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The rapid expansion of the internet has increased network size and complexity, 

necessitating dynamic management strategies. Traditional networks struggle with 

scalability and monitoring, prompting the adoption of software-defined networks (SDNs), 

which offer programmability and flexibility by decoupling control and data planes. 

However, this centralized architecture has introduced new security challenges. Machine 

learning (ML)-based intrusion detection systems (IDSs) have emerged as effective 

solutions. This paper explores the integration of ML-powered IDS in SDN environments, 

evaluating classifiers like Decision Tree (DT) and Random Forest (RF) using metrics such 

as accuracy, precision, recall, and F1-score. Results show DT and RF achieve 99.99% 

classification accuracy, highlighting their potential for enhancing SDN security. The study 

emphasizes that combining feature selection with robust classifiers significantly improves 

threat detection, enabling targeted defense mechanisms and improving SDN resilience 

against cyberattacks. 
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1. INTRODUCTION

An intrusion detection system (IDS) is a technology that 

relies on monitoring network and packet traffic in real time to 

determine whether a packet present on the network is 

malicious or unwanted, while also identifying the general 

behavior of the network and any abnormal behavior  [1]. Big 

data, strong computer resources, and network growth raise the 

requirement for the necessary tasks that must be done 

simultaneously in real time. As a result, IDS should monitor 

with caution, accuracy, and precision qualities that have not 

been present in prior techniques [2]. However, it is very 

remarkable how quickly the machine. The accuracy of 

learning algorithms has increased. Its introduction is based on 

the increasing demand for improved performance in many 

kinds of networks [3]. However, the software-defined network 

(SDN) implementation of the network-based IDS has opened 

up a new channel for its adoption due to the increasing 

diversity and magnitude of security threats in modern 

networks [4]. The exponential growth in network data volume 

and linked devices is accompanied by inherent security risks. 

The expansion of some technologies such as artificial 

intelligence (AI) tools, the Internet of Things (IoT), and 

quantum computing [5] leads to an increased amount of danger 

and attack, thereby complicating making network security 

challenging to implement and necessitating a new paradigm. 

The demand for sophisticated, flexible, and resilient security 

implementation has increased because of several assaults [6]. 

A novel technique that has been researched in recent years, 

SDN can be defined as a networking architecture that splits it 

into a control plane (decision-making) and a data plane (packet 

forwarding) in the network. As seen in Figure 1, the network 

management tasks are shifted from the various networking 

devices to a centralized controller, making it simpler to 

monitor and configure the network overall [7]. It’s crucial to 

remember that SDN itself adds additional software 

components, including the controller and related software 

stack, even if it can aid in lowering the software complexity of 

network administration [8]. When implementing SDN, 

consideration should be given to the complexity of these 

components, which must be maintained and controlled. But all 

things considered, SDN’s centralization, abstraction, 

programmability, and automation features help to streamline 

network administration and lower software complexity [9]. 

However, SDN is now open to assaults due to centralization, 

insecure controller communication, and improper 

authorization and authentication [10]. Data analytics has 

grown in popularity and usage across a wide range of 

application were used; this is due to the recent massive rise in 

computer power. The shortcomings of conventional IDS have 

drawn increased attention to the utilization of Machine 

Learning (ML) for advanced combat assaults and enhanced 

security [11]. The use of machine learning algorithms for 

malware detection [12], network intrusion detection [13], and 

botnet attack detection [14] has been investigated by the 

research community. By learning from experience, machine 

learning (ML) techniques might help the detecting system 

become more autonomous. Traditional networks have mostly 

used these methods to categorize harmful traffic and network 

assaults [15]. They have demonstrated significant promise in 

the categorization of network traffic and are frequently used 

for classification and prediction tasks [16]. The main 
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advantage of using ML techniques in SDN is their capacity to 

impact network-wide security standards, as opposed to more 

localized policy implementation in traditional networks [17]. 

 

 
 

Figure 1. SDN structure [7] 

 

Three types of machine learning algorithms are frequently 

distinguished: supervised, unsupervised, and semi-supervised. 

In IDS, supervised machine learning techniques perform better 

than unsupervised and reinforced learning, claims [18]. 

Furthermore, the performance of machine learning techniques 

is discovered to be influenced by the types of data and learning 

approaches [19]. This work attempts to examine the potential 

of ML approaches in offering dependable security protection 

for SDN, considering previous research that uses a variety of 

ML algorithms and compares the accuracy and performance 

of various supervised algorithms. This research specifically 

examines five machine-learning techniques: Naive Bayes 

(NB), K-Nearest Neighbor (KNN), Support Vector Machine 

(SVM), Random Forest (RF), and Decision Tree (DT). 

