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Whether lymph node metastasis (LNM) is present is crucial for treatment decisions in T1 

colorectal cancer (T1 CRC). This study developed predictive models using data from 1,205 

patients across seven Chinese medical centers. We evaluated 29 machine learning 

algorithms and identified CatBoost as the top performer (AUC: 86%, accuracy: 96%). 

SHAP analysis revealed key predictors of LNM risk, including lymphovascular invasion, 

age, tumor size, invasion depth, and total lymph node count. Less influential features 

included perineural invasion and tumor location. The study highlights the importance of 

retrieving more lymph nodes during surgery to improve staging accuracy. A user-friendly 

online tool was developed to support clinical decision-making. 
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1. INTRODUCTION

Globally, CRC is recognized as the third most frequently 

diagnosed malignancy and ranks second in terms of cancer-

related mortality [1]. With widespread CRC screening, 

diagnosed cases of T1 CRC have increased [2, 3]. In China, 

CRC has become the second most common malignant tumor 

(29.51 per 100,000) and the fourth primary cause of cancer-

associated fatalities (14.14 per 100,000) [4]. LNM, defined as 

cancer cells found in lymph nodes surrounding the primary 

tumor, indicates tumor spread [5]. Clinically, the presence of 

LNM dictates treatment: patients without LNM may achieve 

curative results through endoscopic resection, whereas those 

with LNM require radical surgery [6]. Currently, LNM 

evaluation mainly relies on MRI, CT, and biopsy [7-9]. 

However, these methods fail to detect LNM in 8-12% of 

patients due to imaging limitations [10], and their high cost 

and long duration limit widespread use. Hence, there is an 

urgent need for more efficient, imaging-independent detection 

methods. Compared to traditional logistic regression (LR), 

recent advancements in statistical theory and machine learning 

have led to predictive models with superior performance, 

enhancing prediction of LNM in cancers such as gastric, 

thyroid, and breast [11-13]. 

The history of machine learning dates to 1957, when 

Rosenblatt [14] proposed the “Perceptron”, recognized as the 

earliest machine learning model. Simultaneously, LR, 

developed between the late 19th and early 20th centuries, 

gained prominence for binary classification tasks [15]. LR 

remains a common baseline method, though it is often 

outperformed by more complex models like Support Vector 

Machines (SVMs) and Neural Networks (NNs). Linear models 

such as logistic and Least Absolute Shrinkage and Selection 

Operator (LASSO) regression have limitations. Hartwig et al. 

[16] employed a LASSO model using data from 35,812

Danish patients, achieving a relatively low AUC (0.64),

indicating poor model selection. Wang et al. [17] used LR on

825 T1-stage CRC patients, achieving an AUC of 0.793, yet

faced overfitting concerns due to limited data. Fujino et al.

[18] assessed LNM risks with LR on 934 Japanese patients,

yielding an AUC of 0.786 (training) and 0.721 (validation),

but lacked robustness due to the absence of cross-validation.

Similarly, Niu and Cao [19] achieved an AUC of only 0.708

from a large SEER database without cross-validation, limiting

its generalizability.

SVM is a machine learning method using optimization to 

avoid the "curse of dimensionality" and "overfitting" by 

finding an optimal hyperplane that maximally separates 

classes. Ichimasa et al. [20] analyzed data from 690 T1-stage 

CRC patients (590 training, 100 validation) between 2001 and 

2016. Their model incorporated 45 clinicopathological 

factors—such as age, Body Mass Index (BMI), tumor size, 

location, LVI, tumor markers (CEA, CA19-9), and 

biochemical indicators—to predict LNM risk. ROC analysis 

showed good accuracy (AUC=0.821). However, small sample 

size, low LNM prevalence (55 positive cases in training, 9 in 

validation), data imbalance, and inclusion of clinically 

ambiguous features limited model reliability and practical 

applicability. 

