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Solar panels are a technology that converts solar energy into electricity through the 

photovoltaic effect. This photovoltaic technology is packaged into solar modules consisting 

of many solar cells arranged in series or parallel. Damage to these panels can be identified 

by detecting hotspots using a thermal camera. Hotspots can be classified into three 

categories of damage: No Damage, Minor Damage, and Severe Damage. This study applies 

the Inception ResNet V2 architecture from deep learning to automatically classify the level 

of damage based on thermal images. The novelty of this research is its implementation for 

real time monitoring of a structured array of 20 solar panels (5×4 panel), enabling early 

detection and reporting of damage conditions. The model includes several architectural 

enhancements such as Average Pooling, Flatten, and ReLU layers. Training was conducted 

using three different datasets: RGB, grayscale, and a combination of both. The RGB dataset 

achieved the highest accuracy at 98.62 percent, followed by the combined dataset at 98.44 

percent, and the grayscale dataset at 96.93 percent. These high accuracy results demonstrate 

that the proposed system can effectively support preventive maintenance of solar panels. 

Specifically, the system is applicable for operational use at PT PLN Nusantara Power UP 

Cirata to improve reliability, reduce power loss, and enhance the overall efficiency of solar 

energy generation. 
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1. INTRODUCTION

The development of solar panel technology is a crucial 

component in the global effort to enhance renewable energy 

efficiency, an increasingly urgent priority in today's energy 

transition era. As an environmentally friendly energy source, 

solar panels must operate at maximum efficiency to achieve 

optimal energy production. However, a significant challenge 

in managing solar panels is the detection and handling of early 

damage, such as hotspots, which can directly impact efficiency 

and shorten the operational lifespan of the panels. These 

hotspots are often caused by various factors, such as micro-

cracks in solar cells, dust or dirt accumulation, and shading 

that covers specific parts of the panel [1]. If hotspots are not 

addressed promptly, their performance can deteriorate 

significantly, affecting the overall energy output and 

potentially leading to further damage [2]. 

To tackle these challenges, this research adopts an image 

processing approach based on deep learning, focusing on the 

Inception ResNet V2 architecture. This model has proven 

effective in recognizing complex patterns and processing 

visual information with high accuracy [3]. By combining RGB 

images, rich in color information, with grayscale images, 

which emphasize texture and intensity, this model is expected 

to detect hotspots on solar panels more accurately [4]. RGB 

images play a crucial role in identifying objects based on 

spectral variations, while grayscale images enhance detection 

under suboptimal lighting conditions [5, 6]. 

The Inception ResNet V2 architecture is designed to 

integrate information from various image spectrums, offering 

high flexibility in detection and classification processes [7]. 

The combination of RGB and grayscale images has proven to 

capture richer details, often missed when only using one type 

of image [8]. Consequently, this model provides more accurate 

results in detecting anomalies on solar panels, such as hotspots, 

which frequently occur due to environmental variations or 

physical disturbances on the panel surface [9, 10]. 

This study also highlights the importance of analyzing and 

comparing various image fusion approaches in classification. 

The goal is to find the most effective method for identifying 

different types of damage to solar panels, ensuring the model 

is not only more accurate but also more efficient in terms of 

time and computational resources [11, 12]. Although deep 

learning architectures like Inception ResNet V2 have been 

widely applied in general image classification, their use in 

hotspot detection on solar panels is still relatively limited [13]. 

Therefore, this research aims to fill this gap by developing and 

comparing the effectiveness of various neural network 

architectures in combining RGB and grayscale images for 

detecting damage on solar panels with higher accuracy and 

efficiency [14, 15]. 

The implementation of this technology is expected to make 
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a significant contribution to improving efficiency and reducing 

the operational and maintenance costs of solar panels [16]. 

Earlier and more accurate detection of hotspots will extend the 

lifespan of solar panels while maximizing energy output, 

which is crucial for the renewable energy industry [17, 18]. 

Furthermore, integrating RGB and grayscale image analysis 

opens up opportunities for developing more advanced 

diagnostic systems that can be applied in various contexts for 

real-time solar panel condition monitoring [19]. This research 

not only focuses on enhancing detection accuracy but also 

explores the broader application of this technology to address 

operational challenges in the field [20, 21]. 

Hotspots may arise from micro-cracks in solar cells, 

accumulated dust or dirt, soldering defects, or partial shading, 

and are often difficult to detect through manual inspection 

alone. The real-world consequences of undetected hotspots are 

severe: they not only reduce energy yield but can also escalate 

into thermal runaway, posing fire hazards and accelerating 

material degradation [22, 23]. Studies have shown that 

hotspots can decrease the energy output of photovoltaic 

modules by up to 30% and, in extreme cases, cause permanent 

cell damage or electrical arcing [24]. 

