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Watershed management is a human effort to control the reciprocal relationship between 

natural resources and humans and all their activities to foster sustainability and harmony 

of ecosystems and increase natural resources for humans. Watershed damage results in 

various natural disasters related to land use and cover changes, such as flooding, erosion, 

and sedimentation. Krueng Baro watershed is one of the watersheds that has suffered 

severe damage. This research aims to find a sustainable spatial plan to mitigate natural 

disasters that arise in the study area. High-resolution satellite image data obtained from 

Google Earth Engine (GEE) for Sentinel 2A imagery as the great spatial resolution for land 

observation and change detection. Furthermore, land use and land cover (LULC) 

classification uses unsupervised classification. After identifying the LULC, the areas 

affected by flooding from year to year can be identified with a very well-processed analysis 

through the random forest (RF) principle, which was previously considered by analyzing 

several supporting variables so that the exact area affected by flooding other than the 

permanent water area is known. The supporting variables used in this research are the 

amount of rainfall, slope, river density, and soil type. At the same time, the discharge 

analysis uses a mock model to estimate the runoff discharge from rainfall and other 

variables that affect it. A scenario that will be used to overcome flooding in the Krueng 

Baro watershed will be recommended. 
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1. INTRODUCTION

Changes in land use and land cover (LULC) are among the 

key drivers of global environmental shifts, often leading to 

negative impacts due to population growth and socio-

economic expansion [1]. Understanding LULC dynamics and 

their consequences is essential for planning future 

interventions in affected areas [2]. These transformations 

directly influence community well-being by altering 

environmental conditions, such as increasing land degradation 

risk and flooding [3]. 

Water resources management and hydrological risks are of 

significant concern in our society. A contributing part of 

hydrological hazards worldwide, floods, erosion and 

sedimentation are among the most frequent and 

environmentally damaging natural disasters. Globally, 

between 1994 and 2013, floods accounted for 43% of recorded 

natural disasters, claiming nearly 2.5 billion lives [4]. Flooding 

is considered the most devastating natural disaster in the 

world's major cities, resulting in ever-increasing economic 

losses to the community [5]. Flooding is a complex and 

dynamic process influenced by the interaction between 

watershed management and various hydro-meteorological, 

hydrogeological, and geomorphological factors [6, 7]. 

The Krueng Baro watershed in Pidie Regency is the longest 

of the six watersheds in Pidie Regency. Damage to the Krueng 

Baro watershed causes LULC to be increasingly vulnerable to 

water flow appropriately and quickly for the survival of the 

majority of the population of Pidie Regency. The Krueng Baro 

watershed is an area frequently affected by floods, occurring 

on average three times a year. Based on an analysis of land use, 

rainfall, land slope, and soil type, this area is highly susceptible 

to flooding [8]. It has led to several disastrous impacts on the 

community. The watershed is also vulnerable to changes in 

LULC, with the primary factor being deforestation [9]. 

It is necessary to address this damage by finding a treatment 

model suitable for the Krueng Baro watershed landscape. The 

development of logistic regression models to relate LULC to 

water resources and hydrological risks has yet to be used 

explicitly in solving the problems that occur, such as flooding, 

erosion, and sedimentation [10-12]. This model has been 

widely used in modelling urban and regional growth, though 

less so than the Cellular Automata (CA)-Markov model. CA-

Markov does not use variable drivers, only temporally based 

on the probability of change from previous data [13, 14]. 

LULC change has the most significant effect on increasing 
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the surface flow coefficient value, which impacts increasing 

peak discharge due to high runoff [15]. LULC changes in the 

Krueng Baro watershed indicate changes in the ecosystem that 

can threaten the function of the area. One way to do this is by 

utilizing remote sensing technology [16, 17].  