The primary contributions of this paper are as follows: 

• The paper proposes an in-depth analysis, and comparative 

study of five machine learning algorithms, NB, KNN, 

SVM, RF, and DT, applied to intrusion detection within 

SDNs. 

• It discusses how each algorithm varies in terms of 

accuracy, precision, recall, and F-score, outlining the 

most appropriate techniques that shall serve in enhancing 

the detection capabilities in the SDN environment. 

• Because the study focuses on SDNs, it addresses 

challenges in dynamic and scalable network architectures, 

hence assuring that the proposed techniques will be 

optimized for threat detection. 

• The contribution of this research study leads to the 

development of a robust and adaptable IDS framework 

that will use machine learning and can be integrated into 

SDN infrastructures to enhance network security. 

• One significant contribution of using feature selection 

techniques in machine learning for IDS within SDN is the 

enhancement of detection accuracy. By identifying and 

retaining only the most relevant features from a 

potentially high-dimensional dataset, feature selection 

minimizes noise and reduces the risk of overfitting. 

The remainder of the paper is structured as follows: The 

second section of the text is devoted to an examination of the 

extant literature and related research. The methodological 

description along with the implementation of machine learning 

models coupled with the used dataset has been described in 

Section 3. Section 4 presents the results and a comparison of 

the results, while Section 5 presents a discussion of the 

findings.  

 

1.1 Research questions 

 

RQ1. How is the creation of SND facilitated by flow-based 

network intrusion detection? 

RQ2. How may machine learning be used to increase the 

accuracy of intrusion detection in SDN architectures with 

limited raw features? 

RQ3. How can the system’s throughput and latency 

performance be assessed? 

RQ4. How can the feature selection techniques enhance the 

performance of ML algorithms? 

 

 

2. RELATED WORKS 

 

The recent research emphasis on cybersecurity and network 

defense has resulted in the extensive employment of the 

UNSW-NB15 dataset in the development of IDS that employ 

machine learning techniques. This study includes articles 

published between 2019 and 2024 that review various ML-

based approaches and assess their effectiveness in enhancing 

intrusion detection. 

1. KNN-Based Intrusion Detection Models 

Nikhitha and Jabbar [20] proposed an IDS model using the 

KNN classifier. KNN, a supervised learning algorithm, 

demonstrated strong classification and accuracy performance, 

achieving a 99.96% accuracy on the ISCX dataset. 

2. Comparative Evaluation of Multiple ML Models 

Hasan et al. [21] compared multiple machine learning 

models, including Logistic Regression, SVM, DT, RF, and 

ANN for IoT security. DT, RF, and ANN achieved high test 

accuracy rates of 99.4%. 

3. Integration of ML with SDN for High Detection 

Accuracy 

Ibrahim and Bhaya [22] presented an SDN-enabled IDS 

architecture using GridSearch and SVM. The system, trained 

on UNSW-NB15 and NSL-KDD, achieved over 99.8% 

detection accuracy. 

4. Hybrid IDS Using SVM and Neuro-Fuzzy Systems 

Mehmood et al. [23] proposed a hybrid IDS approach using 

feature elimination and various SVMs for detection, with 

ANFIS for classification. Their model achieved 99.3% 

accuracy and low mean square error. 

5. RF-Based Signature IDS 

Zeleke et al. [24] developed a centralized signature-based 

IDS using RF on the CICIDS2017 dataset, achieving 99.968% 

accuracy with only 12 features. 

6. Tree-Based ML Techniques for SDN Security 

Alzahrani and Alenazi [25] applied DT, RF, and XGBoost 

to detect malicious activities in SDN using the NSL-KDD 

dataset. Their multi-class classifier achieved 95.95% accuracy 

using only 5 features. 

7. Feature Selection Using Genetic Algorithm (GA) 

Saba et al. [26] enhanced IDS performance by using a 

Genetic Algorithm for feature selection, then applied DT, 
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Ensemble Classifier, and SVM on NSL-KDD, achieving 99.8% 

accuracy. 

8. Selective Logging and IP Traceback in IDS 

Hadem et al. [27] proposed an SVM-based IDS integrated 

with selective logging for IP traceback. Their system achieved 

95.98% accuracy using the full NSL-KDD dataset and 87.74% 

on selected subfeatures. 

9. DoS and Port Scanning Detection with ANOVA and ML 

AlMasri et al. [28] used ANOVA for feature selection and 

applied several ML models to detect DoS and Probe attacks. 

The NB model achieved 86.9% and 93.5% accuracy, 

respectively. 

10. Hybrid Feature Selection with LightGBM 

Logeswari et al. [29] introduced HFS-LGBM for SDN IDS. 

Combining CFS and RF-RFE for feature selection, and 

LightGBM for classification, the model achieved 98.72% 

accuracy. 