The training mechanism of NNs comprises two essential 

phases: forward propagation of signals and back-propagation 

of errors. During the forward pass, input data traverse through 

multiple hidden layers before reaching the output layer. If 

actual outputs differ from expected, error signals propagate 

backward for weight adjustments. NNs evolved into models 

like TabNet, an NN combining attention mechanisms and tree-

based feature selection. TabNet’s main steps include (a) sparse 

feature selection; (b) sequential multi-step structures for 
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incremental decision contributions; (c) nonlinear processing to 

enhance learning; and (d) ensemble processing through 

multiple steps. Song et al. [21] developed a deep learning 

model leveraging attention mechanisms to analyze whole-

slide images (WSIs) for predicting LNM in T1 CRC, attaining 

AUC values ranging from 0.781 to 0.824. Despite promising 

results, limitations include single-center WSI data, small 

samples, potential preparation biases, complexity in 

interpreting high-dimensional data, and challenging feature 

associations, complicating model interpretability. 

Decision Trees (DTs) are flowchart-like structures with 

nodes representing attribute tests, branches representing 

outcomes, and leaves representing class distributions. 

AdaBoost sequentially trains a series of weak learners and 

aggregates them into a composite strong model. Random 

Forest (RF) integrates multiple DTs via bagging, while 

Gradient Boosted Decision Trees (GBDTs) iteratively 

aggregate weak learners for improved predictions. Takamatsu 

et al. [22] proposed a hybrid approach, combining 

Convolutional Neural Networks (CNNs) with RF classifiers to 

predict LNM from histopathological WSIs in T1 CRC cases. 

Among 783 cases divided into training (548) and validation 

(235), AUC values were 0.971 (training) and 0.760 

(validation). However, training the CNN on roughly 500 cases 

led to an AUC drop of 21%, indicating significant overfitting 

and limited reliability. 

XGBoost, proposed by Chen [23], is a powerful tree-based 

ensemble learning algorithm widely adopted for classification 

and regression problems. Unlike RF and GBDT, XGBoost 

applies first- and second-order derivatives via a second-order 

Taylor expansion of the loss function, introducing L1 and L2 

regularization and column sampling to reduce overfitting. 

XGBoost represents trees using leaf weights, directly 

expressing the loss function's extremum through derivatives 

[24]. The "gain" metric, reflecting the relative contribution of 

features, determines optimal split points. Ahn et al. [25] 

applied XGBoost to data from 26,733 T1-stage CRC patients 

(SEER database), using eight prognostic variables and 

achieving a modest AUC of 0.659 (sensitivity 0.242, accuracy 

0.604, F1 score 0.352). Despite the large sample and relevant 

variables, the low performance suggests inadequate parameter 

tuning, limiting the model’s reliability. 

The Light GBM model, a highly optimized implementation 

of the GBDT algorithm, is designed to handle large-scale data 

with superior computational efficiency. It supports parallel 

learning, operates at high speed, consumes less memory, and 

delivers improved predictive accuracy. In a study conducted 

by Piao et al. [26], a LightGBM-driven model was constructed 

using data from 651 patients diagnosed with T1-stage CRC 

who underwent radical resection across six medical 

institutions in Ningbo between 2016 and 2022. The model 

demonstrated excellent discriminative ability, with an AUC of 

0.960. Despite this high performance, the small sample size 

raises concerns about overfitting. Additionally, reliance on 

pathologist-dependent features, such as submucosal invasion 

area, limits the model’s standardization and broader 

applicability. 

CatBoost, a gradient boosting algorithm released as an 

open-source project by the Russian tech company Yandex in 

2017, represents another advancement in the GBDT family. 

While XGBoost is widely used and LightGBM improves 

computational efficiency, CatBoost claims superior accuracy 

[27]. It employs symmetric DTs (oblivious trees) as base 

learners, featuring fewer parameters and built-in support for 

categorical variables. This enables efficient handling of 

categorical data—reflected in its name, combining 

"Categorical" and "Boosting." Furthermore, CatBoost 

mitigates issues such as gradient bias and prediction shift, 

thereby reducing the likelihood of overfitting and enhancing 

both accuracy and model generalizability. 