The Sendai Framework for Disaster Risk Reduction 2015-

2030 highlights the crucial role of land use planning and policy 

in addressing the root causes of disaster risk, such as rapid and 

unregulated urbanization, poor land management, and the lack 

of regulations and incentives for private investment in disaster 

risk reduction [18]. Although global efforts to integrate flood 

risk management into urban land use planning have increased, 

the practical implementation of these strategies still faces 

considerable challenges [19]. 

Properly designed land-use strategies can effectively reduce 

flood risks by restricting development in vulnerable areas, 

enforcing building regulations to minimize runoff, and 

allocating designated routes and open spaces to improve 

response and recovery efforts [20]. A best-fit model that 

spatially links LULC change to discharge and sedimentation 

for developing an area and appropriate management system 

has yet to be found. So, this research aims to build a LULC 

management model to mitigate flooding in the Krueng Baro 

watershed.  

 

 

2. MATERIAL AND METHOD 

 

2.1 Study location 

 

The Krueng Baro watershed is situated in Pidie Regency, 

Aceh, Indonesia, covering an area of approximately 210.75 

km². Geographically, it lies between 96°0’0” and 96°21’20” 

eastern longitude (EL) and 5°3’30” and 5°21’20” northern 

latitude (NL) (Figure 1). Based on the official boundaries 

defined by the Ministry of Home Affairs in 2022, the majority 

of the Krueng Baro watershed is located within Pidie Regency. 

However, a small section of its forested area extends into Aceh 

Besar Regency. 

In the Krueng Baro watershed, there is the Krueng Baro 

River, which is 29.405 km long, up to the outlet of the 

Keumala Dam. The downstream section of the Krueng Baro 

river is situated in Blang Asan Village, within Sigli City, while 

the upstream originates in Geuni Village, located in Keumala 

District. The Krueng Baro River is the primary source of 

irrigation water needs in the Krueng Baro area and PDAM 

Tirta Mon Krueng Baro, so it is invaluable in meeting water 

needs, especially in Pidie Regency. 

The degradation of the Krueng Baro River is generally 

caused by the massive extraction of excavation C for building 

materials, all of which come from within the river [8]. Based 

on data from the nearest rainfall stations to the Krueng Baro 

Watershed—namely Sarah Mane, Tangse, and Tiro—the 

average annual rainfall between 2012 and 2021 ranged from 

1,586 to 1,907.3 mm/year at Sarah Mane station, 2,135.4 to 

2,479.0 mm/year at Tangse station, and 2,908.4 mm/year at 

Tiro station. 

 

2.2 Satellite imagery 

 

The satellite imagery used in this study is from Sentinel-2A, 

which was launched in 2015 and provides the latest data for 

water area identification. Observations were conducted for the 

years 2016, 2020, and 2024. The use of time series or long-

term analysis allows for detecting changes in LULC over time. 

With Sentinel-2’s high spatial resolution—10 meters for 

multispectral bands and 60 meters for the panchromatic 

band—this study can capture finer details of the Earth's surface, 

enabling a more precise identification of LULC within the 

watershed area.. 

These classifications were determined based on the 

watershed's landscape characteristics, including: (1) forest, (2) 

cropland, (3) swamp, (4) rice fields, (5) built-up areas, (6) dry 

bare land, (7) wet bare land, and (8) water body.  

This research has provided an overview of LULC in the 

Krueng Baro watershed from 2016 to 2024. To analyze 

landscape transformations, LULC mapping was conducted 

using Google Earth Engine (GEE). Sentinel-2A imagery, 

processed through GEE, can be used to detect LULC changes 

[21]. As part of machine learning techniques, the RF algorithm 

enables unsupervised LULC classification for more accurate 

analysis. 

The RF model uses spectral features (e.g., bands B2, B4, B5, 

B6) and indices, e.g., Normalized Difference Vegetation Index 

(NDVI) and Normalized Difference Built-up Index (NDBI), to 

classify land use groups, including urban areas, farmland, 

forests, and water bodies. To train the RF model, pseudo-

labels are constructed using clustering techniques for 

classified. With ensemble learning, which combines the 

predictions of several decision trees to enhance classification 

or regression accuracy principles, RF's strength is its capacity 

to handle high-dimensional data while minimizing overfitting 

and guaranteeing correct results. The workflow is useful for 

identifying land use without needing labelled datasets because 

it includes data preparation, feature extraction, model training, 

and validation. 

