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Tidal swamplands have great potential for rice production, but their contribution to rice 

production in Indonesia could be more significant. This study aimed to identify factors 

that could significantly increase rice yield in tidal swamplands, measure technical 

efficiency (TE), and determine the factors influencing efficiency. The survey was carried 

out in two districts of Central Kalimantan Province, Indonesia: Kapuas and Pulang Pisau. 

The stochastic frontier model was used to estimate TE, defined as the ratio of actual 

output to the maximum possible output given the input levels, while accounting for 

random shocks beyond the farmers' control. The TE estimates provide suggestions for 

farmer-targeted interventions and for optimizing input allocation to enhance rice 

production. The study found that expanding the area under rice cultivation and applying 

NPK fertilizers significantly increased rice yields. Farmers' efficiency levels ranged 

widely, from 0.24 to 1.0, with an average of 0.755, depending on the estimation method. 

Age and experience are important variables in determining efficiency. Relaxing the 

assumption of independence between the two error components in stochastic frontier 

models had no meaningful effect on estimated efficiency. The conventional model 

outperformed three copula-based models based on the Akaike and Bayesian Information 

Criterion, neither overestimating nor underestimating efficiency. It is proposed to 

encourage new generation participation in farming and upgrading their expertise through 

training to boost efficiency. Expanding the cultivated area and implementing intensive 

fertilization strategies are also proposed to increase rice production in tidal swamplands. 
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1. INTRODUCTION

Swamplands will play essential roles in future agriculture, 

particularly for rice (Oryza sativa L.) production to feed the 

ever-growing population in Indonesia. Swamplands are low-

lying lands that are regularly flooded and can be categorized 

into tidal and inland swamps. Sea tides influence tidal swamps, 

while inland swamps are formed in inland valleys where water 

comes from upstream rivers or rain. Inland swamps are further 

categorized based on the depth and duration of flooding, 

including deep, medium, and shallow inland swamps. 

Rice is a traditional crop cultivated in tidal swamplands. 

However, due to biophysical and socio-economic constraints, 

rice productivity in tidal swamplands is lower (2-3 tons/ha) 

compared to other agroecosystems, which can reach 6-7 

tons/ha with a national average of 5.29 t/ha [1]. Biophysical 

constraints include iron toxicity, salinity, flooding, low 

fertility, and pest and disease infestation. Socio-economic 

constraints such as limited labour, poor infrastructure, low 

education, poor skills, and low farmers' capital also hinder 

crop production in tidal swamplands. The adoption of new 

technologies is limited by high input requirements, insufficient 

capital, inadequate farmer skills, and a lack of effective 

government intervention in infrastructure and water 

management systems. 

In Indonesia, swampy land covers 32.67 million hectares, 

with 12.41 million hectares of tidal swampland and 20.26 

million hectares of inland swamps. Only 0.7 million hectares 

of the 2.801 million hectares of swampy land suitable for rice 

cultivation are currently cultivated [2]. The main reason for the 

poor contribution of rice production in tidal swamplands, 

which accounts for approximately 5% of total rice production 

in Indonesia, is limited cultivated area and low technical 

efficiency. The Indonesian government prioritized expanding 

agricultural acreage in tidal swamplands to increase rice 

production and strengthen national food security. Increasing 
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efficiency is one way to support the program. This condition 

emphasizes the importance of studying input efficiency in rice 

cultivation in tidal swamplands. 

Technical efficiency (TE) in rice production refers to 

farmers' ability to maximize production (rice yield) from a 

given set of inputs while minimizing waste. It measures how 

effectively resources are utilized compared to the best practice 

or production frontier. The stochastic frontier model (SFM) is 

commonly used to estimate TE by comparing the efficiency of 

each farm relative to the best-performing farms on the 

production frontier. Analysing efficiency enables the 

development of targeted interventions to improve farmer 

performance and optimize input allocation for higher rice 

output in tidal swamplands. 

The SFM is like the regression model except for its two 

error terms: random noise and inefficiency. It improves the 

deterministic frontier by incorporating random errors or noise. 

The random noise is a two-sided symmetric error representing 

random effects beyond the farmers' control, such as 

measurement error, soil fertility, climatic variance, and other 

standard statistical noises in regression modelling. The one-

sided error component represents inefficiency. Conventional 

SFM assumes independence between the two components [3, 

4]. A copula-based stochastic model is employed when the 

assumption of independence of the two error components is 

relaxed [5-7]. The copula-based stochastic frontier is one 

where the copula function connects the two error components 

in their joint probability density function. 

Several studies have investigated TEs in rice production in 

Indonesia and their determinants. Variations in these studies 

include differences in the agroecosystem, input factors, farmer 

conditions influencing TE, and the method used to evaluate TE. 