Machine learning methods are advantageous in capturing 

higher-order nonlinear interactions among predictive factors, 

often leading to more stable and robust predictions. However, 

their inherent "black box" nature makes it difficult to explain 

the rationale behind specific predictions, limiting their 

acceptance in clinical decision-making. SHAP addresses this 

challenge by precisely quantifying the contribution and 

influence of each input feature on the model's output [28]. 

While numerous machine learning models have shown high 

performance, a recurring shortcoming in previous studies is 

the absence of transparent and intuitive feature attribution. 

Without clear attribution, clinicians may struggle to identify 

key features, limiting the model’s practical utility in guiding 

treatment decisions. 

2. RESULTS

2.1 Comparison of model performance 

A total of 29 distinct machine learning algorithms were 

constructed to estimate the likelihood of LNM in individuals 

diagnosed with T1 CRC. The evaluation metrics for each 

model are summarized in Table 1. To assess and compare 

predictive capabilities, multiple performance indicators were 

employed, including accuracy (ACC), precision, recall, F1 

score, and AUC. 

In this study, except for CatBoost and Random Forest, the 

other 27 models showed poor performance in distinguishing 

LNM, with AUC values below 0.80 and notably low precision 

and F1 scores. This highlights their limited ability to correctly 

identify positive cases, often resulting in high false-positive 

rates. Although Perceptron and SVM achieved relatively high 

recall, their low precision indicates a lack of reliable positive 

predictions. Models such as MultinomialNB, BernoulliNB, 

and LinearSVC failed completely, with all key metrics at zero. 

Comparatively, CatBoost significantly outperformed 

Random Forest. While both achieved an AUC of 0.86, 

CatBoost demonstrated much higher precision (0.50 vs. 0.00) 

and F1 score (0.29 vs. 0.00), indicating better accuracy and 

robustness in identifying LNM. Despite sharing the same 

overall accuracy (0.96), CatBoost provided more meaningful 

and clinically applicable predictions, whereas Random 

Forest's lack of precision rendered it less effective. Overall, 

CatBoost proved to be the more reliable and practical model 

for LNM classification. 

2.2 Feature importance and model interpretation 

The CatBoost model comes with a powerful interpretability 

function that can automatically generate feature importance 

plots (Figure 1). The features are ranked in order of 

importance, with the length representing the degree of 

importance—the longer the bar, the more significant the 

feature. 
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Table 1. Model evaluation results 