Leo Breiman first introduced RF introduced 2001 as a 

method that can improve accuracy by randomly generating 

attributes for each node. RF consists of a collection of decision 

trees that classify data into specific classes [22]. Decision trees 

are created by defining a root node and ending with several 

leaf nodes to obtain the final result. The process of forming 

decision trees in the RF method is similar to the Classification 

and Regression Tree (CART) process [23], especially in 

detecting the unsupervised classification for LULC. However, 

RF does not perform pruning. 

The first stage creates the decision tree with a randomly 

selected subset from the training sample and a random 

selection of features. This approach introduces correlation 

almost exclusively between individual decision trees at these 

two levels of randomization, which typically improve the 

accuracy of the model and lessen the risk of overfitting 

(assessed by the overall accuracy). To assess the classification 

errors resulting from this method in comparison to a purely 

random classification, the Kappa test is applied, as outlined in 

the following equation [24]. 

 

Overall accuracy = 
𝑁𝐴𝐴 + 𝑁𝐵𝐵 + 𝑁𝐶𝐶

𝑁
 × 100% (1) 

 

Kappa = 
 𝑁 ∑ 𝑁𝑗𝑗

𝑘
𝑗=1 −∑ 𝑁𝑗𝑅𝑁𝑃𝑗

𝑘
𝑗=1

𝑁2− ∑ 𝑁𝑗𝑅𝑁𝑃𝑗
𝑘
𝑗=1

 (2) 

 

where, N is total points, k is number of classes, R is test classes, 

and P is classified class. 
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Figure 1. Research location 
Source: https://www.nationsonline.org/oneworld/map/indonesia_map.htm 

 

The key variables for analyzing LULC, particularly built-up 

areas, concerning flood disasters include population size, 

growth rate, rainfall, slope gradient, GDP, proximity to roads, 

rivers, and city centers, as well as existing LULC patterns. Due 

to Indonesia's susceptibility to natural catastrophes and 

various available data, this analysis could be further optimized 

to enhance the prediction accuracy per region [12]. 

 

2.3 Mock method 

 

The Mock model is a popular rainfall-runoff model used to 

predict the hydrological response of a watershed. The rainfall 

data is then translated into river discharge using the model 

which is an essential sector for water availability analysis, 

water resources management and disaster mitigation, mostly 

for flood prevention. This model relies on rainfall data as its 

primary input and processes it using various parameters that 

represent watershed characteristics, including infiltration rate, 

evapotranspiration, and surface flow [25].  

The calculation of discharge using the Mock Method 

involves preparing essential data, including average regional 

rainfall (P), potential evapotranspiration (Eto), number of 

rainy days (n), groundwater recession flow factor (k), and 

infiltration rate coefficient (i). Streamflow data is obtained 
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using the empirical formula of the Mock Method. This method 

requires climatological data, as well as the area and land use 

of the catchment, to calculate streamflow. The method 

assumes that rainfall over the watershed is partially lost to 

evaporation, partially becomes direct runoff, and partially 

infiltrates the soil. When the soil's moisture capacity is 

exceeded, the water will flow downward due to gravity as 

percolation, reaching saturated aquifers and becoming 

groundwater, eventually discharging into rivers as base flow. 

The Mock Model is based on the concept of water balance 

(Figure 2) [25, 26]. 

 

 
 

Figure 2. Calculation steps of the mock method 

 

Water surplus (WS) influences infiltration rates and total 

runoff, which are components of streamflow.), water surplus 

(WS) affects infiltration and total runoff values. 