The agroecosystem includes tidal swampland [8-10], flood-

prone locations [11], and irrigated areas [12]. Input variables 

generally comprise cultivated land, fertilizer, and labour, 

while some studies also include farm machinery [8, 13]. The 

average TE ranges between 56% and 86%. Studies on the 

determinants of efficiencies have revealed that factors such as 

age, farmers' experience, government intervention [13], or the 

ease of gathering information on technologies [14, 15] affect 

efficiency. While most studies used the conventional SFM 

model, some researchers used copula-based SFM to estimate 

TE [7, 16]. 

This study aims to discover factors influencing rice 

production in tidal swamplands and estimate TE and its 

determinants. It will also evaluate TE estimation techniques by 

comparing the conventional and copula-based SFM for TE. 

 

 

2. METHODOLOGY 

 

2.1 Location and methods of data gathering 

 

The survey was conducted during the dry season in 2021 in 

two districts in Central Kalimantan, Indonesia: Kapuas and 

Pulang Pisau. The Terusan Karya village of Bataguh 

subdistrict and Sidomulyo village of Tamban Catur subdistrict 

in Kapuas, while Belanti Siam village of Pandih Batu 

subdistrict in Pulang Pisau was chosen as a sampling area 

because they are rice-producing centres and are predominantly 

covered by tidal swampland. The three villages in the two 

districts were purposively sampled. 

Respondents were randomly drawn from each of the three 

villages in proportion (unbalanced sample size). The villages 

were purposefully selected, and the number of farmers is 

proportional to the number of farmers in each village. The poll 

received responses from 94 farmers in total. The following 

data was acquired using structured surveys and interviews: (1) 

farmer characteristics, such as age, education, and years of 

farming experience; (2) land area; and (3) farming inputs, 

which include seed quantity (kg), lime, urea, KCl (kg), TSP 

(kg), and pesticide cost. (4) labour: total labour (person-days) 

and family labour (person-days). Due to the traditional nature 

of rice production in tidal swamplands, three characteristics, 

such as age, education, and experience, should be determinants 

of efficiency, whereas land ownership will dictate farmers' 

focus on rice cultivation. 

  

2.2 Stochastic frontier model 

 

The general form of a Stochastic frontier model is 

 

𝑌𝑖 = 𝑓(𝑥𝑖 ; 𝛽)𝑒𝑥𝑝(𝑣𝑖 − 𝑢𝑖) (1) 

 

where, Y is the maximum achievable output, X is the input 

vector, β is the vector of parameters, v is the noise error 

component assumed to be a symmetric distribution random 

variable, and u is a positive (one-sided) random variable. For 

simplicity, we dropped the index in (1). On a logarithmic scale, 

we can write the model (1) as 

 

𝐿𝑛 𝑌 = 𝐿𝑛 𝑓(𝑋, 𝛽) + 𝑣 − 𝑢 (2) 

 

In our particular case of rice production, the stochastic 

frontier model in Eq. (1) can be written as 

 

𝐿𝑛 𝑌𝑖 =  𝛽0 + 𝐴𝑖 + 𝐷 (𝑋𝑖𝑘)

+ 𝛽1 ln max(𝑋𝑖𝑘  , 𝐷 (𝑋𝑖𝑘))

+ ∑ 𝛽𝑗 ln(𝑋𝑖𝑗)
7

𝑗=1,
𝑗≠𝑘

+  𝑣𝑖 − 𝑢𝑖 
(3) 

 

Yi The production of rice by the i-th farmer (ton) 

Xi1 Cultivated area (ha) 

Xi2 The weight of seeds the i-th farmer uses (kg) 

Xi3 The weight of lime (dolomite) the i-th farmer(kg) 

applied 

Xi4 The weight of fertilizer applied by the i-th farmer 

(kg; NPK-equivalent) 

Xi5 Total labour (person-days) 

Xi6 Pesticide cost (IDR) 

Ai Dummy variable for a system of planting, equal 

to 1 for direct seeding and 0 for transplanting 

𝐷 (𝑋𝑖𝑘) Dummy variable, equal to 1 if 𝑋𝑖𝑘 = 0 and 0 if 

𝑋𝑖𝑘 >0 

𝑣𝑖 Random noise is assumed to be a normal random 

variable with E(V)=0 and var (v)=𝜎𝑣
2 

𝑢𝑖 Inefficiency error, assumed to half-normal 

random variable, with E(U)>0, var (u)=𝜎𝑢
2 

 

The dummy variable was introduced to tackle when inputs 

like lime or fertilizers vary and may be zero (where no lime or 

fertilizer is applied). The technological framework for positive 

and zero fertilizer or lime is different, so the elasticity 

concerning the input, such as Xik, for example, might not be 

the same value βi for the observations involving the positive 

and zero values of Xik, and the variance of the errors may be 

different [17]. Consequently, we adhere to the model 
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presented by setting dummy variable D(Xik) and then 

transforming Xik to max (D(Xik), Xij). Some farmers did not 

apply lime (dolomite) on their cultivated fields. Therefore, we 

introduced 𝐷(𝑋𝑖𝑘) =  𝐷(𝑋𝑖3) and Xi3 =max(D(Xi3), Xi3). 