11. ML-Based IDS for IoT-SDN Integration 

Alshammari and Alserhani [30] developed an ML-based 

IDS using SVM, KNN, LR, RF, and DT on the ToN-IoT 

dataset. RF outperformed others with a 99% accuracy rate. 

12. Preprocessing and Feature Scaling in ML IDS 

Raju and Suma [31] emphasized preprocessing and 

evaluation. Their DT classifier achieved 99.17% accuracy, 

followed by RF and KNN with 99.11% and 98.22%. 

13. ML for DDoS Detection in SDN-IoT 

Bhayo et al. [32] applied NB, DT, and SVM in SDN-WISE 

IoT for DDoS detection. Accuracy rates were 97.4%, 96.1%, 

and 98.1%, respectively, with significant memory 

optimization. 

14. Intrusion Detection in IoT Using Dual Datasets 

Kumari et al. [33] compared ML classifiers on two IoT 

datasets, achieving 99.11% and 99.99% accuracy for the IoT 

Network intrusion and IoT_23 datasets, respectively. 

15. Multi-Attack Detection in SDN-IoT Networks 

Ferrão et al. [34] proposed MAIDS using XGBoost and RF 

on NSL-KDD and CICIDS2017 datasets, achieving average 

accuracies of 99.88% and 99.89%. 

16. Improving IDS with Feature Balancing and 

Optimization 

Hacilar et al. [35] examined feature imbalance, binary 

classification, and optimization techniques such as SMOTE, 

ROS, and ADASYN with XGBoost. Impressive accuracy, 

detection, and low false alarm rates were achieved across 

UNSW-NB15, AWID, and InSDN datasets. 

 

 

3. METHODOLOGY 

 

This methodology, as shown in Figure 2 starts on the 

UNSW-NB15 dataset, which is one of the modern benchmark 

datasets in recent times for benchmarking IDS in cybersecurity 

research, and training the model with the dataset has 

comprehensiveness with a wide range of attacks with 

scenarios and relevance to modern network traffic patterns 

compared with other datasets.  

 

 
 

Figure 2. The proposed IDS ML-based methodologies architecture 

 

The preprocessing starts with data division; dividing the 

dataset into training and testing, usually in 70-30 proportions 

helps analyze the generalized performance of the machine 

learning model, while the data pre-processing step involves 

preparations of the dataset, making it ready for analysis. It 

includes normalization to enhance the performance of 

distance-based models like KNN. This step is, therefore, 

crucial for noise reduction and ensuring the integrity of the 

data for training the model. Classification is done after 

preprocessing with five machine learning techniques usually 

supervised: NB, KNN, SVM, RF, and DT. Each model will be 

trained based on pre-processed data to identify and classify 

network intrusions. In this regard, each classifier's 

performances are measured based on accuracy, precision, 

recall, and F1-score so that no comparison is left concerning 

the efficacies brought in by these algorithms in finding 

cybersecurity threats using the UNSW-NB15 dataset. 

 

3.1 UNSW-NB15 dataset description 

 

The UNSW-NB15 dataset had evolved by the Australian 

Center for Cyber Security (ACCS) in partnership with other 

academics from across the world. The IXIA Perfect Storm 

program was utilized to generate a diverse array of both 

standard and atypical contemporary network traffic. The IXIA 

tool proactively gathers and compiles information systems 
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security vulnerabilities and exposures that are known to the 

public. It serves as a useful resource for learning about 

contemporary public attacks. 

The UNSW-NB15 dataset embeds many contemporary 

low-key assaults in an attempt to replicate contemporary 

network settings. The dataset’s 10 different traffic types are 

normal, fuzzing, analysis, backdoor, DOS, exploits, generic, 

reconnaissance, and worms [36]. 

 

3.2 Data preprocessing 

 

Data can contain different types of data, whether images, 

audio files, video clips, structured and unstructured tables, etc. 

The free text, video, or image must be converted into 1s and 

0s since a machine cannot comprehend it in its original form. 

Therefore, the utilization of raw data directly input into a 

machine learning model is not a viable approach to achieve the 

desired results [37]. The first stage of machine learning is 

called data preprocessing, during which the input is changed 

or encoded so that the computer can process or read it more 

rapidly. Stated differently, it might also mean that the model 

method can quickly assess the data's characteristics. The most 

significant and influencing factor in a supervised machine 

learning algorithm’s ability to generalize is data pre-

processing [38]. About the input space dimension, the amount 

of training data increases exponentially. Pre-processing is an 

important process for model construction since the model can 

account for a range of 50% to 80% of the whole classification 

process, according to estimates. Furthermore, enhancing the 

quality of the data is also necessary for amended performance 

of the model [39]. 