 

WS = P – Ea (3) 

 

where, WS is water surplus, P is precipitation, and Ea is 

evapotranspiration 

Two components influence the magnitude of total runoff 

(R): base flow (BF) and direct runoff (DRO). The magnitude 

of base flow depends on the extent of infiltration and changes 

in groundwater storage [25, 27]. 

 

BF = I – ΔS (4) 

 

where, BF is base flow, I is infiltration, and ΔS is groundwater 

storage change. 

 

DRO   = WS – I (5) 

 

IGWS  = GWS t -1 (6) 

 

ΔS  = GWS – IGWS (7) 

 

According to Mock, the total infiltration is [25]: 

 

I = WS × if (8) 

 

where, 

I = infiltration 

WS = excess water 

If = infiltration coefficient 

Infiltration is estimated by considering soil porosity and the 

slope of the drainage area. The calculation of groundwater 

storage (GWS) follows the formula: 

 

GWS = [0.5 × (1 + K) × I] + [K × IGWS] (9) 

 

where, 

GWS = Groundwater volume in period-n 

K = Monthly resistance factor 

 

The accuracy of the Mock model is determined by 

examining the coefficient of determination (R²). The 

classification criteria are as follows: very good (0.86 < R² ≤ 1), 

good (0.75 < R² ≤ 0.86), and satisfactory (0.65 < R² ≤ 0.75). 

An R² value near 1 is the most favorable agreement between 

observed and simulated results. Meanwhile, the standard 

deviation of residuals is evaluated using the Root Mean Square 

Error (RMSE), with the following prediction categories: 

highly accurate (<0.009), good accurate (0.009 < RMSE < 

0.09), and satisfactory (0.09 < RMSE < 0.5) [28]. 

 

RMSE =
√∑ ( 𝑌𝑖

𝑜𝑏𝑠−  𝑌𝑖
𝑜𝑏𝑠)2𝑁

𝑖=1

𝑛
 

(10) 

 

𝑅2 = 
(∑ (𝑁

𝑖=1  𝑌𝑖
𝑜𝑏𝑠 − 𝑌−𝑜𝑏𝑠)( 𝑌𝑖

𝑠𝑖𝑚−𝑦−𝑠𝑖𝑚)
2

)

(∑ (𝑁
𝑖=1  𝑌𝑖

𝑜𝑏𝑠 − 𝑌−𝑜𝑏𝑠)2 ∑ (𝑁
𝑖=1 ( 𝑌𝑖

𝑠𝑖𝑚−𝑦−𝑠𝑖𝑚)2)))
 (11) 

 

Notation: 

Yobs = measured value of each data point 

Ysim = estimated value of each data point 

N = total number of samples 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 LULC changes 

 

The results of satellite image processing for land use from 

2016 to 2024 can be seen in Table 1 and Figure 3. LULC is 

categorized into eight types using Sentinel-2A imagery. This 

study used eight classes to look specifically at land change. 

Changes can be identified by combining random forest (RF) 

and maximum likelihood models. RF—a widely used 

nonparametric, tree-based ensemble machine learning 

technique to generate high-quality inferences from input data, 

[21]—employs the principles of adaptive closest neighbour 

grouping and bagging. RF is among the most accurate 

supervised learning methods for classification and regression 

tasks, which is the primary reason this study adopts the RF 

model. An effective approach for handling missing data is 

using RF missing data algorithms. As an ensemble machine 

learning method, RF offers desirable properties such as 

scalability for large datasets, flexibility in capturing 

interactions and nonlinear relationships, and robustness in 

managing various types of missing data. 

The RF model was parameterized and validated following 

dataset training. The performance was assessed using the 

median AUC, a useful statistic for comparing the performance 

of two different models, as long as the dataset was roughly 

balanced [29, 30]. The AUC idea states that if the model is 

given a randomly chosen positive and negative example, it is 
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more likely to score the positive example higher than the 

negative. Prediction accuracy was highly influenced by 

parameterization when the case study trained the datasets, 

leading to high prediction accuracy. 