Conventional SFM assumes that v and u are independent 

variables distributed as Normal and half-normal distributions 

with mean μ and variance 𝜎2 . If the assumption of 

independence is relaxed, then we face the problem of defining 

the joint distribution of v and u. Smith [18] proposed using the 

copula function to connect the distribution of v and u. 

 

2.3 Copula function 

 

The copula function was commonly used to connect two 

distribution functions. Saklar's theorem states that any 

cumulative distribution of a two-dimensional random vector 

(X1, X2) can be written as 

 

𝐹(𝑋1, 𝑋2) = 𝐶(𝐹1(𝑋1), 𝐹2(𝑋2)) (4) 

 

where, F1(.) and F2(.) are the marginal cumulative distribution 

functions of X1 and X2, respectively, and C(.) is a copula 

function. There are many forms of copula functions, and we 

will use three of those Copulas as follows: 

1. Gaussian Copula: 

 

𝐶𝑔𝑎(𝑢1, 𝑢2; ϼ) = ∫ ∫
1

2𝜋√1−𝑟2

𝜙−1(𝑢2)

−∞

ϕ−1(𝑢1)

−∞
 exp [-

𝑥1
2 +𝑥2

2−2𝑟𝑥1𝑥2

2(1−𝑟2)
] 𝑑𝑥1𝑑𝑥2 

(5) 

 

where, -1< r <1 is Pearson’s correlation coefficient, and ϕ is 

the cdf of the standard normal distribution. 

2. Clayton Copula 

 

Ccl(u1,u2||ϴ)= (𝑢1
𝛳 + 𝑢2

𝛳 − 1)−
1

𝛳 (6) 

 

where, ϴ>0. 

3. Frank Copula 

 

Cfr(u1, u2) = -
1

𝛳
ln (1 +

(exp (−𝛳𝑢1)−1))(exp ((−𝛳𝑢2)−1)

exp ((−𝛳)−1)
) (7) 

 

where, ϴ ϵ (−∞. ∞)\{0}. Positive (resp., negative) values of 

ϴ correspond to positive (resp., negative) dependence. 

The probability density function of the random vector (X1, 

X2) is 

 

𝑓(𝑥1, 𝑥2) =
𝛿2𝐹(𝑥1,𝑥2)

𝛿𝑥1𝛿𝑥2
=

𝛿2 𝐶(𝑢1,𝑢2)

𝛿𝑢1 𝛿𝑢2

𝛿𝐹1(𝑥1)

𝛿𝑥1

𝛿𝐹2(𝑥2)

𝛿𝑥2
=

𝑐(𝑢1, 𝑢2)𝑓1(𝑥1)𝑓2(𝑥2) 
(8) 

 

where, f1(x1) and f2(x2) are the marginal pdf of X1 and X2, 

respectively, and c(.) is the derivative of copula function C. 

 

2.4 Copula-based stochastic frontier 

 

By relaxing the independent assumption on our model in Eq. 

(1), we will face the problem of determining the joint 

probability density function of u and v. Writing ϵ=v-u and 

applying Eq. (8), the pdf of u and v can be expressed as: 

 
fuv (u, v) = fuv(u,u+ϵ) 

    = 𝑐(𝐹𝑢(𝑢),  𝐹𝑉(𝑢 + 𝜖))fu(u). fv(u+ ϵ)  
(9) 

 

where, fuv(.) is the joint pdf of u and v, fu(.) and fv(.) are the 

marginal pdfs of u and v, respectively. Fu and Fv are the 

cumulative distribution functions of u and v, while c(.) is the 

derivative of the copula function C. The pdf of ϵ could be 

expressed as: 

 

𝑓 (ϵ) =∫ (
∞

0
 fu(u). fv(u+ 𝜖) 𝑐((𝐹𝑢(𝑢), ( 𝐹𝑉(𝑢 +

𝜖))𝑑𝑢 
(10) 

 

f(u|ϵ) = 
 𝑓𝑢𝑣(u,u+ϵ)

𝑓 (ϵ)
 (11) 

 

Therefore, the conditional technical efficiency is given as 

 

TE=𝐸(𝑒−𝑢|𝜖)=∫  𝑒−𝑢  
 𝑓𝑢𝑣(u,u+ϵ)