Data Splitting: is an important technique used for 

removing or minimizing bias in training data that have used in 

machine learning models. The researchers invariably execute 

some procedure to circumvent the production of overfitting 

machine learning algorithms that could demonstrate 

substandard performance on authentic test data. Data scientists 

and analysts typically divide the datasets into several distinct 

subsets, which they then use to train various parameters [40]. 

One of the very common methodologies in machine learning, 

when it comes to splitting data for model performance 

assessment, is this k-fold cross-validation approach. Unlike 

splitting the data into a fixed training and testing set, this 

approach splits the data into "K" roughly equal-sized subsets 

(or folds) [41]. The remaining "K-1" folds are used as the 

training set, and the model is trained and validated "K" times, 

using a different fold as the validation set each time. This gives 

the performance evaluation greater robustness by guaranteeing 

that every data point is used for both training and validation. 

K-fold cross-validation reduces variance associated with a 

single estimate, hence giving a better estimate of how well the 

model will generalize to unseen data. It also makes the 

outcome of the evaluation less sensitive to the way the data has 

been initially split. Common choices are 5-fold or 10-fold 

cross-validation, but the number of folds can vary depending 

on the size of the dataset and the computational resources. This 

technique is particularly useful when working with limited 

data, as it maximizes the use of available information [42]. 

Data Normalization: Certain features in the “UNSW-

NB15” dataset may have lower values than others, while other 

features may have comparatively higher values. Furthermore, 

because the classification algorithm may be biased in favor of 

characteristics with larger values, out-of-range values may 

yield inaccurate findings. To prevent the outweighing issue, 

which would prefer features with higher values over those with 

lower ones, data standardization is crucial. There are several 

normalization methods, including traditional scalar 

approaches and min-max. As stated in Eq. (1), the min-max 

approach is used in this work to scale the feature values 

between zero and one.  

 

Z=  
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
  (1) 

 

where, X stands for the feature value and Z for the normalized 

value. The maximum and minimum feature amounts are 

denoted by max(x) and min(x) respectively [43]. 

Normalization in this work involves scaling certain features of 

the dataset within a common range, usually between 0 and 1 

or -1 and 1. And this method was chosen because it preserves 

the distribution of the data and ensures that all features have 

the same range, making it easier for the model to learn from 

the data. This helps in reducing different magnitudes and units 

across features, making it impossible for one feature to 

dominate others in the learning process. Convergence happens 

more efficiently and faster; thus, with normalized data, 

algorithms make better models and yield accurate results. 

Besides, it stabilizes gradient descent and other methods of 

optimization. In general, normalization improves the 

robustness of machine learning models. 

 

3.3 Features selection stage  

 

The field of machine learning relies primarily on feature 

selection and extraction from the database that have been used. 

Furthermore, it is worth noting that incorporating a large 

number of features from the database can lead to increased 

model complexity and increased training time. Therefore, 

selecting relevant features is essential for the effectiveness of 

machine learning approaches. Therefore, an effective feature 

selection strategy must be followed carefully to address this 

problem [44]. There is an important thing to get successful 

implementation of machine learning algorithms: a judicious 

selection of relevant features selection is of paramount 

importance. It has been posited that the omission of certain 

elements, which are of the utmost importance, may result in a 

consequential deficiency in the accuracy of the results. A 

multitude of issues must be addressed. A variety of feature 

selection techniques are applied in the field of machine 

learning. These consist of recursive feature elimination, chi-

square, and backward feature selection [45]. These methods 

are applied according to correlation, dimensionality, and 

datasets. In our model, we employed a variety of methods, 

including recursive feature elimination (RFE), backward 

elimination, and forward feature selection, to identify the most 

salient features. These techniques were selected because they 

yielded higher accuracies compared to other methods. 

(1) Recursive Feature Elimination (RFE) “1st technique” 

RFE is a wrapper feature selection method that recursively 

eliminates the least important features based on a predefined 

model performance metric. In each iteration, the model is 

retrained with the remaining features until the optimum subset 

of features is achieved. This method is particularly efficient in 

feature dimensionality reduction while preserving important 

features [46]. RFE improves model interpretability and 

reduces computational complexity by focusing on the most 

impactful attributes. This has extensive use both in linear and 

nonlinear models. 

(2) Backward Elimination “2nd technique” 
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Backward selection starts by considering all the available 

features and iteratively removes the least relevant among them 

[47]. After the model retraining in each step, one can check the 

removal effect of any particular feature. This process is 

continued until an optimal subset of features is obtained that 

balances performance with simplicity. Backward selection is 

computational for large data but gives more elaborative insight 

into the relevance of the features. This reduces overfitting by 

eliminating either irrelevant or redundant features, hence 

increasing the efficiency of the model. 

