
Predictive Analysis of Wear Rate and Microhardness in Laser-Clad Titanium-Coated 

Carbon Steel at Variable Power Settings 

V.I. Aladesanmi* , O.T. Laseinde

Mechanical & Industrial Engineering Technology Department, University of Johannesburg, Johannesburg 2028, South Africa 

Corresponding Author Email: victorwins03@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/acsm.490203 ABSTRACT 

Received: 13 August 2024 

Revised: 11 February 2025 

Accepted: 16 February 2025 

Available online: 30 April 2025 

The effect of laser power variation on the mechanical properties of laser-clad titanium 

materials was studied in this research. An optimization model was executed to identify 

the independent effect of laser power over other processing parameters. The mechanical 

properties of the microhardness and wear of the produced samples were derived. The 

resulting microhardness ranges from 131.38HV to 350.04HV. The wear experiment's 

working loads were 5N and 10N. The 5N wear load reveals a wear rate range of 

0.66mm2/N to 0.186mm2/N, with a wear volume of 0.66mm3 to 5.58mm3 and a 

coefficient of friction of 0.074 to 0.172. The 10N wear load reveals a wear rate range of 

0.039mm2/N to 0.249mm3, a wear volume of 1.17mm3 to 7.47mm3, and a coefficient of 

friction range of 0.204 to 0.245. An optimum hardness of 350.04HV was obtained at 

1.5KW laser power with a wear rate of 0.067mm2/N, a wear volume of 2.01mm3, a 

coefficient of friction of 0.111 at 5N load, and a wear rate of 0.090mm2/N, a wear volume 

of 2.70mm3, and a coefficient of friction of 0.227mm3/N at 10N load. As the laser power 

increased, we observed an increase in wear rate, wear volume, and coefficient of friction. 

We used Python 3.9 of Google Collab to compute a multilinear regression predictive 

analysis of the correlative relationship between the clad microhardness, wear rate, and 

processing parameter. The model revealed a coefficient of determinant r2-score of 0.89, 

a mean square error of 0.0006, and a mean absolute error of 0.0229. The model result 

confirmed a significant statistical correlation. This research is useful for the additive 

shaping of industrial carbon steel machinery for maintenance and wear control measures. 
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1. INTRODUCTION

Steel’s making and forming from the vast availability of 

iron ore makes it the most produced material. It is the core of 

manufacturing for infrastructure and industry purposes [1-4]. 

Steel mechanical properties have a range of performances 

liable to wear and delamination after long use and exposure to 

atmospheric conditions of moisture, air, heat, pressure, and 

humidity [1, 5-8]. According to Lyu et al. [9] wear greatly 

depends on the surrounding circumstances. His research 

demonstrated how adhesive wear is more common in low-

moisture environments and gets worse at colder temperatures. 

As contact humidity increased, the steel material's wear 

mechanism changed from adhesive to oxidative wear. Steel 

wear types have been classified as either adhesive, abrasive, 

fatigued, or erosive. Abrasive wear is mostly characterized by 

speedy contact pull-off from steel surfaces. Adhesive wear is 

a mild contact wear mechanism. Erosive wear is depicted by 

liquid flow interactive contacts. Shock pressure and constant 

load distribution lead to fatigue wear [10-12]. Niu et al. [13] 

research introduced retained austenite in-between the 

martensite lath to improve the ductility and toughness of the 

high-strength wear-resistant steels through a dynamic 

partitioning process. 