𝑓𝜖 (ϵ)
𝑑𝑢

∞

0
= 

 ∫ 𝒆−𝒖𝑓𝑢(u)𝑓𝑣(u +  𝜖)𝑐(𝐹𝑢(𝑢),  𝐹𝑉(𝑢 + 𝜖)))𝑑𝑢
∞

0

∫ 𝑓𝑢(u). 𝑓𝑣(u +  𝜖)
∞

0
𝑐(𝐹𝑢(𝑢),  𝐹𝑉(𝑢 + 𝜖))𝑑𝑢

 
(12) 

 

Assuming that fu is a pdf of a half-normal distribution N (0, 

σu) and fv(.) a pdf of normal distribution N (0, σv), and writing 

u=u0σu, the numerator of Eq. (12) can be written as 

 

∫ 𝑒−𝑢0𝜎0

∞

0

2ø(𝑢0)𝑓𝑣(𝑢0𝜎𝑢

+  𝜖)𝑐(𝐹𝑢(𝑢0𝜎𝑢),  𝐹𝑉(𝑢0 𝜎𝑢

+ 𝜖))𝑑𝑢0 

(13) 

 

Following Wiboonpongse et al. [5], Eq. (13) can be 

approximated by 

 

1

𝑁
∑ 𝑒−𝑢0𝑟𝜎𝑢  fv(𝑢0𝑟𝜎𝑢

𝑁

𝑟=1

+  𝜖)𝑐(𝐹𝑢(𝑢0𝑟𝜎𝑢), (𝐹𝑉(𝑢0𝑟 𝜎𝑢

+ 𝜖)) 

(14) 

 

where, ø(.) is a standard normal pdf and u0r, r=1,2…N is a 

sequence of a random draw from a half-normal distribution. 

Similarly, the denominator in Eq. (12) can be approximated by 
 

1

𝑁
∑  𝑓𝑣(𝑢0𝑟𝜎𝑢 +  𝜖)𝑐(𝐹𝑢(𝑢0𝑟𝜎𝑢), (𝐹𝑉(𝑢0𝑟 𝜎𝑢

𝑁

𝑟=1

+ 𝜖)) 

(15) 

 

Hence, the TE can be approximated by 

 

𝑇𝐸

=  
∑ 𝑒−𝑢0𝑟 𝜎𝑢𝑓𝑣 (𝑢0𝑟 𝜎𝑢+𝜖)𝑐(𝐹𝑢(𝑢0𝑟𝜎𝑢),𝐹𝑣(𝑢0𝑟 𝜎𝑢+𝜖))𝑁

𝑟=1

∑ 𝑓𝑣
𝑁
𝑟=1 (𝑢0𝑟𝜎𝑢 + 𝜖)𝑐(𝐹𝑢(𝑢0𝜎𝑢), 𝐹𝑣(𝑢𝑜𝑟𝜎𝑢 + 𝜖))

 
(16) 

 

Technical efficiency in Eq. (16) depends on the copula 

function C since fϵ(ϵ) and 𝑓𝑢𝑣(u, u + ϵ) depend on c. Monte 

Carlo Simulation can estimate the TE. An R software program, 

"CopSfm," [19] can be used for such estimation. 

When v and u are independent, C=π, and c=1, since C (u1, 

u2) = 𝜋(𝑢1, 𝑢2) =u1u2, and 
 

𝛿2𝜋(𝑢1,𝑢2)

𝛿𝑢1 𝛿𝑢2
 = 1 (17) 

 

If the distributions of v and u are normal N(0, 𝜎𝑣
2) and half 

normal N+(0, 𝜎𝑢
2), respectively, then 
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fuv(u,u+ϵ) = fu(u)fv(u+ϵ) = 
2

𝜎𝑢
 Ø(

𝑢

𝜎𝑢
) 1

𝜎𝑣
 Ø (

𝑢+𝜖

𝜎𝑣
) (18) 

 

where, Ø(.) is a standard normal. The pdf of ϵ is 

 

𝑓(ϵ)=∫
2

𝜎𝑢
Ø (

𝑢

𝜎𝑢
)

1

𝜎𝑣
 Ø(

𝑢+𝜖

𝜎𝑣
)𝑑𝑢

∞

0
 (19) 

 

Aigner et al. [3] has derived that f(ϵ) in Eq. (19) is equal to  

 

𝑓(ϵ)=
2

𝜎√2𝜋 
 (1 − ϕ (

𝜖𝜆

𝜎
))exp (−

1

2𝜎2 𝜖2) (20) 

 

where, λ = 
𝜎𝑢

𝜎𝑣
. The pdf of u conditional on ϵ is a normal 

distribution with mean 𝑢∗ and variance 𝜎∗
2 , N( 𝑢∗, 

𝜎∗
2) truncated at 0 is [4] 