(3) Forward Feature Selection “3rd technique” 

Forward selection is the process where an empty set of 

features is considered at the start, and one feature is 

progressively added based on its contribution to model 

improvement. At each step, the feature whose addition 

increases any performance metric, including accuracy and 

AUC, is included in the set of selected features. This is 

computationally much easier than backward elimination and is 

therefore suitable for high-dimensional data. Forward 

selection guarantees that only the most relevant features are 

used, which enhances model accuracy and reduces the 

possibility of overfitting. It is useful when the computational 

resources are limited [48]. 

 

3.4 Machine learning-based intrusion detection 

 

An AI technology and subset of artificial intelligent that 

called machine learning (ML) investigates different 

approaches to learning from and forecasting data. It uses 

features that correspond to an object’s features to find and 

learn data patterns. Supervised learning and unsupervised 

learning are the two main subcategories of ML [49]. 

Supervised learning requires labeled data with relevant 

information, but classification is a common problem. Manual 

tagging is costly and time-consuming, making it difficult to 

obtain enough annotated data. Unsupervised learning is 

simpler to implement but can extract relevant feature 

information from unlabeled data. Despite this, supervised 

learning techniques often outperform unsupervised learning in 

detection [50]. The intrusion detection with five machine 

learning techniques involves the training of NB, KNN, SVM, 

RF, and DT algorithms on how to recognize malicious 

activities within the traffic as shown in Figure 3.  

 

 
 

Figure 3. ML-based intrusion detection model 

 

Each method processes the input features extracted from the 

dataset to classify the traffic as normal or suspicious. NB is 

based on probabilistic inference using feature distributions, 

while KNN decides on the class of a data point based on the 

analysis of its closest neighbors in the feature space. SVM 

develops hyperplanes to separate classes, trying to provide a 

maximal margin between the instances that belong to normal 

and attack classes. RF combines several DT for robust 

classification by aggregating outputs of trees, while DT 

develops a flowchart-like model composition based on 

decision rules derived from the dataset itself. By using these 

algorithms, it enables the detection of both known and newly 

emerging threats through learning complex patterns within 

network flows. 

KNN: The KNN method uses the nearest means to divide a 

dataset into sets that are either malicious or non-malicious. It 

takes prior training to make accurate predictions. To determine 

the weight of each attribute, we first determined the 

probability of each of the K neighbors to be classified using 

the KNN. The dataset, or new instance (X), is provided, and 

the Euclidean distance is calculated in terms of locating the 

associated class variable as indicated by equation in order to 

determine the output variable. 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝑖ˎ𝑗 =  √∑ (𝑥𝑖𝑘 − 𝑦𝑖𝑘)𝑛
𝑘=1   (2) 

 

where, (𝑥𝑖) represents a new instance, (𝑦𝑗) represents an old 

instance [51]. 

SVM: it is a machine learning tool that has been used for 

different models to get classification and regression. An SVM 

operates by using critical data points known as support vectors 

to determine the optimal hyperplane to optimize the margin 

between classes. It can handle both linearly and non-linearly 

separable data thanks to the kernel approach, which comprises 

the linear, polynomial, and radial basis functions and sigmoid 

kernels. It works especially well for classification issues that 

are binary or even multi-class. The equation for a SVM 

classifier can be represented as Eq. (3): 

 

𝑓(𝑥) = 𝑊𝑇𝑥 + 𝑏 (3) 

 

where, f(x) is the decision function indicating the label of the 

class of the input, w defines the orientation of the hyperplane 

because it is the weight vector, x represents an input feature 

vector, and b is the bias term, shifting the hyperplane away 

from the origin [52, 53]. 

RF: is a technique for ensemble learning that uses 

numerous decision trees to generate predictions. Also, it can 

demonstrate how to enhance the classification and regression 

tasks by training multiple decision trees on various subsamples 

of the data set. After that, the predictions of these distinct trees 

are then integrated to enhance accuracy and prevent overfitting. 

The equation of RF is based on an aggregation of many 

decision trees’ predictions as Eq. (4). The final prediction 𝑦̌ 

for a given input 𝑥 can be expressed as: 

 

𝑦̌= 
1

𝑁
 ∑ 𝑇𝑖𝑥

𝑁
𝑖=1  (4) 

 

The forest has a total of N decision trees, while 𝑇𝑖𝑥 indicates 

the forecast for the input x that the i-th decision tree made [54]. 

NB: is predicated on the idea that features are naïvely and 

independently unconnected to one another. Based on observed 

feature values, it computes the posterior probability of classes 

using the Bayes theorem. Gaussian, Multinomial, and 
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Bernoulli Naive Bayes algorithms are available, depending on 

the kind of distribution that is assumed for the features. Naive 

Bayes has gained popularity for a variety of applications due 

to its ease of use and effectiveness in training and prediction 

tasks [55]. The equation for a Nb is shown in Eq. (5). 