Figure 1. Laser clad bead on substrate 

A means of improving the longevity and maintenance of 

carbon steel has initiated the techniques of additive 

manufacturing. According to Milewski's [14] research, 

additive manufacturing enables the production of intricate, 

free-form metal items through 3D, eliminating the need for 

costly processes, tools, and expertise in metalworking. This 

process instantly transforms solid free-form designs into 

nearly net-shaped metal objects [15]. Additive manufacturing 

processes have been executed through the medium of laser 

cladding lamination, power bed, or deposition. The 

engineering process of sintering, bonding, and fusion of 

powdered material through electron beams, electric arcs, and 

lasers is annexed. The manufacturing operations are executed 
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under processing parameters such as laser power, gas flow rate, 

scanning speed, etc. Processing parameters with optimum 

mechanical properties are desirable [16]. These are 

scientifically achieved through predictive models established 

through the machine learning of the material data. According 

to Ackermann and Haase [17] there is a growing body of 

scientific literature in the field of metal additive manufacturing 

(AM), indicating the growing significance of data-driven 

approaches. The integration of data-driven techniques holds 

promise for removing existing manufacturing and design 

constraints. Machine learning (ML) techniques extend 

experimental and simulation-based methods to provide quick 

and computationally effective predictions. Multilinear 

regression predictive analysis of machine learning in additive 

manufacturing helps in the building of models, using 

minimum building time. This enables a quality 3D design of 

nanocomposite and metals with CAD. Machine learning 

models assist in designing algorithms for additive 

manufacturing, ensuring quality assurance, and optimizing 

processes for dimensional accuracy, thereby reducing 

deformation, enhancing structural strength, and improving 

surface optimization processes [18-22]. Figure 1 shows the 

pictural view of a laser-clad bead on a substrate. 

The research derived a predictive relationship between the 

microhardness properties of laser cladded titanium coating on 

carbon steel and its wear properties measurement at a range of 

varying laser power of the experiment processing parameter. 

The research proposed machine learning derivatives of 

manufacturing materials. The insights provided in this 

research inform the new material's design wear rate 

performance at varying processing parameters. 

 

 

2. MATERIALS AND METHODS 

 

A Kuka-Robot Ytterbic Laser (YLS-2000-TR) with a 3D-

CAD model was used for metal bed manufacturing technology. 

It was operated in a high-power range between 1KW and 2KW, 

scanning speeds of 1.1mm/sec and 1.2mm/sec at constant gas 

and powder flow rates. The scanning speed was selected as a 

varying parameter based on its influence on heat input, clad 

quality, geometry, and process efficiency. The gas and powder 

flow rates were maintained at a constant level to ensure 

process stability and to concentrate on the impact of scanning 

speed during optimization. A substrate of carbon steel plate 

measuring 180mm×40mm×20mm in size was utilized. The 

substrate was initially sandblasted and cleansed with acetone 

to eliminate oil deposits and other contaminants, followed by 

preheating to 250℃ prior to the commencement of deposition 

utilizing a spot size of 1.2mm. The laser-clad operation 

material used was titanium powder (98% pure _87μm). This is 

melted in layers on the working surface of carbon steel in a 

three-dimensional printing mode until the desired clad height 

is achieved. The microstructure of the titanium clad at the 

optimum hardness was done with the scanning electron 

microscope before and after the wear experiment. 

The hardness mechanical test was executed with an 

EmcoTEST-DuraScan hardness tester. Fifteen indentation 

hardness mechanical tests were executed at a load of 0.5kg and 

a dwell time of 15 sec. The mechanical wear experiment was 

carried out with the ball-on disc Standard Tribometer Version 

7.3.13 made by Anton Paar GmBh. It works by cyclic 

reciprocating motion. The wear test was conducted on the 

sample with the highest hardness at 1.5KW laser power. The 

test uses steel of about 10mm diameter with a stroke length of 

3m and 4.5m and a load of 5 N and 10 N respectively. The 

reciprocating spindle acquisition frequency is 100Hz, with a 

linear speed of 9.82m/s in a single-way mode. The wear scar 

width is evaluated with the profilometry of a scanning electron 

microscope. The wear depth and wear volume were derived 

from Archard’s wear model equations, as shown below in Eqs. 

(1) and (2). Figure 2 shows the schematic diagram of the wear 

scar. 

A multilinear machine learning approach was used in the 

predictive analysis of the data on their processing parameters 

and mechanical wear properties. The multilinear regression 

machine learning technique was selected due to its 

comprehensibility, the moderate dataset of eleven samples, 

and the apparent linear correlations among the variables. The 

predictive analysis approach was affirmed by Malley et al. 