For 2016, 2020, and 2024, the corresponding Kappa values 

were 0.817, 0.800, and 0.867, respectively. LULC data is vital 

in analyzing and monitoring environmental degradation as it 

provides information on spatial and temporal changes in land 

use. This technique is also useful for the evaluation of human 

action impacts on the ecosystems as in the case of 

deforestation, urbanization, and land transformation, leading 

to changes in sustainable environment [31].  

LULC analysis utilizing satellite imagery and remote 

sensing technology offers a comprehensive perspective on 

landscape change dynamics [17, 32]. This data is valuable for 

pinpointing regions susceptible to environmental degradation 

and developing efficient mitigation strategies. In addition, 

LULC analysis can also be used to evaluate the impacts of 

development policies, economic activities, or urban expansion 

on biodiversity and ecosystem functions. Thus, this approach 

is important in supporting sustainable natural resource 

management. The LULC change graph can be seen in Figure 

3 and Table 1. The forest class shows an increase over time. In 

2016, the area was 29,654.26 ha; in 2024, it will be 25,386.62 

ha. LULC is one of several significant global change factors 

[33] and hurts the natural environment due to increasing 

population and socio-economic development [34-36]. 

A hydrological model describes the amount of flow or 

rainfall input that occurs in the Krueng Baro watershed. The 

Mock method is a hydrological model based on the concept of 

water balance, which assumes that some of the rainwater that 

falls on a watershed will flow directly and some will infiltrate 

the soil [25]. 

The Mock method was chosen to predict discharge because 

calculations using the model are accurate and take into account 

more natural conditions that affect river flow. Therefore, this 

method is relatively simple and allows the prediction of river 

discharge at monthly and annual time intervals. As shown in 

the Figure 4 and Figure 5, significant changes in LULC classes 

can be observed. The forest area, for example, has decreased 

significantly from 29,654.30 hectares in 2016 to 29,160.10 

hectares in 2020, and further to 25,386.60 hectares in 2024. A 

notable increase, however, occurred in the cropland class, 

which expanded from 15,907.10 hectares in 2016 to 20,230.30 

hectares in 2020, and further to 23,216.40 hectares in 2024. 

These two areas represent the most significant changes, with 

forest experiencing a substantial decrease and cropland a 

noticeable increase. In addition, the coastal urban areas show 

a clear expansion in built-up areas, with a total change of 

941.48 hectares over the eight years, driven by the region’s 

rapid economic and industrial development. 

For other areas, such as rice fields, considerable changes 

occurred between 2016 and 2020, where rice fields were 

converted into cropland. Many residents have repurposed rice 

fields for cropland use. This trend aligns with the expansion of 

built-up areas due to the growing population. As the 

population increases, so does the demand for cropland, which 

serves as a source of livelihood and farmland as shown in 

figure, cropland areas are closely located and often adjacent to 

built-up areas. 

Based on the Figure 3 and Table 1, the forest, wet bareland, 

and swamp classes have shown a decline over eight years due 

to land clearing, which is predominantly converted into 

cropland and built-up areas, as well as the expansion of dry 

bareland around the Krueng Baro watershed. Furthermore, the 

rice field area near the watershed has also decreased, as 

evidenced in Table 1, which details the changes in area for 

each LULC class. 

 
 

(a) LULC map 2016 
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(b) LULC map 2020 

 

 
 

(c) LULC map 2024 

 

Figure 3. LULC maps of Krueng Pase Watershed year 2016 (a), 2020 (b), and 2024 (c) 
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To analyse the persistence in each LULC change class, a 

land-use change test was conducted to determine the extent of 

transitions between one class and another, identifying 

interrelated and detectable changes. As shown in Figure 5 and 

Figure 6, there is minimal change in the waterbody area. 

However, the persistence of changes in cropland and forest 

remains the highest, with significant area coverage. In Figure 

6, the map displays color-coded areas representing changes in 

each class.