 

𝑝(𝑐|𝑥) =  
𝑝(𝑥|𝑐)𝑝(𝑐)

𝑝(𝑥)
  (5) 

 

p(c) is the posterior probability of class (c, target) (x, 

characteristics) given the predictor, p(x) is the prior probability 

of the predictor, p(c) is the historical probability of a specific 

class, and 𝑝(𝑐|𝑥) is the probability of a predictor in a specific 

class [56]. 

DT: is an approach to prediction tasks that divide the 

predictor space into easily analysed segments. Regression and 

classification of real-world scenarios are two more uses for it. 

Additionally, the machine learning algorithm to decision tree 

structures makes decisions based on the feature values. In 

contrast, the root of the tree is located at the very top. In 

addition to gradually evolving the decision tree, the branches 

are constructed using objective rules derived from the features 

of the dataset [57]. 

To create a decision tree, follow these steps [58]: 

1. Divide the entire dataset into training and test sets. 

2. Use the training set as an input to the tree's root. 

3. Use information theory to find the root, as demonstrated 

in (2). 

4. Follow the prone procedure. 

5. Repeat steps 1 through 4 until all nodes have become leaf 

nodes. 

As show in the Eqs. (6) and (7) the entropy equation. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐸(𝐻) =  ∑ −𝑃𝑗 log2 𝑃𝑗
𝑑
𝑘=1   (6) 

 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑏𝑒𝑓𝑜𝑟𝑒) −
 ∑ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑗\𝑘, 𝑙𝑎𝑡𝑒𝑟)𝑑

𝑘=1   
(7) 

 

To achieve this, the algorithm progressively separates the 

database into several subgroups based on entropy or 

information amount, and it continues to do so until a halt 

condition is satisfied [59]. 

 

3.5 Model evaluation 

 

Several evaluation methodologies are chosen to gauge the 

effectiveness of the employed ML techniques to give a 

thorough explanation of the outcomes of ML-based IDS. 

Specifically, the confusion matrix, displayed in Table 1, is 

used to evaluate the performance of the detection rate using 

precision, recall, F-measure, and accuracy metrics, as detailed 

below [60, 61]. 

 

Table 1. Typical structure of confusion matrix [61] 

 

 Predicted as 

'Normal' 

Predicted as 

'Attack' 

Actual Normal 

Class 
TP FP 

Actual Attack 

Class 
FN TN 

 

where, TP is true positive, FP is False Portative, FN is false 

negative, TN is true negative. 

Accuracy: According to Eq. (8), accuracy is defined as the 

ratio of the model's accurate data to the whole data, as shown 

below. 

 

Accuracy =  
TP+TN

TP+TN+FP+FN
  (8) 

 

Precision: The percentage of actual cases among all 

positive examples found by the model (TP) is what defines 

precision, which is described in Eq. (9). Stated differently, it 

indicates the proportion of classified assault incidents that are 

truly classed as an attack. 

 

Precision =  
TP

TP+FP
  (9) 

 

Recall: is defined as the proportion of attack traffic 

instances overall, as provided by Eq. (10) to the number of 

attacks that the model classified as attacks. It shows the 

proportion of real cases that were disclosed to all true instances. 

 

Recall =  
TP

TP+FN
  (10) 

 

F1-Score: This metric provides a harmonic average 

measurement of an estimator's sensitivity and precision and is 

defined in Eq. (11). 

 

F − score = 2 ∗
precision∗recall

precision+recall
  (11) 

 

 

4. RESULTS EVALUATION 

 

This section evaluates the suggested model using the chosen 

machine-learning techniques. 

 

4.1 Results of ML techniques without FS 

 

Table 2 and Figure 4 depict a model performance 

comparison, without feature selection. It reflects that all scores 

of the RF stand higher than any other model, meaning that it’s 

the best performing one; SVM stands a little after RF while 

KNN and DT performed averagely and Gaussian NB poorly. 

This suggests that RF and SVM are more robust, whatever the 

data condition without feature selection, whereas Gaussian NB 

fails to compete for the best results. 

 

4.2 Results of ML techniques with RFE-20 FS 

 

As shown in Figure 5 Comparatively, RF, DT, SVM, and 

KNN had approximately equal performances for F1-score, 

Accuracy, Recall, and Precision, showing how robust and 

reliable they can be. On the other hand, NB showed the lowest 

performances regarding all metrics, suggesting that it is 

unsuitable in this context. Regarding time efficiency, NB was 

the fastest, while SVM was the most computationally complex 

and thus took the longest. RF and KNN show a perfect balance 

between high performance and time efficiency, thus making 

them the best choices; SVM presents the best accuracy but 

requires more time to process. Generally, RF is the most 

balanced and reliable model. As shown in Figure 6 models like 

DT and NB are very time-efficient, with very low processing 

time. RF and KNN fall in the middle in terms of efficiency. 