[23] that the mechanical properties and performance of 

engineering materials data are in correlation patterns and 

relationships with their manufacturing processing parameters 

[23]. 
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where, 

Vw=Wear volume, 

Zw=Wear depth, 

Ls=Stroke length, 

W=Wear scar width, 

Rs=Radius of round surface at both ends. 

 

 
 

Figure 2. Wear scar schematic diagram 

 

 

3. RESULTS AND DISCUSSION 

 

Table 1 shows the hardness results of titanium clad at each 

processing parameter of the laser clad and scanning speed, 

while Figure 3 shows its pictorial view. The average of the 

fifteen hardness iterations was derived. The titanium sample 

laser-clad surface has a maximum hardness of 350.04VH at a 

laser power of 1.5KW [24]. This is a good hardness level for 

titanium efficient coating applications. The microstructure of 

the titanium clad at optimum hardness shows elongated 

dendritic grains, as shown in Figure 4. The microstructure has 
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barely any pores. This shows a firm welding bond between the 

titanium powder clad [24]. 

 

Table 1. The hardness of titanium-clad 

 

Sample 
Laser Power 

(KW) 

Scanning Speed 

(mm/sec) 

Hardness 

(HV) 

1 1.0 1 131.38 

2 1.1 1.1 190.07 

3 1.2 1.2 250.40 

4 1.3 1.1 299.54 

5 1.4 1.1 325.22 

6 1.5 1.2 350.04 

7 1.6 1.1 290.03 

8 1.7 1.1 200.43 

9 1.8 1.1 175.83 

10 1.9 1.2 167.78 

11 2.0 1.1 145.41 

 

 
 

Figure 3. Graph of hardness against laser power 

 

 
 

Figure 4. Microstructure of titanium clad @ laser power 

1.5KW 

 

Figure 5 shows the wear depth profilometry evaluation with 

the scanning electron microscope. It reveals a dry slide surface 

microstructure with worn-out titanium-clad particles. Wear 

scar width and wear depth were measured and evaluated 

consecutively. Table 2 shows the wear analysis results of the 

wear rate and wear volume at 5N load, with Figures 6 and 7 

showing their pictural view consecutively. An increase in the 

wear loss trend was observed as the laser power increased. The 

increase in wear rate and wear volume was due to the 

disintegration development in the sample membrane structure 

with minimal fusion bond at higher laser power [25]. 

 

 
 

Figure 5. Wear depth profilometry 

 

Table 2. Wear rate and wear volume @ 5 N 

 
Sample Wear Rate (mm2/N) Wear Volume (mm3) 

1 0.144 4.32 

2 0.130 3.90 

3 0.087 2.61 

4 0.039 1.17 

5 0.054 1.62 

6 0.090 2.7 

7 0.138 4.14 

8 0.179 5.37 

9 0.201 6.03 

10 0.221 6.63 

11 0249 7.47 

 

 
 

Figure 6. Graph of wear rate against laser power @ 5 N 

 

Table 3 shows the wear rate and wear volume results at 10 

N load, with Figures 8 and 9 showing their pictorial views 

consecutively. We observe that the wear rate and volume 

increase with increasing load. An increase in load reveals an 

increase in clad wear surface plastic deformation, and 

increased delamination of the titanium clad [25]. 
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Figure 7. Graph of laser power against wear volume @ 5 N 

 

Table 3. Wear rate and wear volume @ 10 N 

 
Sample Wear Rate (mm2/N) Wear Volume (mm3) 

1 0.041 1.23 

2 0.038 1.14 

3 0.036 1.08 

4 0.022 0.66 

5 0.034 1.02 

6 0.067 2.01 

7 0.109 3.27 

8 0.120 3.60 

9 0.125 3.75 

10 0.159 4.77 

11 0.186 5.58 

 

 
 

Figure 8. Graph of laser power against wear rate @ 10 N 

 

 
 

Figure 9. Graph of laser power against wear volume @ 10 N 

Table 4 reveals the coefficient of friction results and 

analysis at loads 5N and 10N, while Figures 10 and 11 show 

its pictorial view consecutively. It can be observed that the 

coefficient of friction increases as the load increases. A higher 

wear load increases frictional heat generation. This results in 

an increased coefficient of friction wear rate and volume. 