Model ACC Precision Recall F1 AUC 

Random Forest 0.96 0.0 0.0 0.0 0.86 

CatBoost 0.96 0.5 0.2 0.29 0.86 

AdaBoost 0.96 0.5 0.4 0.44 0.79 

Bagging 0.97 1.0 0.2 0.33 0.79 

XGBoost 0.94 0.25 0.2 0.22 0.79 

Gradient Boosting 0.96 0.5 0.2 0.29 0.75 

Extra Trees 0.95 0.0 0.0 0.0 0.73 

K Neighbors 0.94 0.0 0.0 0.0 0.71 

LightGBM 0.95 0.33 0.2 0.25 0.71 

MLP Classifier 0.97 1.0 0.2 0.33 0.7 

Decision Tree 0.94 0.33 0.4 0.36 0.68 

Gaussian Process 0.95 0.0 0.0 0.0 0.68 

MultinomialNB 0.95 0.0 0.0 0.0 0.64 

ComplementNB 0.69 0.08 0.6 0.14 0.64 

Perceptron 0.04 0.04 1.0 0.08 0.64 

SGD Classifier 0.96 0.5 0.2 0.29 0.63 

Linear-Discriminant-Analysis 0.97 1.0 0.2 0.33 0.62 

Passive Aggressive 0.96 0.0 0.0 0.0 0.62 

BernoulliNB 0.95 0.0 0.0 0.0 0.62 

LCE Model 0.97 1.0 0.2 0.33 0.62 

GaussianNB 0.9 0.11 0.2 0.14 0.61 

Quadratic-Discriminant-Analysis 0.62 0.06 0.6 0.12 0.61 

RidgeClassifier 0.88 0.08 0.2 0.12 0.59 

Logistic Regression 0.84 0.06 0.2 0.1 0.59 

LinearSVC 0.96 0.0 0.0 0.0 0.58 

TabNet 0.97 1.0 0.2 0.33 0.5 

Nearest Centroid 0.56 0.04 0.4 0.07 0.48 

Extra Tree 0.9 0.0 0.0 0.0 0.47 

SVM 0.56 0.06 0.6 0.1 0.31 

Figure 1. The feature importance ranking chart illustrating 

the relative importance of different clinical features in the 

predictive model 

To determine the relative significance of each feature, 

SHAP values were derived from the output of the CatBoost 

predictive model (Figure 2). This analytical procedure 

involves the stepwise incorporation of variables, commencing 

with the most influential and progressively including features 

of lesser importance according to their ranking. In the resulting 

plot, each dot corresponds to the SHAP value associated with 

a particular feature for an individual patient. The horizontal 

placement of the dots reflects the direction and magnitude of 

the feature’s effect on the prediction—points positioned to the 

right of the vertical axis indicate a positive contribution, 

whereas those on the left signify a negative impact. The color 

gradient represents the actual feature values, with red denoting 

higher values and blue indicating lower ones. 

Figure 2. The SHAP summary plot demonstrating the 

influence of various clinical and pathological features on the 

model’s output 

Two patients were randomly selected for case analysis: 
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They were predicted to be LNM positive and negative, 

respectively. LVI has the largest positive contribution to the 

prediction (+3.13), while age (Age=61) has a significant 

negative contribution (0.62) (Figure 3). LVI has the largest 

negative contribution to the prediction (2.67), followed by the 

total number of lymph nodes (1.65) and age (0.75) (Figure 4). 

Figure 3. LNM positive 

Figure 4. LNM negative 

The SHAP value plot shows each feature’s contribution to 

the model’s prediction—red indicates contribution towards 

LNM (+), and blue towards LNM (-). F(x) represents the log-

odds ratio for each observation. Arrows illustrate each factor’s 

influence: blue for decreasing LNM risk and red for increasing 

it. The longer the arrow, the greater the impact. 

3. DISCUSSION

Accurate prediction of LNM remains a clinical challenge 

for patients with T1 CRC. Although the incidence of LNM is 

relatively low (approximately 10.9%), many patients still 

undergo radical surgery, which may be unnecessary in the 

absence of LNM [29]. Endoscopic resection has become an 

alternative treatment option for T1 CRC patients without LNM 

[30]. However, patients with T1 CRC who have concomitant 

LNM generally have a poorer prognosis. Therefore, 

establishing an accurate, reliable, and reproducible method for 

predicting LNM risk is crucial for optimizing preoperative 

treatment strategies and reducing overtreatment [31-33]. In 

this study, we combined interpretable machine learning 

techniques with common demographic and pathological data 

to develop a model that predicts the LNM risk in patients with 

T1 CRC, providing an innovative approach for personalized 

treatment decisions. 

T1 CRC refers to tumors confined to the mucosal or 

submucosal layers without reaching or penetrating the 

muscularis propria [7, 34]. Currently, the following five high-

risk factors are generally used to guide clinical practice: tumor 

invasion depth, LVI, tumor differentiation grade, tumor 

budding, and incomplete or positive resection margins [7]. 

Tumor invasion depth is one of the most important high-risk 

factors: the deeper the invasion into the submucosa, the higher 

the likelihood of cancer cells invading lymph nodes. It is 

generally considered that tumor invasion exceeding 1,000 

micrometers (1ămm) is a high-risk marker for LNM [31]. LVI 

refers to cancer cells invading lymphatic or blood vessels, 

indicating that cancer cells have already spread through these 

vessels and may metastasize to distant sites [35]. Poorly 
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differentiated or undifferentiated cancer cells (including 