 

 
 

Figure 4. LULC changes 2016-2024 

 

 
 

Figure 5. Gains and losses of LULC category between 2016-2024 (ha) 

 

Table 1. Data overview of processed LULC data from Sentinel 2 imagery 

 
2016 Count Resolution (m) m2 ha 

Forest 2,965,426 10 296,542,600 29,654.30 

Waterbody 41,739 10 4,173,900 417.39 

Built-up Area 158,359 10 15,835,900 583.59 

Dry Bareland 426,456 10 42,645,600 4,264.56 

Wet Bareland 100,906 10 10,090,600 1,009.06 

Cropland 1,590,705 10 159,070,500 1,5907.10 

Swamp 60,013 10 6,001,300 600.13 

Ricefield 377,496 10 37,749,600 3,774,96 

2020 Count Resolution (m) m2 ha 

Forest 2,916,012 10 291,601,200 29,160.10 

Waterbody 45,062 10 4,506,200 450.62 

Built-up Area 166,115 10 16,611,500 1661.15 

Dry Bareland 482,948 10 48,294,800 4829.48 

Wet Bareland 45,402 10 4,540,200 454.02 

Cropland 2,023,025 10 202,302,500 20,230.30 

Swamp 9,643 10 964,300 96.43 

Ricefield 32,893 10 3,289,300 328.93 

2024 Count Resolution (m) m2 ha 

Forest 2,538,662 10 253,866,200 25,386.60 

Waterbody 57,228 10 5,722,800 572.28 

Built-up Area 152,507 10 15,250,700 1,525.07 

Dry Bareland 497,566 10 49,756,600 4,975.66 

Wet Bareland 57,483 10 5,748,300 574.83 

Cropland 2,321,642 10 23,2164,20 23,216.40 

Swamp 7,632 10 763,200 76.32 

Ricefield 88,380 10 8,838,000 883.80 

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

2016 2020 2024
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3.2 Mock model calculated discharge 

 

A hydrological model describes the amount of flow or 

rainfall input that occurs in the Krueng Baro watershed. The 

F.J. Mock method is a hydrological model based on the 

concept of water balance, which assumes that some of the 

rainwater that falls on a watershed will flow directly and some 

will infiltrate the soil [25]. The F. J. Mock method was chosen 

to predict discharge because calculations using the model are 

accurate and take into account more natural conditions that 

affect river flow. Therefore, this method is relatively simple 

and allows the prediction of river discharge at monthly and 

annual time intervals. Figure 7 shows the discharge data from 

2016-2023. The correlation test yielded an R² value of 87.6%, 

indicating a very good level of accuracy, while the RMSE was 

measured at 0.0871, reflecting good accuracy. 

The F. J. Mock Model's advantage lies in its simplicity and 

flexibility, which can be used even in watersheds with limited 

data. This model is often used to evaluate river discharge 

potential, analyze flood risk, or manage regional water 

resources [37, 38]. With its ability to predict hydrological 

responses, the Mock Model is an important tool to support 

watershed conservation planning and sustainable water 

management, especially in environmental degradation and 

climate change challenges [39].  

Seven parameters are used to calculate simulated discharge 

in the Krueng Baro watershed, including evapotranspiration, 

water balance on the soil surface, excess water and soil 

moisture, infiltration, soil flow recession factor, soil water 

storage, and river flow [14, 40-43]. These seven parameters 

are calculated one by one, followed by calculating the 

simulated discharge by multiplying the catchment area by the 

total runoff, multiplied by 1,000, and then by the day's product 

multiplied by 24 and 3,600. The simulated discharge results 

obtained are in the form of debit calculation or, in other words, 

have been calculated from mm to m3/s. 

Discharge depends on rainfall and soil conditions, including 

soil texture, density, and moisture levels. Soils with porous 

and less dense structures allow water to infiltrate more easily 

(high infiltration), while dense or saturated soils tend to have 

low infiltration and can increase surface runoff [44]. The 

Krueng Baro watershed has various soil types depending on 

location and elevation. In the upper reaches, which are hillier 

and more mountainous, soils tend to have a coarser texture, 

such as sandy loam soils. In the lower reaches, which are 

flatter and closer to the coast, the soils usually have a finer 

texture, such as sandy clay [8]. Figures 7 and 8 show the trend 

of rainfall, observed discharge and simulated discharge using 

the Mock method. 