 

f(u|ϵ) = (1 − 𝜙(
𝑢∗

𝜎∗
2))−1 1

√2𝜋 
 𝑒𝑥𝑝 [

−1

2𝜎∗
(𝑢 − 𝑢∗)2] (21) 

 

where, 

 

𝑢∗ =  
−𝜖𝜎𝑢

2

𝜎𝑢
2 + 𝜎𝑣

2 
 (22) 

 

And 

 

σ∗
2 =  

σu
2 σv

2

σu
2 + σv

2 
 (23) 

 

The technical efficiency, if u and v are independent, given 

the value of ϵ, is 

 

𝐸(𝑒−𝑢|𝜖) = ∫  𝑒−𝑢(1 − ϕ(
𝒖∗

𝜎∗

))−1  
1

√2𝜋
 exp (−

1

2σ∗
2

(𝑢

∞

0

− 𝑢∗)2𝑑𝑢

= ∫  (1

∞

0

− ϕ(
𝒖∗

𝜎∗

))−1  
1

√2𝜋
exp (−

1

2σ∗
2

(𝑢 − 𝑢∗)2

− 𝑢)𝑑𝑢 

(24) 

 

The exponential argument in Eq. (24) can be written as 

 

−
1

2σ∗
2 (u − u∗)2 − u

= −
1

2
(

u

σ∗
− (

u∗

σ∗
− σ∗ ))2 − u∗

+
1

2
σ∗

2 

(25) 

 

So that Eq. (24) becomes 

 
𝑒𝑥𝑝(−𝑢∗

+
1

2
𝜎∗

2)(−
1

2
 (1

− ϕ (
𝑢∗

𝜎∗
))−1) ∫  

1

√2𝜋
 𝑒 

−−
1
2(

𝑢
𝜎∗

−(
𝑢∗
𝜎∗

−𝜎∗ ))2

𝑑𝑢
∞

0

 

(26) 

 

Which can be written as 

 

𝑒𝑥𝑝(−𝑢∗ +
1

2
𝜎∗

2)(−
1

2
 (1 − ϕ (

𝑢∗

𝜎∗
))−1)ϕ(− (

𝑢∗

𝜎∗
− 𝜎∗ )) (27) 

 

Hence, the TE becomes 

TE = E(e−u|ϵ) =  exp(−u∗ +
1

2
σ∗

2)(−
1

2
 (1 −

ϕ (
u∗

σ∗
))−1)ϕ(− (

u∗

σ∗
− σ∗ )) 

(28) 

 

Which is equal to the TE of Battese and Coelli [20]. 

 

2.5 Model selection 

 

To select among the four models (conventional and three 

copula-based SFM), we use Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) as follows: 

 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) (29) 

 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2ln (𝐿) (30) 

 

where, k is the number of parameters in the model, L is the 

loglikelihood, and n is the number of observations. The best-

fitted model has the lowest AIC and BIC. 

 

2.6 Driver of efficiency 

 

We consider four exogenous variables associated with the 

farmers’ profile as drivers of efficiency and regress those 

variables on the efficiency (E(exp(-ui) |ϵ). The four exogenous 

variables are age (Z1), Education (Z2), experience in farming 

(Z3) of farmers' family heads, and land ownership (Z4), with 

the following model. 

 

E(exp(-Ui) |ϵ) = δ1Z1i + δ2Z2i + δ3Z3i + δ4Z4i +ϵi (31) 

 

 

3. RESULT AND DISCUSSION 

 

3.1 Profile of respondent farmers 

 

Table 1. Summary statistics of the data 
 

Variables Mean Std Dev Min Max 

Rice prod (t) 8.94 1.80 6.72 35.00 

Area (ha) 2.49 1.74 0.50 10.00 

Fertilizer (-kg) 

NPK 
140.58 123.08 23.33 692.33 

Lime/dolomite 

(kg) 
1289.21 1410.48 0 10,000 

Seed (kg) 69.47 65.72 7.00 400.00 

Labour 

(person-days) 
76.29 62.25 17.00 430.00 

Pesticide cost 

(IDR) 
2097.76 1810.8 140.0 9120.00 

 

Despite having a lot of farming experience and being at 

productive ages, most of the farmers who participated in the 

study also needed more land and more education. Of the 94 

farmers that responded to the survey, 81% were of productive 

age, and only 19% were of less productive age. Farmers are 

most productive between the ages of fifteen and forty-four. 

According to educational attainment, 48.94% of farmers have 

completed elementary school or less (0–6 years), 29.79% have 

completed junior high school (7-9 years), 23.85% have 

completed senior high school (10–12 years), and 2.75% have 

a college degree. Most farmers have been in the rice farming 

business for two to eighteen years (46.82%), followed by those 

who have been in it for 18 to 34 years (41.49%) and those who 

718



 

have been in it for more than 34 years. Regarding holding land, 

32.98% of farmers owned between 3.0 and 5.6 ha, 54.25% 

owned between 0.5 and 3.0 hectares, and the rest owned more 

than 5.6 ha. Summary statistics of the data are presented in 

Table 1.  