mucinous adenocarcinoma or signet ring cell carcinoma) often 

have higher aggressiveness and are more likely to metastasize 

to lymph nodes [10]. Tumor budding refers to isolated or small 

clusters of cancer cells formed at the tumor margin, which is a 

marker of tumor aggressiveness and metastatic behavior; high 

levels of tumor budding are significantly associated with an 

increased risk of LNM [36]. If pathological examination 

shows incomplete tumor resection margins (R1 resection) or 

positive margins, it implies that residual tumor cells may be 

present, increasing the risk of LNM [37]. If any of the above 

high-risk factors are found in a patient’s specimen, salvage 

radical surgery is recommended [7]. Even so, a considerable 

proportion of patients will undergo unnecessary radical 

surgery. Researchers have reported that T1 cancer patients 

with high-risk factors account for 70-80% of all T1 CRC cases. 

Therefore, considering that only 8-12% of patients have true 

LNM, more than 60% of patients still receive overtreatment 

[10, 38]. In the guidelines for CRC treatment by the Japanese 

Society for Cancer of the Colon and Rectum (JSCCR), when 

using the predictive model in the guidelines to assess LNM in 

T1 CRC patients, the AUC value is about 0.588 [7]. This 

indicates that in practical applications, the model has certain 

reliability in predicting LNM in T1 CRC patients but also has 

significant room for improvement. Therefore, we need to 

develop a more accurate and feasible algorithmic model to 

assist clinicians in formulating surgical plans. 

Our study shows that the CatBoost model achieves the 

highest AUC, F1 Score, Recall, Precision, and Accuracy, 

demonstrating the best predictive performance among the 29 

models compared. Traditional machine learning models, such 

as artificial Neural Networks (ANNs), SVMs, and RFs, face a 

fundamental issue known as the "black box problem" [39]. 

While these models can calculate metastasis probabilities 

based on patient input data, their internal decision-making 

processes are difficult to interpret. This makes it challenging 

for clinicians to clearly understand which demographic 

characteristics or pathological report details play key roles in 

the prediction, and they cannot effectively utilize this 

information to decide on additional treatments. Therefore, the 

clinical application of these models is somewhat limited, 

making it difficult to fully meet the medical field’s demand for 

transparency and interpretability in decision-making. 

The CatBoost model effectively addresses this problem. It 

relies on changes in the internal loss function and pre-diction 

shifts within the model to evaluate feature importance, offering 

high computational efficiency and being particularly suitable 

for tree-based models. However, it primarily provides global 

interpretations and cannot deeply explain the feature 

contributions for each individual prediction [27]. In contrast, 

SHAP, based on Shapley values from cooperative game 

theory, provides consistency and local interpretability by 

considering the marginal contributions of features. It is 

applicable to various model types but has higher 

computational complexity when handling a large number of 

features [28]. Therefore, CatBoost is more suitable for 

scenarios requiring rapid global feature importance, while 

SHAP offers more comprehensive global and local 

explanations [40]. To reflect the contributions of all factors in 

LNM, we used machine learning combined with the SHAP 

method to evaluate the risk of LNM in T1 CRC patients. This 

method displays a list of important features, ranked from most 

to least important (from top to bottom). Consequently, the 

important features identified by CatBoost were further plotted. 

The results showed that the model’s predictions are 

significantly influenced by features such as LVI, age, total 

number of lymph nodes, tumor size, and depth of tumor 

invasion, while features like perineural invasion and specific 

tumor location contributed less to the model. We provided an 

example to illustrate the model’s interpretability, presenting 

the prediction results in an intuitive manner that allows 

clinicians to clearly observe the weights of the included 

features in the model’s predictions. 

In this study, the positive SHAP values indicate that the 

presence of LVI is associated with an increased likelihood of 

LNM, highlighting LVI as an important predictor of metastasis 

risk. The SHAP values for LVI are mainly positive, 

concentrated on the right side of zero, emphasizing its role in 

increasing the risk of LNM. Conversely, the lack of negative 

value distribution further confirms the risk-increasing effect of 

LVI in predicting LNM. Basic experimental research shows 

that LVI plays a crucial role in tumor cell invasion. By 

analyzing lymphatic vessel markers (such as D2-40 and 

VEGF-C) in tumor tissues, it can be determined that LVI-

positive tumors are more prone to LNM [41]. 