 

3.3 Flood vulnerability 

 

Determining flood-prone areas has been based on 

parameters such as rainfall intensity, slope gradient, and land 

use [8]. It was found through simulation that the area under 

impervious land cover will keep on increasing resulting in 

increased surface runoff leading to increased peak flood 

discharge as can be seen in the hydrograph. Flood depth 

calculations show the evolution of flooding affected area over 

time. Flood mitigation activities in this area require the correct 

spatial planning and land-use management. Proper spatial 

planning and land-use management are required for flood 

mitigation efforts in this location. These measures are essential 

in controlling LULC changes and minimizing the impact of 

flood disasters. 

Based on Figure 9, it can be seen that in 2022, the area of 

inundation or flooding increases. This is based on the forest 

area development in 2024, which decreased by 13.72%, while 

use is one of the factors in increasing river flow. It can also be 

confirmed by the trend of discharge that occurs in 2022, 

although rainfall is still within standard capacity [45]. 

Watershed management involves human efforts to regulate the 

interaction between natural resources, human activities, and 

ecosystems to maintain sustainability and balance while 

enhancing resource availability for society [35]. Frequent 

flooding in the Krueng Baro watershed has led to community 

losses and infrastructure damage. To address this issue, this 

study proposes reorganizing LULC as a key solution [46, 47].  

 

 
 

Figure 6. LULC and persistence maps for 2016-2024 
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Figure 7. Discharge trends from 2002 to 2022 

 

 
 

Figure 8. Simulated and observed discharge data (2002-2023) 

 

 
 

Figure 9. The extent of flooding in the Krueng Baro watershed (2016-2023) 

 

409



Human activities such as urbanization, deforestation, 

infrastructure development, and other land management 

practices can significantly modify an area's hydrological 

response [48, 49]. For example, urbanization can create 

impermeable surfaces that accelerate water flow into rivers, 

increasing peak discharge and flood risk. Deforestation can 

also reduce the capacity of soil and vegetation to absorb water, 

increasing runoff. Distinguishing between 'land use,' which 

involves human activities like development and agriculture, 

and 'land cover,' which refers to natural features such as 

vegetation and water, helps assess both direct and indirect 

environmental impacts. To optimize LULC allocation for 

flood mitigation, goal programming constraints were applied, 

considering changes in LULC areas within the study region. 

Several key factors influencing LULC changes and location 

preferences for specific land cover types included elevation, 

slope, annual rainfall, average income per capita at the sub-

district level, population density, proximity to road networks, 

distance to streams, and nearness to existing urban areas. Land 

use planning is crucial in regulating surface flow and water 

discharge as part of natural mitigation efforts [50]. 

These changes were analyzed using a combination of the RF, 

providing a clear and detailed view of spatial and temporal 

patterns. A combination of RF and maximum likelihood 

models were used to analyze these changes, providing a 

detailed spatial and temporal picture [51, 52]. Data generated 

from LULC analysis, such as the area covered by vegetation 

or the area that has been urbanized, can be integrated into the 

model parameters. Changes in LULC affect river water 

discharge, thus affecting water availability. The reduction in 

forest area impacts on ecosystem and climate service functions 

[53], so forest area management programs need to be 

improved [9]. 

Understanding the Earth's changing surface over time 

heavily depends on analyzing LULC. LULC describes how 

different land covers are utilized for human activities, such as 

agriculture, urban development, and conservation. In contrast, 

land cover refers to the physical features present on the Earth's 

surface, including vegetation, urban areas, water bodies, and 

soil. Using imagery and its applications in urban planning, 

environmental management, agricultural monitoring, and 

climate change mitigation strongly rely on LULC analysis. 