To address these challenges, this study adopts a deep 

learning approach using the Inception ResNet V2 architecture, 

known for its robustness in complex visual recognition tasks. 

The research focuses on combining RGB and grayscale 

images to improve the accuracy of hotspot detection on solar 

panels. RGB images are rich in color and spectral information, 

aiding in identifying temperature variations, while grayscale 

images emphasize contrast and structural texture, which are 

particularly useful under low-light or uneven illumination 

conditions [25]. 

The novelty of this study lies in the fusion of RGB and 

grayscale modalities to enhance the model’s ability to capture 

subtle anomalies that are often missed by single-spectrum 

inputs. Previous works have typically used only one image 

type or applied generic CNNs without optimizing for spectral 

variation or real-time field applications. Furthermore, 

although several deep learning models have been explored in 

photovoltaic diagnostics, the use of Inception ResNet V2 for 

hotspot classification with dual-spectral input remains 

underexplored in current literature [26]. 

This research not only seeks to bridge that gap but also 

evaluates the efficiency of the proposed method in terms of 

processing speed and computational cost important factors for 

real-time deployment in solar farms. The proposed system is 

applied to monitor a structured layout of 20 solar panels (5×4 

panel), generating early diagnostic reports that support 

preventive maintenance, particularly for implementation at PT 

PLN Nusantara Power UP Cirata. 

By integrating multiple image sources and a powerful deep 

learning model, this study contributes toward improving the 

accuracy, speed, and practicality of hotspot detection. This can 

lead to reduced operational costs, extended panel lifespan, and 

most importantly, minimized risks of energy loss or fire 

outbreaks in solar installations [27]. 

2. LITERATURE REVIEW

This research also explores various new approaches in 

image processing, including the use of hybrid methods and 

multispectral imaging to enhance the detection and 

classification of damage in solar panels [28]. In this context, 

architectures like Inception ResNet V2 not only offer efficient 

solutions in terms of computational cost but also provide high 

accuracy, making them an ideal choice for applications that 

require high-resolution image processing [29, 30]. Through 

this approach, this study aims to achieve significant 

improvements in the early detection of hotspots, ultimately 

supporting global efforts to maximize the utilization of solar 

energy [31]. 

In Inception ResNet, each block consists of several parallel 

convolutional paths that are merged into a single output and 

then combined with a residual connection. 

𝐴(𝑙+𝑛) = 𝑅𝑒𝐿𝑈 (∑(𝑊(𝑙,𝑖) ∗

𝑖

𝐴(𝑙−1)) + 𝑏(𝑙) + 𝐴(𝑙) (1) 

To reduce spatial dimensions while increasing or 

maintaining the number of filters [32]. Inception ResNet 

architecture uses a dimension reduction strategy to decrease 

spatial dimensions while increasing or maintaining the number 

of filters. This strategy involves using pooling layers (such as 

max-pooling or average-pooling) or convolutions with a stride 

greater than 1. This process can be formulated as: 

𝐴(𝑙) = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝐴(𝑙−1)) (2) 

or 

𝐴(𝑙) = 𝑊(𝑙) ∗ 𝐴(𝑙−1) + 𝑏(𝑙) (3) 

where, Pooling (𝐴(𝑙−1)) is a pooling operation that reduces the

spatial dimensions of (𝐴(𝑙−1)) while maintaining or even

increasing the number of filters as needed for the subsequent 

layers. This is crucial for maintaining computational 

efficiency and avoiding overfitting, especially in very deep 

networks like Inception ResNet [33]. 

Furthermore, to control the output size generated by each 

block, various regularization techniques are employed, such as 

dropout and batch normalization. Batch normalization can be 

formulated as: 

𝑍̂(𝑙) =
𝑍(𝑙) − 𝜇(𝑙)

√(𝜎(1))2 + 𝜖
(4) 

𝐴(𝑙) = 𝑅𝑒𝐿𝑈(𝑍̂(𝑙)) (5) 

where, 𝑍̂(𝑙)  is the normalized output, 𝜇(𝑙) is the mini-batch

mean of the output 𝑍̂(𝑙), 𝜎 is the mini-batch standard deviation,

and 𝜖 is a small value to prevent division by zero [34]. To 

optimize the entire network, a commonly used loss function 

for classification tasks is categorical cross-entropy, which is 

formulated as: 

𝐿 = − ∑ 𝑦𝑖 log(𝑦̂𝑖)

𝑁

𝑖=1

(6) 

where, 𝑦𝑖  is the labelling, and 𝑦̂𝑖  is the probability predicted by

the model for class 𝑖. This loss function measures the 

difference between the predicted probability distribution of the 

model and the actual distribution, and it is used to update the 

model parameters through backpropagation [35]. Overall, the 

Inception ResNet architecture combines the flexibility of 

1044



 

Inception blocks with the stability of residual connections, 

resulting in a robust model capable of handling complex image 

classification tasks [34]. 