Although SVM may be superior in accuracy or other metrics, 

this result shows its high computational cost; hence, DT and 

NB are more suitable for applications that require speed. 
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Table 2. Results of ML without FS 

 
 Accuracy% Precision% Recall% F-score% 

NB 79.564 79.735 80.342 79.322 

KNN 89.583 89.862 90.513 89.114 

SVM 71.232 71.561 71.423 69.332 

DT 99.934 99.950 99.333 99.412 

RF 99.923 99.934 99.852 99.741 

 

 
 

Figure 4. Evaluation metrics results without FS 

 

 
 

Figure 5. Evaluation metrics result with RFE-20 FS 

 

 
 

Figure 6. Time result with RFE-20 FS 

4.3 Results of ML techniques with backword-20 FS 

 

As shown in Figure 7, RF, DT, SVM, and KNN are very 

consistent in performing well on Accuracy, scoring almost full 

marks, which means NB is far from the rest and thus is weaker 

in predictive capability. Precision: RF, DT, SVM, and KNN 

again show high values, proving to be reliable in the low rate 

of false positives, while NB has a significant drop in precision. 

Recall is high for RF, DT, SVM, and KNN, meaning that they 

can detect the relevant cases very well, but NB, with its lower 

recall, it tends to miss positive instances. F1 scores show that 

RF, DT, SVM, and KNN have a very balanced performance 

due to the high values of precision and recall; in the case of 

NB, the low F1 score outlines an inconsistent performance. 

Time-wise, NB is the fastest, thus very computationally 

efficient and light; also, KNN processes rather fast. RF and DT 

are moderately fast and balance time with performance, while 

for SVM, computational complexity is highest: it took the 

longest running time among all. The best balance among all 

metrics due to its high accuracy, precision, and recall, though 

it is reasonably time-efficient, is RF. Other competitive 

alternatives are DT and KNN, which have a slight increase in 

computation. The SVM has high precision and recall; however, 

its extended runtime decreases its efficiency.  

 

 
 

Figure 7. Evaluation metrics results with backword-20 FS 

 

 
 

Figure 8. Time result with backword-20 FS 

 

On the contrary, NB is suitable for when the priority is on 

speed but sacrifices predictive quality and is hence the weakest 

performer among the tested models. This analysis confirms 

that RF is the most robust model operating at both high 
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performance and efficient computation. In Figure 8, DT and 

NB present the lowest time, which is very efficient. RF and 

KNN also have very low time, a little higher than those of DT 

and NB. Indeed, this reflects that while powerful, SVM is not 

very suitable for applications where computational efficiency 

is crucial, while DT, NB, and other light models are more 

suitable for such applications. 

 

4.4 Results of ML techniques with forword-20 FS 

 

Figures 9 and 10 illustrate the performance metrics and time 

of several machine learning models, including KNN, RF, DT, 

SVM, and NB, which are guided by forward feature selection.  

 

 
 

Figure 9. Time result with forword-20 FS 

 

 
 

Figure 10. F-score result with forword-20 FS 

 

In the accuracy chart, RF and DT had perfect scores of 1.0, 

with SVM and KNN each scoring 0.99, whereas NB trailed 

with a score of 0.97, showing much weaker predictive 

capabilities. It gets precision where RF, DT, SVM, and KNN 

get the perfect score of 1.0, making them reliable models with 

fewer numbers of false positives, whereas NB falls with 0.98. 

It is the same as that of accuracy; all these, RF, DT, SVM, and 

KNN, stand at 1.0 score, whereas NB stands as poorest with a 

value of 0.98, once again the worst result of missed relevant 

cases in Recall. The F1-score is a balancing measure between 

precision and recall; in its case, RF, DT, SVM, and KNN 

performed perfectly, with NB somewhat lagging. In terms of 

Time, the fastest will be NB-0.04 sec, followed by KNN-0.09 

sec and DT-0.06 sec, while RF performed slightly longer, 3.67 

seconds, and SVM had the largest running time because of its 

computational complexity at 13.09 seconds. Overall, RF and 

DT are the best-performing models, as all metrics are perfect 

and have relatively reasonable computation times. Strong 

performances are also realized by KNN and SVM, though the 

latter is costlier in terms of time. Meanwhile, NB was efficient 

in computation time but always had the worst values for all 

metrics, hence being unreliable for this task. 