Land use plays a crucial role in water storage and is directly 

associated with flooding. Its impact is quantified using the 

runoff coefficient, which differs depending on the type of land 

use [54]. Research has shown that land-use alterations 

significantly influence flood runoff and inundation more than 

climate changes [55]. The progressive conversion of natural 

landscapes into urbanized or agricultural areas influences the 

three key aspects of flood risk: hazard, vulnerability, and 

exposure. The expansion of human settlements and economic 

activities in flood-prone zones, combined with inadequate 

land-use planning, has amplified the threat of flooding in these 

areas. Furthermore, the adverse effects extend beyond physical 

hazards, intensifying economic, social, and environmental 

vulnerabilities within affected communities [47]. 

Flood susceptibility in a particular region is shaped by 

natural watershed characteristics—terrain, soil composition, 

and drainage capacity—and anthropogenic factors, including 

land management policies and economic sensitivity to flood 

damage [56]. The relationship between environmental 

degradation, land transformation, and flood risk is widely 

acknowledged, underscoring the necessity of sustainable land-

use strategies. 

Urban and regional planners play a pivotal role in 

synthesizing insights from multiple disciplines to guide land 

development decisions. Their responsibilities vary across 

different contexts, yet their primary function remains the same: 

to provide expert analysis and strategic recommendations that 

support responsible land utilization. Since land-use planning 

is integral to flood-risk mitigation—particularly in controlling 

development within flood-prone regions—it must be closely 

coordinated with flood management efforts. Comprehensive 

flood prevention measures should be incorporated at all 

planning levels, ensuring that hydrological data and land-use 

projections inform urban policies and infrastructure 

development. In practice, improved access to river flow data 

and its correlation with land use can empower decision-makers 

to devise effective strategies for minimizing present and future 

flood risks [57]. 

 

 

4. CONCLUSION 

 

Sentinel-2A satellite images and RF analysis were used in 

LULC analysis from 2016 to 2024. The results showed strong 

performance, with an average kappa value of 0.828 and an 

overall accuracy of 88.467%. The dependability of the data 

was confirmed by the land use classification accuracy, which 

continuously surpassed 85% in 2016, 2020, and 2024. The 

Mock Model is used to assess how streamflow dynamics are 

affected by changes in the landscape. Data pertaining to runoff 

provides important information, especially when high water 

flow causes flooding because of the river's restricted capacity. 

Data generated from LULC analysis, such as the area 

covered by vegetation or the area that has been urbanized, can 

be integrated into the model parameters. For example, a 

decrease in vegetation cover can increase surface runoff and 

reduce infiltration, thus affecting the calculated river discharge. 

Thus, the combination of LULC analysis and the Mock Model 

provides an integrated approach to evaluate flood risk, water 

resource sustainability and the impact of development policies. 

The combination of LULC analysis and the Mock Model 

provides excellent benefits in managing watersheds 

sustainably amidst climate change and environmental 

degradation challenges.  

By using the results of the LULC analysis as input into the 

Mock Model discharge simulation, water resource managers 

can design more effective mitigation strategies, such as 

creating water catchment areas or forest rehabilitation in 

critical watersheds This approach supports flood risk 

management, improves water use efficiency, and designs data-

driven policies supporting sustainability of watershed 

ecosystems. If look at the flood prediction modeling results 

detected using SRTM data processing results, it can be seen 

that flood conditions in 2022 will increase by an area of This 

proves that between 2016 and 2024, LULC will experience a 

decrease in vegetation of 4,267.7 hectares and an increase in 

built up area and bareland under development. 

The limitation in this research is that the RF method can be 

used in conjunction with the supervised method. This is 

because much correct train data is needed for higher accuracy. 

However, the unsupervised RF in this research has a good 

application, but it needs to be collaborated with supervised 

methods to train visible objects better. This research was 

helped by the choice of Sentinel-2A imagery with a resolution 

of 10 m, making the image clearer. 
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