5]. It involves monitoring the operational state and 

degradation of equipment using various sensors and data 

sources to forecast the probable timing of a failure [1, 5, 6, 10, 

18]. The primary goal is to perform maintenance only when 

necessary, just before failure, thereby minimizing unscheduled 

downtime, reducing maintenance costs associated with 

unnecessary tasks, extending equipment lifespan, and 

improving safety [2, 5-7, 9, 19]. Key components of a PdM 

system typically include: 

• Data Acquisition: Collecting relevant data from sensors 

(e.g., vibration [13], temperature [20], acoustic 

emission [8], pressure, current [21]) and operational 

systems (e.g., process parameters [17], event logs [22], 

quality data [23]).  

• Data Processing: Cleaning, normalizing, synchronizing, 

and transforming raw data into a usable format; 

extracting or selecting relevant features [4, 12, 13, 15].  

• Condition Monitoring (CM): Tracking the evolution of 

key parameters or calculated health indicators over 

time to assess the current condition of the asset [6, 18, 

24]. 

• Diagnostics: Detecting deviations from normal 

operation (anomaly detection [12, 25-27]) and 

identifying the specific type and location of faults (fault 

classification [4, 8, 28]).  

• Prognostics: Predicting the future degradation trend 

and estimating the RUL of the component or system [5, 

6, 16, 18, 19, 26, 29].  

• Decision Support: Recommending optimal 

maintenance actions and schedules based on 

diagnostic/prognostic information, costs, risks, and 

operational context [1, 3, 11, 16, 19].  

While traditional PdM often relied on expert knowledge, 

predefined rules, or simpler statistical models [2], the 

integration of AI has enabled more sophisticated analysis and 

prediction capabilities [7, 8]. 

 

2.2 Artificial Intelligence (AI), Machine Learning (ML), 

and Deep Learning (DL) 

 

AI represents an extensive domain concerned with 

developing systems able to execute functions that usually 

demand human cognitive abilities [7, 8]. ML, a branch of AI, 

involves systems that discern patterns and forecast outcomes 

using data, without needing direct instructions for the specific 

task [4, 6, 8, 10, 13, 15, 29]. DL, a specialized area within ML, 

employs multi-layered artificial neural networks (deep 

architectures) to acquire intricate representations directly from 

unprocessed data, frequently demonstrating superior 

performance on tasks involving extensive, high-dimensional 

datasets [5, 6, 16, 26, 29]. In the PdM context, AI/ML/DL 

methodologies are utilized throughout different phases: 

• Anomaly Detection: Algorithms like Autoencoders 

[26], Self-Organizing Maps (SOM) [27], Isolation 

Forest [13], or clustering techniques [24] are used to 

identify unusual operating conditions. 

• Fault Identification/Categorization: Techniques 

employing supervised learning – including Support 

Vector Machines (SVM) [8, 11, 12], Random Forests 

(RF) [4, 8, 11, 13], Decision Trees (DT) [11, 12], k-

Nearest Neighbors (k-NN) [11], Gradient Boosting 

[11], AdaBoost [4], and DL approaches like 

Convolutional Neural Networks (CNN) [4, 6, 8, 16, 19] 

– are developed to categorize distinct failure modes 

based on sensor data patterns. 

• RUL Estimation/Forecasting: Models designed for 

time-series prediction, especially Recurrent Neural 

Networks (RNNs) such as Long Short-Term Memory 

(LSTM) [5, 6, 13, 16, 19] and Gated Recurrent Units 

(GRUs) [16], alongside CNNs [19] and combined 

approaches [16, 20], are commonly employed to 

estimate the residual service duration according to 

deterioration patterns. The potential of generative 

models is also under investigation [29]. 

• Maintenance Scheduling Optimization: Techniques 

like Deep Reinforcement Learning (DRL) [3, 19] learn 

optimal maintenance policies through interaction with 

a simulated or real environment, considering complex 

trade-offs. Multi-Criteria Decision Making (MCDM) 

frameworks can also incorporate ML model outputs 

[11]. 

The ability of AI, especially DL, to handle complex, non-

linear relationships in large datasets makes it particularly 

suitable for addressing the challenges of modern industrial 
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PdM [5, 6, 26]. 

 

 

3. CONCEPTUAL FRAMEWORK OF AI-DRIVEN 

PREDICTIVE MAINTENANCE 

 

The integration of AI fundamentally reshapes the 

conceptual basis of PdM, shifting from reliance on predefined 

schedules or simple threshold rules towards a continuous, 

data-driven learning and adaptation cycle. The underlying 

principle is that historical and real-time operational data 

contain implicit information about the health state and 

degradation processes of industrial assets [5, 6, 8]. AI 

algorithms provide the means to extract this information, 

model complex system dynamics, and generate actionable 

insights for maintenance optimization [13, 16, 19, 26]. This 

AI-driven approach can be conceptualized as an iterative loop 

(See Figure 1), distinct from purely human-centric observation 

or basic condition monitoring:  

• Data Acquisition & Processing: Continuous streams of 

data from diverse sources are collected, cleaned, 

integrated [17, 29], and prepared for analysis. 

Contextual information is crucial [17]. 

• AI Model Training & Validation: ML/DL models are 

trained on historical data to learn normal behavior, 

failure patterns, and degradation trajectories. 

Validation ensures model accuracy and generalization 

[5, 11, 12]. 

• AI Analysis: Trained models are deployed to monitor 

live data, detect anomalies [25-27], diagnose faults [4, 

12, 29], and predict RUL [5, 16, 19, 29]. Handling 

uncertainty [5, 19] and providing explanations [8, 26] 

are increasingly important aspects. 

 

 
 

Figure 1. Conceptual loop of AI-driven Predictive Maintenance 
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• Decision Support & Optimization: Insights from AI 

analysis are translated into optimal maintenance 

recommendations, considering economic factors [1, 

16], operational constraints [16, 29], and risk 

assessments. DRL can automate policy generation [19, 

3]. 

• Action & Feedback: Recommended maintenance tasks 

are scheduled and executed. Crucially, the outcomes of 

these actions provide feedback to refine data 

understanding and retrain AI models, enabling 

continuous learning and adaptation [21]. 

This conceptual model underscores the pivotal function of 

AI algorithms in converting unprocessed data into predictive 

understanding and optimized decisions, surpassing the 

constraints of conventional methods. The prevalent emphasis 

within the reviewed literatures [1-29] is largely placed upon 

enhancing and refining the elements inside this technological 

cycle, especially the phases involving AI modeling and 

analysis. 

 

 

4. METHODOLOGY 

 

This research utilizes a Systematic Literature Review (SLR) 

approach for locating and integrating studies concerning the 

use of Artificial Intelligence to enhance Predictive 

Maintenance within industrial settings. The complete 

procedure followed to carry out this review is illustrated in 

Figure 2. 