 

3.2 Model selection 

 

The independence model, also known as Battese and 

Coelli's conventional model, is the most reliable as it has the 

lowest AIC (42.53793) and (70.51417) among the four models. 

AIC focuses on finding the best model to describe the data 

while penalizing complexity, and BIC also penalizes 

complexity with a higher penalty for the number of parameters. 

Despite all four models having the same production frontier 

and an identical number of parameters (k), the conventional 

model has the highest loglikelihood (ln L), resulting in the 

lowest AIC and BIC as determined by Eqs. (29)-(30). The 

Clayton copula-based SFM outperforms the other two models 

due to its low AIC and BIC (Table 2). 

 

Table 2. Information Criterion and loglikelihood of SFMs 

 
Copula AIC BIC Loglikelihood 

Independent 42.53793 70.51417 -10.26896 

Gaussian 47.56879 78.08832 -11.78439 

Clayton 46.72403 77.24356 -11.36201 

Frank 49.09682 79.5484 -12.51443 

 

3.3 Technical efficiency 

 

The average technical efficiency (TE) of rice production in 

this study, calculated using the conventional SFM, is 0.75534, 

while Gaussian, Clayton, and Frank copula-based SFMs 

estimate 0.5583388, 0.6863300, and 0.7764366, respectively. 

Figure 1 shows that although most high efficiencies were 

estimated by conventional SFM, some farmers' estimations of 

TE were lower by the conventional model than those of the 

three copula SFM. This result indicates that the conventional 

SFM does not overestimate or underestimate average 

efficiency, as it falls between the values estimated by the 

Gaussian and Clayton copula-based SFMs but is lower than 

the Frank copula-based SFM. Therefore, using the 

conventional SFM for efficiency prediction is reliable. 
 

 
 

Figure 1. Farmer-wise distribution of TE estimated by the 

four methods 

The estimated average efficiency suggests that farmers in 

tidal swampland achieve 75.5% of the maximum rice 

production with the available inputs. This finding aligns with 

similar studies in the same agroecosystem [8-10], which 

reported an estimated efficiency of 78.2%. However, the 

average efficiency for local varieties is lower at 58%. If we 

define efficient farmers as those with an efficiency greater than 

0.70, then 70.21% of farmers on tidal swampland were 

efficient. This percentage varies when using different copula-

based SFMs: 2.12% with Gaussian, 67% with Clayton, and 

82.97% with Frank (Table 3). Therefore, the choice of SFM 

can impact the percentage of efficient farmers identified. 

 

Table 3. Average efficiency and percentage of farmers 

having an efficiency score > 70% 

 
Copula Average TE TE > 70% 

Independent 0.7543541 70.21277 

Gaussian 0.5583388 2.12766 

Clayton 0.6863300 67.02128 

Frank 0.7764366 82.97872 

 

 
 

Figure 2. Histogram of TE based on some SFMs 

 

According to Figure 2, most farmers have efficiencies of 

approximately 80-90% when estimated using the Frank copula 

SFM (green bar), 70-80% when estimated using the Clayton 

copula-based SFM (red bar), and 60-70% when estimated 

using the Gaussian copula-based SFM (blue bar). The 

efficiencies estimated using the conventional SFM (yellow 

bar) ranged evenly from 60% to 100%. While a few farmers 

assessed their efficiencies using the conventional model, 

which may reach 100%, the conventional model estimation in 

this study did not overestimate the efficiencies. Therefore, the 

output of the conventional model is suitable for providing 

recommendations. 

 

3.4 Factors driving efficiency 

 

Table 4 shows the impact of external variables on efficiency. 

Among the external variables considered, age and experience 

of the farmer's family heads had a notable influence on 

efficiency. The results indicated that farmers with more 

experience tend to have higher efficiency levels, as shown by 

the positive coefficient estimate. Conversely, the negative 

719



 

coefficient estimate indicated that older farmers were 

associated with lower efficiencies. Experienced farmers 

enhance efficiency through the Knowledge and skills they 

acquire over time. Rice farming in tidal swamps has been a 

traditional practice, leading to the accumulation of expertise 

among farmers. Research has also shown that farmers' 

experience plays a crucial role in improving technological 

efficiencies [21-23].  
 