In our study, younger patients were more likely to exhibit 

LNM. A previous study shows that younger patients have a 

higher likelihood of LNM due to higher tumor biological 

activity [42]. This result is consistent with earlier research. 

This study demonstrates that tumor size significantly 

influences the model’s prediction of LNM. Larger tumors 

correspond to positive SHAP values, indicating an increased 

risk of metastasis, while smaller tumors correspond to negative 

SHAP values, suggesting a higher probability of no metastasis. 

Previous studies have shown that larger tumor sizes are 

generally associated with a higher risk of LNM, whereas 

smaller tumors have a lower risk. This may be because larger 

tumors often have deeper invasion depths and higher 

aggressiveness, increasing the likelihood of cancer cells 

metastasizing to lymph nodes [43]. Earlier research has 

indicated that the deeper the invasion depth of cancer cells, the 

higher the probability of lymph node invasion [31]. The 

findings of this study align with existing studies, further 

confirming that tumor invasion depth is positively correlated 

with LNM risk. Invasion depth is not only an independent 

predictor of LNM but has also become a key indicator in CRC 

staging [44]. 

Additionally, our study reveals a direct relationship between 

the total number of lymph nodes and patient LNM. The more 

lymph nodes are removed during radical surgery, the greater 

the risk of detecting LNM in postoperative pathology. For 

radical surgery in T1 CRC, previous studies have shown that 

the number of lymph nodes obtained during systematic 

lymphadenectomy can be used to assess the 

comprehensiveness of the surgeon’s operation. Removing at 

least 12 lymph nodes allows for more accurate cancer staging, 

improved prognostic evaluation, and increased long-term 

survival rates [45]. 

 

 

4. METHOD 

 

4.1 Data collection and availability 

 

Patients with T1 CRC who underwent radical colorectal 

tumor resection and lymphadenectomy at a total of seven 

tertiary medical centers in Anhui and Jiangsu provinces were 

recruited. 13-year electronic pathology reports were collected 
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from the First Affiliated Hospital of Anhui Medical 

University, the First Affiliated Hospital of Bengbu Medical 

College, Suzhou Municipal Hospital, Jiangsu Cancer Hospital, 

and the First Affiliated Hospital of the University of Science 

and Technology of China; over 8-year reports from the Second 

Affiliated Hospital of Anhui Medical University; and over 6-

year reports from the First Affiliated Hospital of Wannan 

Medical College. These reports had a final diagnosis of CRC. 

Each report was carefully reviewed according to the World 

Health Organization’s definitions, and only those finally 

diagnosed as T1 CRC with tumor invasion confined to the 

mucosa and submucosa were included [46]. For the selected 

T1 CRC cases, we extracted and tabulated demographic 

information, tumor location, size, gross type, differentiation 

grade, LVI, perineural invasion, and depth of invasion (Table 

2). 

Table 2. Summary of patient data 

Variables Classification All Patients LNM (-) LNM (+) 

N 1205 1082 123 

Sex 
Male 698 629 69 

Female 507 453 54 

Age 

<41 31 27 4 

41-60 498 447 51 

>60 676 608 68 

Tumor Location 
Colon 399 313 86 

Rectum 806 769 97 

Tumor Size (cm) 
>2 cm 631 572 59 

≤2 cm 574 510 64 

Macroscopic Type 

Elevated 1036 941 95 

Ulcerating 100 83 17 

Infiltrating 9 8 1 

Differentiation 
High/Middle 537 494 43 

Middle/Poor 660 583 77 

LVI 
Present 1108 1034 74 

Absent 97 48 49 

Neural Invasion 
Present 1192 1075 117 

Absent 13 7 6 

Depth of Invasion 
Tis+T1a 226 220 6 

T1b 979 862 117 

Tumor locations were categorized into the right colon, left 

colon, transverse colon, entire colon and rectum. The gross 

types of CRC were classified according to the 2023 CSCO 

Consensus Guidelines for the Diagnosis of CRC into 

ulcerative, protruding, and infiltrative types [34]. Additionally, 

we used the total number of lymph nodes removed during 

radical colorectal surgery—as recorded in the pathology 

reports—as a reference index to assess the impact of the 

surgeon’s proficiency on LNM. 