 

4.1 Search strategy and study selection 

 

This research utilizes a Systematic Literature Review (SLR) 

approach for locating and integrating studies concerning the 

use of Artificial Intelligence to enhance Predictive 

Maintenance within industrial settings. The search and 

selection procedure involved distinct phases, depicted in 

Figure 3. 

 

4.1.1 Search strategy 

The primary database used for identifying relevant literature 

was Scopus. The search was restricted to articles published 

within the last 10 years from the date of the search to capture 

recent advances.  

The following search query was applied specifically to the 

article titles: TITLE ("Predictive Maintenance" OR "proactive 

maintenance"). This initial search yielded 413 results. 

 

 
 

Figure 2. Methodology flowchart for this systematic literature review 
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4.1.2 Screening and selection 

The initial results underwent a screening process: 

1. Duplicate Removal: Automated and manual checks 

were performed to remove duplicate entries, resulting 

in 285 unique articles. 

2. Title/Abstract/Keyword Screening: Each unique 

manuscript was initially assessed based on its title, 

abstract, and keywords to determine potential 

relevance to the review's scope (AI techniques for 

industrial PdM). 

3. Full-Text Screening and Eligibility Criteria: Articles 

passing the initial screening were subjected to a full-

text review to determine final inclusion based on the 

following criteria:  

o Publication Type: Inclusion was limited solely 

to articles from peer-reviewed journals. 

Exclusions comprised conference papers, book 

chapters, theses, and informally published 

works (grey literature). 

o Language: Only articles published in English 

were considered. This language restriction, 

while necessary for the feasibility of this review, 

represents a potential limitation as relevant 

studies published in other languages may have 

been excluded. 

o Focus: Articles must primarily focus on the 

study of Predictive Maintenance using AI 

techniques within an industrial or 

manufacturing domain. 

o Exclusion: State-of-the-art reviews, systematic 

literature reviews, and meta-analyses were 

excluded to focus on primary research 

contributions. 

Following this rigorous screening process, 29 publications 

were deemed eligible and retained for this systematic review. 

These 29 articles form the basis of the analysis presented 

herein. 

 

4.2 Data extraction and synthesis 

 

A structured data extraction approach was used (Phase 3 in 

Figure 2). Each of the final 29 included articles was analyzed 

to identify information pertaining to the review's research 

questions. Information was systematically extracted and 

organized according to the primary analytical categories 

derived from the research questions and the scope of the 

reviewed literature, as listed in Table 1. These categories 

provided a framework for structuring the data before 

qualitative synthesis. Subsequently, the specific concepts and 

findings extracted within these broad categories were mapped 

to the core synthesis themes used to organize the results of this 

review (Section 5), as illustrated conceptually in Table 2. This 

mapping facilitated the identification of key trends, challenges, 

and areas of focus within the literature. 

 

 
 

Figure 3. Flowchart of the literature search and screening process 

657



 

Table 1. Primary data extraction and synthesis categories 

 
Category Definition / Scope 

AI Techniques Applied Specific ML, DL, DRL, Ensemble, or Hybrid algorithms and architectures used or proposed. 

PdM Task Focus The primary maintenance task addressed (e.g., Diagnosis, Fault Classification, Prognosis/RUL, 

Scheduling, Monitoring). 

Application Domain/Context The specific industry (e.g., Manufacturing, Automotive, Energy) and/or equipment type (e.g., Motors, 

Bearings, Turbines). 

Data Aspects Types of data sources used (sensors, logs, etc.), preprocessing steps, and data-related challenges 

encountered. 

Integration Approaches Methods for integrating PdM with other systems (Production, Quality, DT, IoT, Cloud). 

Implementation 

Frameworks/Methods 

Proposed methodologies, roadmaps, or systematic approaches for developing or deploying AI-driven 

PdM. 

Performance/Validation Aspects Metrics used for evaluation, reported results (accuracy, cost savings), validation methods (simulations, 

case studies). 

Identified 

Challenges/Limitations 

Explicitly stated technical, organizational, or data-related barriers and limitations. 

Future Research Directions Gaps identified and suggestions made by the authors for subsequent research. 

 

Table 2. Conceptual mapping of extracted concepts to synthesis themes 

 

Theme 1: AI Techniques Applied 

- SVM, RF, DT, k-NN, NB [4, 8, 11, 12, 13] 

- CNN, LSTM, GRU, AE [4-6, 8, 13, 16, 19, 26] 

- Deep Reinforcement Learning (DRL) [3, 19] 

- Ensemble Methods (Boosting, Stacking) [4, 9, 11] 

- Hybrid Models (DL+Physics, CNN+LSTM...) [10, 16, 18] 

- Unsupervised (Clustering, SOM, AE) [13, 21, 24, 26, 27] 

- Generative Models (GAN, VAE) [29] 

- Uncertainty Quantification [5, 19] 

- Explainable AI (XAI) Methods [8, 16, 26] 

Theme 2: Application Domains & PdM Tasks 

- Manufacturing (General) [1, 3, 15, 16, 29] 

- Machine Tools [21, 23, 24, 28, 29] 

- Motors/Engines [5, 13, 19, 20] 

- Bearings [4, 6, 10] 

- Automotive [8] 

- Aerospace [19] 

- Electrical Systems [12] 

- Robotics [18] 

- Fault Diagnosis/Classification [4, 9, 12, 21, 25, 26, 27, 28] 

- RUL Prognosis [5, 6, 8, 13, 16, 18, 19, 29] 

- Scheduling/Optimization [1, 3, 16, 17, 19, 29] 

- Condition Monitoring/Health Index [18, 24, 26, 29] 

Theme 3: Data Considerations 

- Sensor Data (Vibration, Temp, Current...) [4, 12, 13, 18, 20, 21] 

- Process Parameters [17, 21, 24] 

- Event Logs [29] 

- Quality Data [23] 

- Multi-Source Fusion [12, 28] 

- Data Preprocessing (Normalization, Outliers...) [4, 13, 15, 23] 

- Feature Engineering/Selection [4, 8, 12] 

- Data Imbalance [8, 25] 

- Data Security/Privacy [9, 17] 

Theme 4: Integration & Frameworks 

- Digital Twin Integration [7, 14, 18] 

- Production Planning/Scheduling Integration [16, 29] 

- Quality Control Integration [23] 

- Semantic Frameworks [17] 

- Cloud Platforms [17] 

- Implementation Methods (SMEs) [15] 

- Human-AI Collaboration (DIAs) [14] 

- Standardization Roadmaps [7] 

Theme 5: Challenges & Limitations 

- Data Availability/Scarcity [7, 18, 19, 23] 

- Data Quality (Noise, Missing, Labels) [17, 23, 25] 

- Data Heterogeneity/Integration Complexity [7, 17, 21, 28] 

- Model Interpretability/Explainability (XAI) [7, 19, 26] 

- Model Generalization/Scalability [7, 19, 21] 

- System Integration Hurdles [7, 17] 

- Cybersecurity Risks (Adversarial Attacks) [9] 

- Implementation Cost & ROI Justification [7, 12, 23] 

- Skills Gap & Training Needs [7, 10, 23] 

- False Positive Management [25] 
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The extracted information, organized under these categories 

and mapped to themes, was then synthesized qualitatively 

(Phase 3 in Figure 2). Key themes, trends, common challenges, 

and divergent approaches were identified through iterative 

reading and comparison across the articles. The synthesis 

focused on building a coherent narrative addressing the 

research questions, supported by evidence cited from the 

corpus [1-29]. 