Table 4. Effect of exogenous variable on TE 
 

Exogenous 

Variables 

Copula 

Independent Gaussian Clayton Frank 

Age 

Education 

Experience 

Land 

ownership 

-0.0042* 

0.00347 

0.0047** 

0.0046 

-0.0029 

0.0023 

0.0033 

0.0021 

0.0030 

0.0028 

0.0030 

0.0023 

-0.0020 

0.0010 

0.0022 

0.0021 

Note: 1. **) significant at 0.01; 2. *) significant at 0.05 

 

Table 5. The relation between education (years in school) 

with TE 
 

Education (yrs) Education Level TE 

4 elementary 0.653 

5 elementary 0.790 

6 elementary 0.755 

7 Junior high 0.650 

9 Junior high 0.765 

12 Senior high 0.721 

15 University 0.899 

16 University 0.883 

17 University 0.905 
 

Education and land ownership had little effect on efficiency. 

Aside from the lack of variation in education and land 

ownership, which may account for the two factors' 

nonsignificant effects on efficiencies, the less intensive 

extension, training, and supply of information and technology 

may explain why education does not affect efficiency. If the 

information and technology are given to them, farmers with 

higher levels of education will be more receptive to and 

capable of embracing new technology than those with lower 

levels of education. With a few exceptions for non-university 

education farmers (less than or equal to 12 years in school), 

Table 5 demonstrated that farmers with university education 

(15 to 17 years in school) had higher efficiency. 
 

 
 

Figure 3. Distribution of efficiencies on land ownership 

Figure 3 shows that at low land ownership, the efficiencies 

vary greatly from the lowest to the highest, while at high land 

ownership, efficiencies range from medium to high. Most of 

the land ownership is low, which causes nonsignificant effects 

of land ownership on efficiencies. However, the figure also 

indicated that the increase in land ownership will increase the 

TE. 

 

3.5 Factors affecting rice production 

 

The focus of the models under investigation is inference, i.e., 

determining which input variable has the most impact on rice 

production rather than predicting rice production accuracy 

based on input quantity and technical efficiency. Table 6 

displays the production frontier estimates based on 

conventional SFM. The calculated coefficients indicate the 

elasticity of each variable in rice production. The area of rice 

cultivation and the amount of fertilizer applied, measured in 

kg of NPK fertilizers, significantly influence rice production. 

The elasticity of the cultivated area is 0.8892, while for 

fertilizers, it is 0.1583. This elasticity suggests that a 1% 

increase in the rice growing area in tidal swampland increases 

rice yield by 0.89%. Similarly, a 1% increase in fertilizer 

application enhances rice output by 0.16%, regardless of the 

increase in cultivation area. 

 

Table 6. Factors affecting rice production in tidal swampland 

 

Variables Coeff. 
Std 

Error 
Z-Values Pr (>Z) 

Intercept 

Area 

Fertilizer 

Seed 

Lime 

Labour 

Pest.cost 

P.systema 

DX3b 

0.7820 

0.8892 

0.1583 

-0.0755 

0.0228 

0.0266 

0.0142 

0.0404 

0.0835 

0.4312 

0.0965 

0.0576 

0.0567 

0.0440 

0.0683 

0.0342 

0.0710 

0.3205 

1.8136 

9.2184 

2.4782 

0.0467 

0.5195 

0.3891 

0.4148 

0.5689 

0.2606 

0.0697 

<2.2e-16*** 

0.0060** 

0.1062 

0.6034 

0.6972 

0.6783 

0.6984 

0.7944 
Notes: 1. ***) significant at 0.01; 2. **) significant at 0.05; 3. a) planting 

system; 4. b) dummy variable. 

 

Tidal swampland has limited soil nutrient availability, 

necessitating fertilization for practical farming and increased 

crop output. The production of improved rice varieties can 

lead to increased nutrient depletion, particularly of N, P, and 

K, as these nutrients are extracted in more significant 

quantities after harvest. This condition is due to the higher 

nutrient requirements of improved rice for optimal growth. 

Plant growth and yield follow the law of diminishing returns, 

meaning optimal output is achieved only under specific 

nutrient-balancing conditions. The nutrient balance of the soil 

is dynamic and constantly changing. Fertilization efficiency 

can be improved using fertilizers compatible with the soil's 

nutrient availability and the variety of crops grown. 

KCl fertilizer enhances rice tolerance to iron toxicity, 

increases tiller number, and boosts yield. These benefits may 

be related to the potassium (K) nutrient deficiency in tidal 

swampland. Potassium is a macronutrient that stimulates 

various enzymes involved in photosynthesis and respiration. It 

also aids in protein and starch synthesis, cell growth, stomatal 

movement, and stress mitigation. Potassium also plays a role 

in maintaining anion-cation balance and regulating the electric 

charge. Studies have shown that potassium can increase root 

exclusion of iron and inhibit iron absorption [24, 25], 

beneficial in environments with iron toxicity. 
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Tidal swamplands often have low nitrogen and phosphorus 

levels, leading to deficiency symptoms such as pale leaf colour, 

reduced tillers, and lower yields. Inadequate phosphate levels 

can result in stunted plant growth and empty grains. 