 

Table 4. Coefficient of friction analysis 

 

Samples 
Coefficient of Friction 

5 N 10 N 

1 0.074 0.204 

2 0.079 0.213 

3 0.081 0.222 

4 0.085 0.221 

5 0.095 0.224 

6 0.111 0.227 

7 0.126 0.229 

8 0.137 0.230 

9 0.154 0.232 

10 0.164 0.234 

11 0.172 0.245 

 

 
 

Figure 10. Graph of coefficient of friction @ 5N 

 

 
 

Figure 11. Graph of coefficient of friction at 10 N 

 

Table 5. R2-score with error values 

 

 
R2-

Score 

Mean Square 

Error 

Mean Absolute 

Error 

Wear Rate 

(mm2/N) 
0.89 0.0006 0.0229 

 

The multilinear regression analysis was done on a higher 10 

N test load dataset with a higher coefficient of friction. Google 
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Collab Python 3.9 was utilized to derive the coefficients of the 

parameters, the intercepts, and the error in the equation. 

Python codes in conformance with multilinear regression 

analysis were utilized. Digital packages of Pandas, NumPy, 

and Sklearn-metrics were used to learn and train the dataset. 

The predictive results and analysis of wear rate as the 

dependent variable and hardness, laser power, and scanning 

speed as the independent variables are shown in Eq. (3) below. 

Table 5 shows the coefficient of the determinant r2-score as 

0.89. This shows a statistically significant correlation result. 

The mean square error is 0.0006 and the mean absolute error 

is 0.0229. These error values also define a significant 

statistical correlation. 

 

(0.10) (0.04) (0.15) 1045.30WR LP SS HD= + − +  (3) 

 

where, WR=Wear rate (mm2/N), 

LP=Laser power (KW), 

SS=Scanning speed (mm/sec), 

HD=Hardness (HV). 

 

This research approach is scalable due to improvements in 

automation, laser power, and powder delivery systems. 

Nonetheless, it is optimally designed for high-value, high-

precision applications and is economically feasible for 

additive manufacturing sectors where superior performance, 

durability, and the repair of essential components warrant 

expenses. 

 

 

4. CONCLUSION 

 

We used titanium powder as an additive shaping material in 

cladding measures to create a resilient coating on carbon steel 

under various conditions. The mechanical properties of wear 

rate, wear volume, and coefficient of friction increased as the 

laser power increased. At a 5N wear load, the wear rate 

increased from 0.067mm2/N to 0.186mm2/N, the wear volume 

increased from 0.66mm3 to 5.58mm3, and a coefficient of 

friction increased from 0.074 to 0.172. At a 10N wear load, the 

wear rate increased from 0.039mm2/N to 0.249mm3, a wear 

volume increased from 1.17mm3 to 7.47mm3, and the 

coefficient of friction increased from 0.204 to 0.245. An 

optimum hardness of 350.04HV was obtained at 1.5kW laser 

power with a wear rate of 0.067mm2/N, a wear volume of 

2.01mm3, a coefficient of friction of 0.111 at 5 N load, and a 

wear rate of 0.090mm2/N, a wear volume of 2.70mm3, and a 

coefficient of friction of 0.227mm3/N at 10 N load. It turns out 

that the machine learning versions of the multilinear 

regression have a strong statistical correlation, with an r2-score 

of 0.89, a mean square error of 0.0006, and a mean absolute 

error of 0.0229. This affirms the working parameter 

procedures, and results in the least minimum variable error. 

This research can be applied to the additive shaping of 

industrial carbon steel robots, rails, and machines under the 

experimental working parameters. 
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