 

4.3 Quality assessment 

 

All 29 articles were sourced as peer-reviewed publications 

(journal articles), implying a baseline level of scientific quality. 

Concerns regarding methodological limitations of the primary 

studies, as reported or inferred, are considered within the 

CERQual assessment of the review findings (see Section 4.4). 

 

4.4 Confidence assessment of review findings (CERQual) 

 

For evaluating the level of certainty regarding the principal 

conclusions drawn from the qualitative analysis of the 

included studies, the GRADE‑CERQual (Confidence in the 

Evidence from Reviews of Qualitative research) method was 

utilized. 

In applying the CERQual approach, we also acknowledge 

certain limitations inherent to the scope of this systematic 

review. Notably, the exclusion of non‑English literature (as 

stated in Section 4.1.2) constitutes a potential source of 

selection bias. This could theoretically impact the overall 

‘Data Sufficiency’ if significant bodies of work from 

non‑Anglophone regions were missed, or the ‘Applicability’ 

of our synthesized findings if research trends or challenges 

differ markedly in those contexts. While the current review 

draws upon a substantial corpus of English‑language 

peer‑reviewed articles, this language restriction is considered 

when assessing the overall confidence in each review finding, 

particularly if a finding appears to be based on a narrow range 

of geographical or research group origins evident within the 

English literature. The CERQual assessment for each principal 

conclusion is detailed in Table A1 (Appendix A). 

CERQual evaluates confidence using four elements: 

• Methodological Limitations: Evaluating the extent to 

which the included studies contributing to a finding 

have limitations in their design or conduct that might 

affect confidence. 

• Coherence: Assessing the extent to which the finding is 

consistent across the included primary studies 

contributing to it. 

• Data Sufficiency: Assessing the depth and volume of 

evidence provided by the original research 

underpinning the finding. 

• Applicability: Determining the degree to which 

findings from the source research pertain to the specific 

context defined for this review (AI for industrial PdM). 

Considering these factors, a comprehensive confidence 

assessment for every consolidated review finding is assigned 

(High, Moderate, Low, or Very Low). 

 

 

5. RESULTS: SYNTHESIS OF FINDINGS 

 

This part consolidates the principal discoveries derived 

from reviewing the 29 selected articles, tackling the research 

inquiries concerning AI techniques, applications, challenges, 

and frameworks within industrial PdM. The key results are 

detailed subsequently, accompanied by a certainty evaluation 

for each finding using the CERQual method. 

 

5.1 AI techniques applied in Predictive Maintenance 

 

It is important to note that a direct, universal comparison of 

performance (e.g., accuracy, efficiency) across all listed AI 

techniques is challenging to distill from the reviewed literature. 

This is due to the heterogeneity in datasets, specific PdM tasks 

(diagnosis, RUL estimation, scheduling), evaluation metrics, 

and implementation details across the primary studies. 

However, this section synthesizes the commonly employed AI 

techniques, highlighting their typical applications, and where 

possible, general characteristics related to their performance 

and computational considerations in the context of PdM as 

reported in the reviewed corpus [1-29]. 

The analyzed studies demonstrate a broad spectrum of AI 

techniques utilized for PdM, indicating a definite shift towards 

more advanced ML and particularly DL models. (CERQual 

Confidence: High) (Confidence is assessed as high due to the 

substantial volume, consistency, and depth of evidence across 

the body of work detailing specific AI methods employed [See 

Appendix A, Finding 1]). 

 

5.1.1 Machine Learning algorithms 

Traditional ML algorithms remain relevant, particularly for 

classification and baseline comparisons. Commonly cited 

techniques include: 

• Support Vector Machines (SVM): Used for fault 

classification [11, 12] and anomaly detection [8]. 

SVMs are often chosen for their effectiveness in high-

dimensional spaces and their ability to model non-

linear decision boundaries with appropriate kernels. 

However, their training time can scale significantly 

with the size of the dataset, and performance is 

sensitive to kernel selection and parameter tuning. 

• Random Forests (RF) & Decision Trees (DT): Applied 

for classification [4, 11, 12], feature importance 

analysis [4], and sometimes regression tasks [13]. RF 

is often favored for its robustness [21]. Decision Trees 

offer high interpretability, while Random Forests, by 

ensembling multiple trees, generally achieve higher 

accuracy and robustness against overfitting, often at the 

cost of some interpretability and increased 

computational load for training large ensembles. RFs 

are also valuable for their inherent ability to rank 

feature importance. 

• k-Nearest Neighbors (k-NN): Employed for 

categorization [11] and outlier detection [27]. k-NN is 

a simple, non-parametric method that can be effective 

when local data structure is important. Its 

computational cost during inference can be high for 

large datasets as it requires computing distances to all 

training points, and its performance is sensitive to the 

choice of 'k' and the distance metric. 

• Naive Bayes (NB): Employed for classification, though 

sometimes showing lower performance compared to 

others [12]. 

• Ensemble Methods: Techniques like AdaBoost [4], 

Gradient Boosting [11], and stacking ensembles [9] are 

used to combine multiple models, often improving 

accuracy and robustness, including resilience against 

adversarial attacks [9]. While often leading to superior 

659



 

predictive performance and robustness, ensemble 

methods inherently increase computational complexity 

both in training and inference compared to single 

models. 

• Clustering Algorithms: Unsupervised methods like k-

Means [21], DBSCAN [21], and Self-Organizing Maps 

(SOM) [27] are used for identifying operational states, 

detecting anomalies, or localizing faults [24, 27]. These 

unsupervised methods are crucial for discovering 

inherent structures or anomalies in unlabeled data. 

Their computational efficiency varies greatly 

depending on the algorithm (e.g., k-Means is relatively 

efficient, while density-based methods can be more 

demanding). 

• Time Series Models: Traditional models like ARIMA 

are sometimes used as baselines or components in 

hybrid approaches [13]. 

To further summarize the characteristics of these traditional 

Machine Learning algorithms as applied within the reviewed 

PdM literature, Table 3 provides a comparative overview. This 

table highlights their typical tasks, common strengths and 

weaknesses, and general computational efficiency 

considerations. 