 

3.6 Discussion 

 

Relaxing the independence assumption between the two 

error components in the stochastic frontier is intended to 

prevent the overestimation of technical efficiencies in rice 

production. However, such overestimation does not always 

happen and could be negligible. A specific no-independence 

model, namely the Frank copula-based SFM, produced a 

greater estimate of average efficiency and the percentage of 

farmers who practice efficient farming. What causes the few 

discrepancies and inconsistencies with the general theory of 

overestimation is left to be explained.  

Conventional SFM and Copula-based SFM have 

significantly different methodologies and applications, and 

comparing their technical efficiency estimates requires an 

awareness of their respective strengths and limits. 

Conventional SFM depends on distributional assumptions for 

the inefficiency component (e.g., half-normal, truncated-

normal) and the noise term (e.g., normal distribution). It is 

easier to implement, with fewer assumptions regarding the 

dependence structure of error terms, and is more 

computationally efficient. However, if these assumptions are 

not followed, strong assumptions regarding error term 

distributions can result in erroneous estimations. The 

independence of inefficiency and noise terms may not be 

maintained in practice. 

Copula-based SFM, which makes use of copula functions, 

has the potential to improve the accuracy and resilience of 

efficiency estimations, apply less restrictive distribution 

assumptions, and capture complex relationships between 

inefficiency and noise sources. However, it is computationally 

more difficult since copula parameters must be estimated, the 

copula function must be carefully chosen, and practitioners 

must be better knowledgeable. 

Although 70.21% of farmers are classified as efficient 

(efficiency score > 70%), there is still room to improve 

efficiency. Thirty per cent of farmers still need to become 

more efficient. Increased efficiency can be achieved by 

encouraging younger individuals to enter the farming industry, 

enhancing and expanding farmer education and training, and 

boosting land ownership.  

Encouraging young people to start farming in tidal 

swampland areas is critical for guaranteeing food security, 

lowering unemployment, and encouraging sustainable 

development. to encourage and enable the next generation to 

pursue agriculture as a lucrative and dynamic economic 

endeavour and a source of income. Young farmers should be 

given subsidized loans or grants, encouraged to sell directly to 

customers through apps and online marketplaces, and given 

the opportunity to collaborate with one another through online 

forums or cooperatives.  

Strengthening and expanding farmer education and training 

is critical for increasing agricultural output, assuring 

sustainable practices, and improving farmers' livelihoods. It 

will better prepare them to face difficulties, implement 

innovations, and succeed in a competitive agricultural 

landscape. Increasing farmer land ownership in tidal 

swampland is vital for increasing agricultural productivity, 

lowering poverty, and ensuring equitable development. 

Farmers cultivated rice fields in tidal swamplands ranging 

from 0.50 ha to 10 ha, with an average of 2.5 ha. However, 

most farmers in tidal swampland have a modest rice 

cultivation area. 

Tidal swampland's contribution to national rice production 

is limited due to the low rice productivity in this 

agroecosystem, and only a tiny portion of tidal swampland has 

been planted with rice. Most tidal swampland is either 

abandoned or not yet ready for agriculture. To boost rice 

production in tidal swamplands and improve national food 

security, the Indonesian government has started a "food estate 

project." 

This study's findings suggest that increasing the rice 

cultivated area and utilizing more NPK fertilizer can boost rice 

yield in tidal swampland. Large swamplands that are exposed 

to agriculture, however, may lose biodiversity, alter the 

hydrological cycle, emit greenhouse gases, degrade soil, 

pollute water, raise the danger of floods, and affect nearby 

communities. Additionally, because swamplands have special 

characteristics such as water pollution, soil acidification, the 

bioaccumulation of hazardous substances, and changed plant 

communities, the use of NPK (nitrogen, phosphorus, and 

potassium) fertilizers there may have detrimental effects. 

As a result, while converting swampland to farmland may 

provide immediate economic benefits and NPK fertilizers 

might boost agricultural productivity, the long-term 

environmental costs are enormous and may compromise the 

ecosystem's health. Increasing technical efficiency could be a 

less harmful option to increase rice production in tidal 

swamplands. 

 

 

4. CONCLUSION 

 

Expanding cultivated land and using more fertilizers will 

boost rice production in tidal swamplands. However, 

increasing efficiency, which varies considerably across 

farmers, can still enhance rice production. 

The conventional SFM is still the best appropriate model 

compared to copula SFM based on AIC and BIC criteria. It 

delivers more precise estimations of technological efficiency. 

To further enhance technical efficiency, promoting the 

involvement of younger individuals in farming, providing 

additional training for farmers, and increasing land ownership 

in tidal swampland are recommended strategies. 
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