 

4.5 Comparison results with related studies  

 

Table 3 compares the accuracy of several studies and 

models elucidates the effectiveness of machine learning 

algorithms in intrusion detection for SDN networks. Most of 

the referenced models show very impressive performances, 

with accuracy rates mostly falling within the range of 95% to 

almost 99.99%. Models in papers [20, 24, 26, 34] achieve 

accuracy above 99%, some going as high as 99.99%, which 

testifies to a good capability of threats being detected. Among 

these, the KNN model performs best at 98.7%, comparable to 

most of the existing related works. SVM fares equally well at 

99.9%, which is very close to that reported by the highest-

scoring referenced studies. RF and DT models achieve a 

perfect accuracy of 99.99%, reflecting their extraordinary 

capability to classify network traffic without error within the 

context of SDN. While NB reaches a somewhat lower 97.2%, 

it is competitive. These minor differences among the models 

probably reflect varying strengths in modeling complex traffic 

patterns that may depend on the features of the dataset or 

algorithm structure. In an overview, these results tend to bring 

out the potential of advanced machine learning techniques, 

especially RF and DT for realizing highly accurate intrusion 

detection, hence being among the top options in robust 

security frameworks of SDNs. 

 

Table 3. Accuracy comparison with related studies 

 
Ref. Accuracy% 

[20] 99.96 

[21] 99.4 

[22] 99.8 

[23] 99.3 

[24] 99.968 

[25] 95.95 

[26] 99.8 

[27] 95.98 

[28] 86.9 

[29] 98.72 

[30] 99% 

[31] 99.17 

[32] 97.4 

[33] 99.11 

[34] 99.88 

[35] 99.9 

The proposed model with KNN without FS 89.583 

The proposed model with SVM without FS 71.232 

The proposed model with RF without FS 99.923 

The proposed model with NB without FS 79.564 

The proposed model with DT without FS 99.934 

The proposed model with KNN with RFE-20 FS 99.881 

The proposed model with SVM with RFE-20 FS 99.983 

The proposed model with RF with RFE-20 FS 99.991 

The proposed model with NB with RFE-20 FS 99.993 

The proposed model with DT with RFE-20 FS 99.992 

The proposed model with KNN with Backward-

20 FS 
99.634 
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The proposed model with SVM with Backward-

20 FS 
99.963 

The proposed model with RF with Backward-20 

FS 
99.992 

The proposed model with NB with Backward-20 

FS 
99.991 

The proposed model with DT with Backward-20 

FS 
99.994 

The proposed model with KNN with Forword-20 

FS 
99.874 

The proposed model with SVM with Forword-20 

FS 
99.984 

The proposed model with RF with Forword-20 

FS 
99.992 

The proposed model with NB with Forword-20 

FS 
99.495 

The proposed model with DT with Forword-20 

FS 
99.991 

 

 

5. CONCLUSIONS 

 

This study presents the efficiency of NB, KNN, SVM, RF, 

and DT models by applying them to the problem of network 

intrusion detection based on the UNSW-NB15 dataset. Data 

preprocessing normalized the data to improve the performance 

of distance-based models, such as KNN, by reducing noise to 

maintain the integrity of data. Then, three feature selection 

techniques were used to enhance the performance of ML 

classifiers. Later, each of these classifiers was trained to detect 

various types of network intrusions. Performance metrics used 

here are accuracy, precision, recall, and F1-score, which detail 

the comparative performance of the models. 

As illustrated in the previous section, the summary for the 

best results of feature selection that appear and are highlighted 

for two mechanisms is that RF and DT offer the best balance 

of high performance across different metrics such as accuracy, 

precision, recall, and F1-score, while maintaining reasonable 

computation times that achieve 3.67 seconds for RF and 0.06 

seconds for DT. On the other hand, the KNN algorithm 

performs well but is slightly slower. In contrast, the fastest 

algorithm was NB, which reached 0.04 seconds but showed 

the weakest predictive capabilities overall. While SVM 

achieved high accuracy, it had the slowest performance, with 

13.09 seconds, due to its computational complexity making it 

less suitable for time-sensitive applications. 

Notably, some models in certain cases had perfect results 

with 100% metrics of accuracy, precision, and recall, 

showcasing a somewhat misleadingly perfect classifier with 

no misclassifications. The good performance has 

demonstrated the capability of some machine learning 

algorithms to perform intrusion detection with very high 

accuracy. The results therefore give an overview of the 

strengths of each model and guide on how best to choose the 

most effective techniques for cybersecurity applications based 

on the UNSW-NB15 dataset. 

For Limitation and future work our models were evaluated 

by using a single dataset (UNSW-NB15), which may not apply 

to represent the variety and complexity of real-world network 

traffic and evolving cyber threats. 

For future work, we must apply our model to have extended 

the evaluation to multiple benchmark datasets to improve 

reliability and robustness. Furthermore, using different deep 

learning approaches, such as CNNs or LSTMs, and hybrid 

models combining ML with deep learning to improve IDS. 

Finally, concatenate between real-time IDS simulation 

environments to assess latency and resource efficiency. 
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