 

5.1.2 Deep Learning architectures 

DL models have become increasingly popular owing to 

their capacity for managing intricate, high-dimensional sensor 

data and automatically discerning relevant features [5, 6, 26]. 

Key architectures include: 

• Convolutional Neural Networks (CNNs): Proficient at 

extracting spatial patterns from sensor data (like 

vibration signals viewed as images) or time-series 

sections; frequently employed for fault categorization 

[4, 6, 19] and identifying key features within more 

extensive models [16]. CNNs have shown strong 

performance in tasks involving spatial hierarchies in 

data, like processing vibration signals as images or 

spectrograms. They can be computationally intensive 

to train, especially with deep architectures, but can be 

very efficient at inference with optimized 

implementations. 

• Recurrent Neural Networks (RNNs) - LSTM & GRU: 

Are particularly adept at modeling sequential 

information and temporal dependencies, rendering 

them highly suitable for RUL estimation [5, 6, 13, 16, 

19] and health index forecasting [29]. LSTMs and 

GRUs are powerful for modeling long-term 

dependencies in sequential data, crucial for RUL 

estimation. Their training can be computationally 

demanding and slower than feedforward networks due 

to their recurrent nature, but they excel where temporal 

context is key. 

• Autoencoders (AE): Primarily used in unsupervised 

anomaly detection by learning a compressed 

representation of normal data and identifying 

deviations [6, 7, 26]. Convolutional AEs are common 

[26]. Explainable variants are emerging [26]. AEs are 

effective for unsupervised anomaly detection and 

feature learning by learning compressed data 

representations. Their complexity and training time 

depend on the depth and width of the encoder/decoder 

networks. 

• Hybrid Models: Combinations like CNN-LSTM [16], 

CNN-LSTM-Attention [16], LSTMs integrated with 

physical models [18], or generative models combined 

with health indicators [29] aim to leverage the strengths 

of different architectures for improved performance, 

particularly in complex RUL prediction or integrated 

planning tasks [16, 20, 29]. Hybrid models aim to 

combine the strengths of different architectures, 

potentially leading to better performance but also 

increased model complexity and training requirements. 

• Generative Models: Used for data augmentation or 

directly for health prognostics [29]. 

Deep Reinforcement Learning (DRL): Applied to optimize 

maintenance scheduling and decision-making policies in 

dynamic and uncertain environments, learning through 

interaction [3, 19]. Multi-agent DRL addresses coordination in 

complex systems [3]. DRL shows promise for optimizing 

complex, sequential decision-making tasks like maintenance 

scheduling. However, DRL typically requires significant 

computational resources for training, often involving 

numerous simulation iterations, and careful environment 

design. 
 

Table 3. Summary of traditional Machine Learning techniques in PdM from reviewed literature 
 

AI Technique 

Typical Predictive 

Maintenance 

Task(s) 

Common Strengths 

Cited/Observed 

Common 

Weaknesses/Considerations 

Computational 

Efficiency 

(General) 

Key 

References 

Support Vector 

Machine (SVM) 

Fault Classification, 

Anomaly Detection 

Good with high-

dimensional data, non-

linear problems (using 

kernels) 

Training time can be significant, 

sensitive to kernel and parameter 

selection 

Moderate to High 

(Training) 
[7, 11, 12] 

Random Forests 

(RF) / Decision 

Trees (DT) 

Fault Classification, 

Feature Importance 

Assessment 

Interpretable 

(Decision Tree), 

Robust, Good 

accuracy (Random 

Forest) 

Random Forest less 

interpretable, single Decision 

Tree can overfit 

Moderate (Random 

Forest training can 

be high) 

[4, 11, 12, 

13, 21] 

k-Nearest 

Neighbors (k-

NN) 

Categorization, 

Outlier Detection 

Simple, non-

parametric method 

High inference cost for large 

datasets, sensitive to 'k' and 

distance metric 

Low (Training), 

High (Inference) 
[11, 27] 

Ensemble 

Methods 

Classification, 

Regression 

Improved accuracy 

and robustness 

Increased model complexity and 

computational requirements 
High [4, 9, 11] 

Clustering (e.g., 

k-Means, SOM) 

Anomaly Detection, 

System State 

Identification 

Unsupervised, finds 

inherent data 

structures 

Sensitive to algorithm 

parameters, efficiency varies by 

algorithm 

Varies (k-Means is 

relatively efficient) 
[21, 24, 27] 

Note: This table provides a general synthesis. The actual performance and efficiency of these algorithms are highly dependent on the specific dataset, implementation 

details, and the nature of the PdM task. Computational efficiency refers to general trends; for instance, SVM training can be demanding for very large datasets, 

while k-NN inference can be slow without appropriate indexing structures. 
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A summary of these Deep Learning architectures, detailing 

their application in PdM tasks, along with their common 

strengths, weaknesses, and computational aspects as observed 

in the reviewed corpus, is presented in Table 4. 

 

5.2 Key application domains and use cases 

 

AI-driven PdM is being applied across a diverse range of 

industrial sectors and equipment types, demonstrating its 

versatility. (CERQual Confidence: High) (Evidence for this 

finding is abundant across the corpus, covering numerous 

industries and equipment types consistently, indicating high 

coherence, adequacy, and relevance [See Appendix A, Finding 

1]). 

• Manufacturing: This domain is a prominent area for 

AI-driven PdM, with numerous studies leveraging 

empirical data from real enterprises. One such study 

presents a data-driven drift detection and diagnosis 

framework applied to a multiple tapping process in a 

real industrial setting [21]. It utilized sensor data 

(current, voltage, process parameters) and employed 

clustering algorithms (k-Means, DBSCAN) alongside 

Random Forests to identify and classify operational 

drifts, demonstrating the practical application of AI for 

improving the stability of heterogeneous production 

processes. Another study, conducted in the context of 

an automotive plant, linked product quality control 

from a machine tool to its predictive maintenance 

requirements [23]. It illustrated how machine 

degradation, monitored through sensor data and 

process parameters, could be correlated with part 

quality deviations, offering a framework for joint 

product–process–machine optimization using real-

world manufacturing data. Further illustrating the 

application of AI in critical industrial infrastructure, a 

recent study developed an IoT and Machine Learning-

based system for anomaly detection in electrical panels 

aimed at Predictive Maintenance and fire prevention 

[12]. The work involved an experimental setup using 

Arduino and Raspberry Pi platforms to collect real-time 

data (3,478 data points) including gas, temperature, 

humidity, current, and voltage from electrical panels 

under various simulated fault conditions leading to 

potential fire hazards. Several ML classifiers were 

evaluated (Decision Tree, Gaussian Naive Bayes, 

Support Vector Machine, and Gaussian Process 

Classifier). The study demonstrated that the Gaussian 

Process Classifier (GPC) achieved the highest 

performance, with an accuracy of 99.56% and an AUC 

of 0.99, in effectively distinguishing between normal 

and anomalous (pre-fire) conditions. This case study 

underscores the practical value of integrating IoT 

sensor data with robust ML algorithms for Predictive 

Maintenance of critical electrical infrastructure, 

enabling early anomaly detection and proactive safety 

interventions based on empirical evidence. Other 

applications within manufacturing include general 

systems [1, 14, 16, 17, 22, 23], specific equipment such 

as injection molding machines [1], industrial robots 

[18], power press motors [13], and textile knitting 

machines [4]. 