The study protocol was approved by the medical ethics 

committees of all participating centers and was conducted in 

accordance with the guidelines of the Declaration of Helsinki. 

Considering the retrospective observational nature of the study 

and the anonymity of patient data, written informed consent 

from patients was not required. We reviewed a total of 10,954 

cases, excluding patients with advanced CRC, incomplete 

clinicopathological data, metastatic CRC, lymphoma, or other 

life-threatening diseases. Ultimately, 1,205 cases of T1 CRC 

were selected for inclusion in the study. 

4.2 Data preprocessing 

All data are statistically categorized. Univariate data with 

more than two categories are encoded using 0-1 encoding, 

while multi-category data are encoded using one-hot 

encoding. All continuous data are standardized. 

4.3 Data splitting 

K-fold cross-validation (K=10) was used to validate the

model’s accuracy. The dataset was randomly divided into 10 

mutually exclusive subsets, each containing physiological and 

pathological information of 120 patients. In each training 

round, one subset was selected as the test set, and the 

remaining nine subsets were used as the training set. The 

model was trained on the nine training subsets and then 

evaluated on the test set to assess prediction accuracy. This 

process was repeated 10 times, recording the performance 

metrics each time. Finally, we calculated the average of these 

metrics to represent the model’s stable performance across the 

entire dataset. 

4.4 Hyperparameter tuning 

Each model has numerous hyperparameters. Bayesian 

optimization was employed to ensure the optimal 

hyperparameter selection for the current model. 

4.5 Model selection 

Models were trained using all training data and the optimal 

hyperparameters, with AUC as the primary criterion and also 

considering the F1 score and accuracy. In this study, LNM (+) 

indicates the presence of LNM, while LNM (-) indicates its 

absence. True Positive (TP) represents the number of cases 

where metastasis was present and correctly predicted; True 

Negative (TN) represents the number of cases where 

metastasis was absent and correctly predicted; False Positive 

(FP) refers to cases without metastasis but incorrectly 

predicted as having metastasis; False Negative (FN) refers to 

cases with metastasis that were not identified. Using these 

values, we calculated accuracy, precision, recall, and F1 score 

to comprehensively evaluate the model’s classification 

performance, especially its ability to recognize positive cases 
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in situations with class imbalance. 

4.6 Model interpretation 

The SHAP method based on a Nature sub-journal 

publication [28] was applied for model interpretation. SHAP 

is a game-theoretic approach to explain machine learning 

model predictions. Its fundamental principle is to use Shapley 

values to allocate each feature’s contribution to the prediction 

outcome, providing a unified and fair interpretation 

framework. Shapley values originate from game theory and 

are used to fairly distribute the payoff among participants in a 

cooperative game. They consider each participant’s marginal 

contribution in all possible cooperative combinations. 

By calculating the average marginal contribution of each 

feature across all possible subsets of features, the SHAP value 

was obtained for each feature. These values represent each 

feature’s contribution to the model’s prediction. The sum of 

all the SHAP values equals the model’s output, making the 

interpretation results intuitive and verifiable. 

5. CONCLUSION

This study demonstrates that the CatBoost model can 

accurately assess the risk of LNM in patients with T1 CRC. 

Using the SHAP analysis method, it was found that the 

model’s predictions are significantly influenced by features 

such as LVI, age, total number of lymph nodes retrieved, 

tumor size, and depth of tumor invasion. In contrast, features 

like perineural invasion and specific tumor location contribute 

less to the model. Notably, the analysis indicates that the 

number of lymph nodes harvested has a crucial impact on 

LNM; therefore, surgeons should aim to retrieve as many 

lymph nodes as possible. Combining machine learning with 

SHAP provides clear and reasonable explanations for 

personalized risk prediction, enabling clinicians to clearly 

understand the impact of key features in the model. 
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