• Aerospace: Aircraft turbofan engines (widely used 

benchmark datasets) [5, 16, 19]. 

• Automotive: Vehicle components and systems [8]. 

• Energy & Utilities: Electrical distribution panels [12], 

electric motors [13, 20]. 

• Transportation: Railcar bearings [10]. 

• The primary use cases reported align with the core PdM 

tasks: 

Fault Detection and Diagnosis: Identifying anomalous 

behavior and classifying specific fault types [4, 7, 9, 12, 13, 

21, 24, 25, 27, 28]. 

• Prognosis and RUL Prediction: Estimating the 

remaining time until failure [4-6, 13, 16, 18, 19, 29]. 

This is often considered the most challenging but 

valuable task. 

 

Table 4. Summary of Deep Learning architectures in PdM from reviewed literature 

 

AI Technique 

Typical Predictive 

Maintenance 

Task(s) 

Common Strengths 

Cited/Observed 

Common 

Weaknesses/Consideratio

ns 

Computational 

Efficiency (General) 

Key 

References 

Convolutional 

Neural 

Networks 

(CNNs) 

Fault Diagnosis 

(e.g., from vibration 

signals, images) 

Automatic extraction of 

spatial features 

Data-hungry, 

computationally intensive 

to train 

High (Training), 

Varies (Inference) 

[4, 6, 7, 16, 

19] 

Recurrent 

Neural 

Networks 

(RNNs) (e.g., 

LSTM, GRU) 

Remaining Useful 

Life Estimation, 

Health Index 

Forecasting 

Models temporal 

dependencies and long-

term context 

Data-hungry, slower 

training, risk of 

vanishing/exploding 

gradients (mitigated in 

LSTM/GRU) 

High (Training) 
[5, 6, 13, 

16, 19, 29] 

Autoencoders 

(AE) 

Anomaly Detection, 

Feature Learning 

Unsupervised learning, 

effective for 

dimensionality reduction 

Reconstruction error may 

not capture all anomalies 

Moderate to High 

(Training) 
[6, 7, 26] 

Deep 

Reinforcement 

Learning (DRL) 

Maintenance 

Scheduling 

Optimization 

Learns optimal sequential 

decision-making policies 

Very data-hungry, 

computationally intensive, 

needs complex 

environment modeling 

Very High (Training) [17, 19] 

Hybrid Models 

Complex Remaining 

Useful Life 

Estimation or 

Diagnosis 

Can combine strengths of 

different architectures, 

potentially better 

performance 

Increased model 

complexity and longer 

training times 

High (Training) 
[16, 18, 20, 

29] 

Note: This table offers a general overview. Deep Learning models are generally data-hungry and computationally intensive to train, often requiring specialized 

hardware (e.g., GPUs). Their inference efficiency can vary. Performance is contingent upon architecture design, hyperparameter tuning, dataset size and quality. 
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• Maintenance Scheduling and Optimization: 

Determining the optimal time and type of maintenance 

intervention [1, 14, 17, 19, 23, 29]. This increasingly 

involves integration with production schedules [16, 29]. 

• Condition Monitoring and Health Assessment: 

Tracking the overall health status using calculated 

indices or learned representations [18, 22, 26, 27]. 

• Linking Machine Health to Process Outcomes: 

Connecting machine degradation signals to impacts on 

product quality [23] or process efficiency [21]. 

 

5.3 Data aspects: Sources, processing, and challenges 

 

Data is the cornerstone of AI-driven PdM. The reviewed 

articles highlight the use of diverse data sources and the 

critical importance of data processing, while consistently 

identifying data-related issues as major challenges. (CERQual 

Confidence: High) (Confidence is high, mirroring Finding 3 in 

Appendix A, due to strong coherence and adequacy of 

evidence across numerous studies detailing data sources, 

processing steps, and challenges). 

• Data Sources: Vibration sensors [4, 13, 18, 19], 

temperature sensors [12, 13, 20], acoustic sensors [8], 

current/voltage sensors [12, 21], pressure sensors, 

process parameters (speeds, loads, flow rates) [21, 22, 

24], event logs [22], quality measurements [23], 

thermal imaging [12, 20], and operational context data 

are commonly used. Multi-sensor fusion approaches 

are frequent [12, 28]. 

• Data Processing: Standard steps include cleaning, 

handling missing values, normalization/scaling [4], 

noise reduction [6], outlier detection/removal [13, 26], 

and time-series segmentation. Feature engineering (e.g., 

statistical features from time/frequency domains [8]) is 

still common, although DL aims to reduce this need [5]. 

Feature selection techniques (e.g., RFE [12], 

Permutation Importance [4]) are used to identify 

relevant inputs. 

• Data Challenges: These remain a significant bottleneck:  

o Data Availability/Scarcity: A recurrent challenge 

is the lack of sufficient historical data, particularly 

comprehensive run-to-failure datasets, which 

critically hinders robust model training and 

validation [7, 8, 15, 18]. For instance, the scarcity 

of failure data in real-world automotive fleets 

often necessitates reliance on simulated data or 

limits the complexity of deployable ML models, 

potentially affecting their generalization to 

unseen failure modes, as highlighted in recent 

research [8]. Similarly, in the context of industrial 

robots, it has been noted that obtaining extensive 

degradation data can be time-consuming and 

costly, often leading to models being trained on 

limited operational histories which may not 

capture the full spectrum of wear patterns [18]. To 

mitigate such scarcity, the use of generative 

models for data augmentation is an emerging 

research avenue. One such effort aims to create 

synthetic but realistic operational data to 

supplement sparse real-world datasets [29]. 

o Data Quality: The performance of AI models is 

also significantly impacted by issues such as noise, 

missing values, sensor drift, and inconsistent 

labeling in the available data [9, 15, 25]. For 

example, recent work on anomaly detection has 

emphasized that noisy sensor data or ambiguous 

labeling can lead to a high rate of false positives, 

thereby diminishing the trustworthiness and 

practical utility of PdM systems; a specific 

mitigation methodology to address this impact 

has been proposed [25]. In the context of resilient 

PdM model development, it has been 

acknowledged that adversarial noise—even slight 

perturbations—can drastically degrade model 

performance, illustrating the sensitivity of AI 

techniques to data integrity [9]. Furthermore, 

obtaining high‑quality, consistently labeled data 

remains a major hurdle for Small and 

Medium‑sized Enterprises looking to implement 

ML‑based PdM solutions [15]. 

o Data Heterogeneity & Integration: Combining 

data from diverse sources with different formats, 

semantics, and sampling rates is complex [7, 11, 

21, 28]. Semantic frameworks are proposed [17]. 

o Imbalanced Data: Failure events are often rare 

compared to normal operation, requiring specific 

techniques during training [8, 25]. 

o Data Confidentiality & Security: Protecting 

sensitive operational data is crucial [9, 17]. 

 

5.4 Integration approaches and frameworks 

 

Recognizing that PdM does not operate in isolation, several 

articles focus on integration and systematic implementation 

frameworks, representing a key trend towards more holistic 

asset management. (CERQual Confidence: Moderate) 

(Confidence is moderate, mirroring Finding 2 in Appendix A, 

reflecting a clear trend but with varied approaches and fewer 

large-scale validated implementations reported in this corpus 

compared to core AI techniques). 

• Integration with Production Planning: Optimizing 

maintenance schedules jointly with production lot-

sizing to minimize overall costs and disruption [16, 29]. 

This requires predicting health based on operational 

parameters [29]. 

• Integration with Quality Control: Linking machine 

health degradation directly to potential impacts on 

manufactured part quality [23]. 

• Integration via Digital Twins (DTs): The use of DTs as 

comprehensive platforms for integrating real-time data, 

physics-based models, AI algorithms, and visualization 

capabilities is increasingly advocated to support 

holistic PdM [7, 14, 18]. DTs can facilitate advanced 

simulation and 'what-if' analysis for maintenance 

decisions [18], and offer a dynamic, up-to-date 

representation of asset health. Standardization 

roadmaps for DT-based PdM are being proposed to 

guide their development and interoperability [7]. 

However, the practical implementation of DTs, 

especially for Small and Medium-sized Enterprises 

(SMEs), faces significant cost and technical barriers. 

The development and maintenance of high-fidelity DTs 

can be resource-intensive, requiring substantial 

investment in sensorization, data infrastructure, 

modeling expertise, and computational power [7, 8]. 

Technical barriers include challenges in data 

integration from heterogeneous sources, ensuring real-

time synchronization between the physical asset and its 
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digital counterpart, and the complexity of validating 

and maintaining the twin over the asset's lifecycle [7, 

17]. In the context of advanced ML solutions, some 

studies have emphasized that these challenges are often 

amplified for SMEs due to limited financial resources, 

a skills gap in areas like data science and complex 

system modeling, and the lack of standardized, cost-

effective DT platforms tailored to their needs [15]. 

Therefore, while DTs offer transformative potential for 

PdM, a careful feasibility analysis considering these 

cost, technical, and organizational aspects is crucial, 

particularly for SMEs, before embarking on full-scale 

DT integration. 

 

 
 

Figure 4. Levels of PdM integration approaches 
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• Semantic Frameworks: Utilizing ontologies and 

semantic technologies to integrate heterogeneous data 

sources and provide context for analysis in cloud 

environments [17]. 

• Implementation Methodologies: Structured methods 

are proposed to guide the implementation of ML-based 

PdM, especially for SMEs, covering data acquisition, 

model selection, validation, and deployment [15]. 

• Hybrid Intelligence Systems: Frameworks combining 

AI capabilities with human expertise through interfaces 

like Digital Intelligent Assistants (DIAs) for 

collaborative decision-making [14]. 

Figure 4 illustrates different levels of integration discussed 

in the literature, moving from standalone PdM to deeply 

integrated enterprise solutions. 

 

5.5 Emerging trends and techniques 

 

Beyond the established applications, the literature 

highlights several emerging research frontiers aimed at 

overcoming current limitations and enhancing PdM 

capabilities. (CERQual Confidence: Moderate) (Confidence is 

moderate, mirroring Finding 4 in Appendix A, as these are 

identifiable trends but represent newer research areas with a 

comparatively smaller or less mature evidence base within this 

specific corpus). These include a strong focus on: 

• Uncertainty Quantification: Developing models that 

not only predict RUL but also provide associated 

confidence levels or probability distributions [5, 19]. 

• Deep Reinforcement Learning (DRL): Applying DRL 

for complex, adaptive scheduling policies that learn 

optimal actions through interaction [3, 19]. 

• Explainable AI (XAI): Developing approaches that 

render the predictions from AI models transparent and 

comprehensible to human experts [8, 26]. 

• Cybersecurity Resilience: Designing AI-based PdM 

systems robust against adversarial data manipulation or 

model attacks [9]. 

• Systematic Implementation: Devising practical 

methodologies and frameworks to guide successful 

adoption, particularly addressing the needs and 

constraints of SMEs [15]. 

• Hybrid Intelligence: Integrating human knowledge and 

reasoning capabilities with AI systems, potentially via 

DIAs [14]. 

 

 

6. DISCUSSION 

 

The synthesized findings reveal a dynamic and rapidly 

evolving field where AI is increasingly integral to realizing the 

full potential of PdM. This section discusses the key trends, 

persistent challenges, implications, and future research 

directions emerging from the reviewed literature [1-29]. 

 

6.1 Key trends and developments 

 

The review highlights a significant shift towards data-

driven, AI-powered PdM. The dominance of Deep Learning 

(Finding 1, High Confidence) is undeniable, particularly for 

handling complex sensor data in RUL prediction and 

diagnostics [5, 6, 16, 23, 26]. This trend is coupled with a 

growing awareness of the need for uncertainty quantification 

and explainability (Finding 4, Moderate Confidence) [5, 7, 16, 

23]. As models become more complex, ensuring trust and 

enabling informed decision-making requires understanding 

prediction confidence and model reasoning. 

Another major trend is the push towards integration 

(Finding 2, Moderate Confidence). Standalone PdM models 

are evolving into components of larger, interconnected 

systems that link maintenance insights with production 

scheduling [16, 29], quality control [23], and enterprise-level 

planning, often orchestrated through Digital Twin platforms [7, 

14, 18] or semantic frameworks [17]. This reflects a move 

towards optimizing overall system performance rather than 

just individual asset maintenance. 

Furthermore, there is increasing interest in automation and 

optimization using techniques like DRL [3, 19] and the 

development of hybrid approaches combining AI with physics 

[18] or human intelligence [14] to overcome limitations of 

purely data-driven methods, especially in data-scarce 

situations. Finally, research is actively addressing practical 

implementation challenges, including security [9] and 

methods tailored for SMEs [15]. 

 

6.2 Major challenges and limitations 

 

Despite significant progress, the review confirms that 

several major challenges persist, hindering the seamless 

adoption and scaling of AI-driven PdM. Data-related issues 

remain the most critical bottleneck (Finding 3, High 

Confidence). Obtaining sufficient volumes of high-quality, 

well-labeled data, especially run-to-failure data, is a universal 

challenge [7, 8, 15, 18]. Integrating and managing 

heterogeneous data from multiple sources also presents 

significant technical difficulties [7, 15, 22, 28]. 

Model clarity and trustworthiness (also related to Finding 3, 

High Confidence) constitute a further significant obstacle [7, 

8, 23]. The opaque characteristics of intricate DL models 

impede the ability of engineers and upkeep teams to 

comprehend and rely on their results, thereby obstructing 

adoption and effective application. Although XAI techniques 

are emerging as a means to mitigate this opacity and build trust, 

these methods themselves come with limitations that need 

critical consideration [26]. For instance, many post-hoc XAI 

methods (e.g., LIME, SHAP) provide local explanations for 

specific predictions, which might not always offer a complete 

global understanding of the model's behavior, especially for 

highly non-linear and complex Deep Learning models often 

used in PdM. Furthermore, the "explanations" generated by 

XAI can sometimes be approximations or simplifications of 

the true model logic, and their faithfulness to the underlying 

model can be difficult to verify [30]. The applicability and 

scalability of certain XAI techniques to very large datasets or 

extremely deep architectures also remain a challenge, 

potentially adding computational overhead. This need is 

emphasized in recent work focusing on explainable 

approaches tailored to specific complex architectures [26]. 

Therefore, while XAI is a crucial step forward, the 

development of truly workable, dependable, transparent, and 

computationally efficient XAI solutions that are readily 

deployable and genuinely insightful for end-users in industrial 

PdM remains a significant research endeavor. 

Other significant challenges identified include: 

• Ensuring model generalization across different 

operating conditions or similar assets [7, 8, 21]. 

• Achieving seamless system integration with legacy 

IT/OT systems [7, 17]. 
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• Addressing cybersecurity vulnerabilities inherent in 

interconnected, data-driven systems [9]. 

• Overcoming the high implementation costs and the 

need for specialized skills [7, 10, 15]. 

• Managing false positives in anomaly detection systems 

[25]. 

 

6.3 Implications 

 

The successful implementation of AI-driven PdM carries 

significant implications across multiple dimensions: 

• Operational: Substantial improvements in asset uptime, 

reliability, and overall equipment effectiveness (OEE); 

optimized maintenance resource allocation; potential 

for condition-based adjustments to operating 

parameters [1, 6, 14, 15, 17, 23]. 

• Economic: Reduced maintenance costs (labor, parts), 

minimized production losses due to unplanned 

downtime, potentially extended asset life reducing 

CapEx, and enabling new service-based business 

models [1, 2, 7, 11, 22]. 

• Safety & Environmental: Enhanced safety through 

proactive identification and mitigation of potential 

failures; prevention of catastrophic failures with 

potential environmental impact [6, 7, 28]. 

• Workforce: A necessary evolution of maintenance 

roles towards data analysis, system interpretation, and 

collaboration with AI tools, demanding new skill sets 

and training approaches [7, 10, 14, 15]. 

 

6.4 Future research directions 

 

The challenges and trends identified point towards several 

key areas for future research: 

• Robust AI for Imperfect Data: Developing AI/ML 

techniques that are inherently more robust to noise, 

missing data, limited labeled data (few-shot learning, 

transfer learning), and data imbalance [8, 12, 25]. This 

includes exploring self-supervised learning approaches 

to leverage large unlabeled datasets prevalent in 

industry, and developing generative models (e.g., 

GANs, VAEs) specifically tailored for augmenting 

scarce run-to-failure data in PdM contexts [29]. 

• Trustworthy AI (XAI & Uncertainty): Advancing 

practical XAI methods tailored for PdM time-series 

data and improving the reliability and communication 

of uncertainty estimations [5, 7, 16, 23]. Future work 

should focus on developing XAI techniques that are not 

only post-hoc but also inherently interpretable (e.g., 

attention mechanisms in DL models), and on 

quantifying different sources of uncertainty (aleatoric 

vs. epistemic) to provide actionable confidence scores 

for maintenance decisions [5]. 

• Hybrid & Physics-Informed AI: Methodically 

combining domain knowledge and physics-based 

models with data-driven AI approaches to improve 

accuracy, interpretability, and data efficiency [8, 18]. 

This could involve, for example, developing hybrid 

models that integrate first-principle degradation 

models with Deep Learning techniques [18] to better 

capture both known physical phenomena and 

unmodeled data-driven patterns, particularly in systems 

with well-understood failure physics but noisy sensor 

data. 

• Scalable & Standardized Platforms: Developing 

standardized architectures, data models (e.g., semantic 

frameworks [17]), and MLOps practices to facilitate 

scalable deployment and integration, potentially 

leveraging Digital Twins [7]. A key industry need is the 

development of open-source or interoperable platforms 

for PdM that reduce vendor lock-in and facilitate the 

integration of AI tools from different providers. 

Research into MLOps for PdM is crucial for managing 

the lifecycle of deployed models, including continuous 

monitoring, retraining, and versioning in dynamic 

industrial environments. 

• Cybersecurity & Resilience: Designing inherently 

secure AI algorithms and PdM systems resistant to data 

poisoning or adversarial attacks [9]. This includes 

research into robust training strategies against 

adversarial examples, developing differential privacy 

techniques for PdM data, and designing secure 

architectures for distributed PdM systems, for instance, 

leveraging blockchain for data integrity. 

• DRL & Autonomous Systems: Exploring DRL further 

for fully autonomous maintenance decision-making 

and multi-agent coordination in complex industrial 

environments [3, 19]. Specific needs include 

developing DRL agents that can handle partial 

observability, learn from sparse rewards common in 

maintenance tasks, and ensure safe exploration during 

learning in safety-critical systems. Multi-agent DRL 

approaches for coordinating maintenance across 

multiple machines or production lines [3] also warrant 

further investigation. 

• Human-AI Collaboration: Researching effective 

human-computer interfaces (like DIAs [14]) and 

workflows for synergistic collaboration between 

maintenance personnel and AI systems. This involves 

designing intuitive interfaces that can present complex 

AI insights (e.g., XAI outputs, uncertainty measures) to 

non-expert users and facilitate human-in-the-loop 

learning where operator feedback refines AI models. 

This approach has been suggested in recent research on 

Digital Intelligent Assistants [14]. 

• Real-World Validation & Benchmarking: Increased 

focus on validating proposed methods on diverse, real-

world industrial datasets beyond standard benchmarks, 

and establishing clear benchmarking protocols [7, 11, 

15]. There is a pressing need for more publicly 

available, high-quality industrial datasets that include 

diverse fault modes and operational conditions. 

Furthermore, developing standardized benchmarking 

methodologies, including common metrics and 

evaluation procedures, will be crucial for objectively 

comparing different PdM approaches. 

• Federated Learning for Collaborative and Privacy-

Preserving PdM: Exploring Federated Learning (FL) 

frameworks to enable multiple organizations (or 

multiple plants within an organization) to 

collaboratively train robust PdM models without 

sharing their raw sensitive data. This addresses both 

data scarcity (by leveraging larger, more diverse 

datasets) and data privacy concerns, which are 

significant barriers in many industrial sectors [9, 17]. 

Research should focus on FL algorithms robust to data 

heterogeneity (non-IID data) across participants and 

communication efficiency. 
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7. CONCLUSION 

 

This systematic review has synthesized the findings from 29 

peer-reviewed articles published in the last 10 years on the 

application of Artificial Intelligence to improve Predictive 

Maintenance, identified through a targeted Scopus search. The 

analysis validates that AI, notably Deep Learning, is quickly 

reshaping the PdM field, facilitating higher accuracy in fault 

diagnosis, more precise Remaining Useful Life estimation, 

and better-planned maintenance scheduling throughout 

diverse industrial sectors. 

There is a clear trend towards leveraging complex models 

like CNNs, LSTMs, and Autoencoders, often integrated within 

broader systems involving IoT data streams and Digital Twins. 

Key advancements focus not only on predictive accuracy but 

also on addressing critical aspects like model uncertainty, 

explainability (XAI), integration with production planning, 

and automated decision-making through techniques like Deep 

Reinforcement Learning. 

However, significant challenges persist, primarily centered 

around data availability and quality, model interpretability and 

trust, system integration complexity, cybersecurity, and the 

practical hurdles of implementation, especially for SMEs. 

Despite these obstacles, the potential benefits of AI-driven 

PdM – improved operational efficiency, reduced costs, 

enhanced safety, and extended asset life – are substantial, 

driving continued research and development. 

Future efforts should focus on creating more robust, 

trustworthy, integrated, and scalable AI solutions, alongside 

developing the necessary skills and methodologies for 

successful real-world deployment. The convergence of AI 

with other Industry 4.0 technologies holds the promise of 

enabling truly intelligent, adaptive, and ultimately 

autonomous maintenance systems, marking a fundamental 

shift in industrial asset management. This review provides a 

structured overview of this progress, highlighting the 

achievements while emphasizing the critical areas requiring 

continued research and innovation. 
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APPENDIX 

 

Table A1. CERQual qualitative evidence profile for key 

review findings 

 
Finding 1: AI, particularly DL (CNNs, LSTMs, AEs), 

dominates recent PdM research for tasks like RUL prediction 

and fault diagnosis, showing potential for high accuracy. 

Studies 

Contributing 

to Finding  

[4, 5, 6, 7, 13, 14, 16, 18, 19, 29]  

Assessment of 

CERQual 

Components 

Methodological Limitations: Moderate 

concerns (validation often on benchmark 

datasets [e.g., 5, 6, 19] or specific cases [e.g., 

4, 13]; varying reporting quality).  

Coherence: High (consistent trend reported 

across numerous studies).  

Adequacy: High (rich data from many studies 

detailing methods/results).  

Relevance: High (directly addresses RQ1 & 

RQ2). 

CERQual 

Assessment of 

Confidence 

High 

Explanation 

for Confidence 

Assessment 

Confidence upgraded to High. Despite 

moderate methodological concerns in some 

primary studies regarding validation scope, 

the sheer volume, consistency (coherence), 

and richness (adequacy) of evidence across 

the corpus strongly supports this finding's 

representativeness. 

Finding 2: Integration of AI-PdM with broader systems 

(Production Planning, Quality Control, Digital Twins) is a 

key trend, aiming for holistic optimization. 

Studies 

Contributing 

to Finding 

[7, 14, 16, 18, 22, 24, 23] 

Assessment of 

CERQual 

Components 

Methodological Limitations: Moderate 

concerns (many studies propose frameworks 

[7, 14, 18, 24] or simulations [16, 29] with 

limited large-scale industrial validation 

reported within these papers).  

Coherence: Moderate (general trend towards 

integration is clear, but specific approaches 

vary significantly).  

Adequacy: Moderate (sufficient studies 

discuss integration, but detailed 

implementation data is less rich).  

Relevance: High (directly addresses RQ2 & 

RQ4). 

CERQual 

Assessment of 

Confidence 

Moderate 

Explanation 

for Confidence 

Confidence remains Moderate. While the 

trend towards integration is coherent and 
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Assessment relevant, the evidence base contains many 

conceptual frameworks or specific 

simulations, with fewer detailed accounts of 

fully validated, large-scale industrial 

implementations within this corpus. 

Coherence on how to integrate varies. 

Finding 3: Data-related issues (availability, quality, 

heterogeneity, labeling) and model interpretability (XAI) 

remain major, persistent challenges in AI-driven PdM. 

Studies 

Contributing 

to Finding 

(Examples) 

[4, 7, 9, 13, 14, 15, 16, 18, 19, 21, 22, 23, 28] 

Assessment of 

CERQual 

Components 

Methodological Limitations: Minor concerns 

(these challenges are widely reported across 

studies with diverse methods, strengthening 

the finding).  

Coherence: High (very consistent reporting of 

these issues across almost all relevant 

studies).  

Adequacy: High (rich descriptions and 

examples provided in numerous studies). 

Relevance: High (directly addresses RQ3). 

CERQual 

Assessment of 

Confidence 

High 

Explanation 

for Confidence 

Assessment 

Confidence remains High due to the strong 

coherence and consistency with which data 

and interpretability challenges are reported 

across a large number of diverse studies 

within the corpus. The evidence is rich and 

directly relevant to identifying key barriers. 

Finding 4: Emerging research focuses on uncertainty 

quantification, DRL for scheduling, cybersecurity resilience, 

and systematic implementation methods. 

Studies 

Contributing 

to Finding 

(Examples) 

[1, 2, 5, 6, 9, 10, 15, 17, 23] 

Assessment of 

CERQual 

Components 

Methodological Limitations: Moderate 

concerns (some areas like DRL [3, 19] and 

security [9] are relatively newer with fewer 

validation studies compared to core ML/DL). 

Coherence: Moderate (different emerging 

areas addressed by distinct subsets of studies, 

coherence within each area is good). 

Adequacy: Moderate (sufficient studies to 

identify trends, but data for some emerging 

areas is less extensive than core themes). 

Relevance: High (directly addresses RQ4). 

CERQual 

Assessment of 

Confidence 

Moderate 

Explanation 

for Confidence 

Assessment 

Confidence remains Moderate. These trends 

are clearly identifiable and relevant, 

supported by adequate data. However, some 

areas are more nascent, with fewer 

contributing studies or less extensive 

validation reported within this specific corpus 

compared to the more established findings, 

slightly reducing confidence. 
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