 

 

3. METHODOLOGY 

 

In this research, the Inception ResNet V2 architecture 

showed outstanding performance in image classification, 

achieving high accuracy and efficient computational 

processing. The model successfully utilizes the integration of 

Inception design and residual connections, which enables the 

capture of a wide range of deep features across multiple scales. 

The following are the stages conducted in this research: 

First, the model was trained using carefully selected 

hyperparameters to optimize performance. The detailed 

hyperparameter settings used during the training process are 

presented in Table 1. These parameters, such as learning rate, 

batch size, number of epochs, and dropout rate, played a 

crucial role in achieving stable and high-performing results. 

 

Table 1. Hyperparameter values in the training process of 

Inception ResNet V2 

 
No. Parameters Capability Values 

1 Input Shape 299×299 

2 Learning Rate 0.0001 

3 Dropout 0.5 

4 Batch size 32 

5 Epochs 200 

6 FC Layer 512 

7 Activation Function ReLu 

8 Optimizer Adam 

 

  
 

Figure 1. The process flow of the Inception ResNet V2 

architecture 

 

 
 

Figure 2. Splitting RGB and grayscale images 

 

Figure 1 illustrates the process flow of the Inception ResNet 

V2 architecture, starting with the "Input Layer" that receives 

the image data, followed by the Stem Block, which performs 

initial feature extraction using convolution and pooling. The 

data then passes through Inception ResNet Block A, Reduction 

A, Inception ResNet Block B, and Reduction B, with 

appropriate iterations and dimensionality reduction. The 

process continues until the data is pooled, flattened, and 

classified using a Dense Layer and Softmax. 

This research focuses on the integration and analysis of an 

image dataset consisting of 570 RGB images, 570 grayscale 

images, and 1140 combined images, categorized into three 

types of damage. Before training, all images are normalized 

and undergo data augmentation techniques such as shifting, 

flipping, and scaling. The process of organizing and splitting 

the RGB and grayscale images prior to model training is 

illustrated in Figure 2. This figure provides a clear 

visualization of how the dataset was separated and prepared 

for input into the model, ensuring that each category was 

properly balanced and systematically managed. 

The process concludes with an output layer that uses the 

softmax activation function to produce the final classification 

into three different classes. 

The selection of learning rate=0.0001, dropout=0.5, and 200 

epochs was based on initial experiments and supported by 

recent research in the field. A learning rate of 0.0001 was 

chosen to allow stable and gradual updates during fine-tuning 

of the pre-trained Inception ResNet V2 model. This is 

important in transfer learning, where larger learning rates can 

disrupt the pre-trained weights. The dropout rate of 0.5 was 

applied to reduce the risk of overfitting, especially considering 

the moderate dataset size and the complexity of the model. We 

set the number of training epochs to 200 to give the model 

enough time to learn complex features from the RGB, 

grayscale, and combined image datasets. However, we also 

implemented early stopping to automatically stop training 

when the validation loss no longer improved. This helped 

ensure that the model was both accurate and efficient. Overall, 

this set of parameters provided the most stable and reliable 

performance across all experiments. 

This research evaluates the effectiveness of image 

segmentation using RGB, grayscale, and combined images to 

enhance object recognition and classification accuracy. RGB 

images are rich in color information, while grayscale images 

emphasize texture and intensity. The combined approach is 

expected to optimize the advantages of both methods, and the 

results indicate that this approach consistently outperforms 

single methods in terms of segmentation accuracy and 

robustness against noise, significantly improving image 

processing performance. 

 

 

4. RESULTS AND DISCUSSION 

 

This section presents the results and analysis related to the 

implementation of the model, as well as the evaluation of the 

Inception ResNet V2 architecture after the data augmentation 

process has been performed. The results show a total of 

55,125,219 parameters, with 4,919,267 being trainable 

parameters and 50,205,952 non-trainable parameters, spread 

across 2048 layers. The detailed results of the Inception 

ResNet V2 model analysis are summarized in Table 2, which 

presents the key statistics obtained during the model's running 

process. 
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The performance of the Inception ResNet V2 architecture 

can be evaluated using outputs such as Training Process 

Output, Model Accuracy and Loss Graphs, Confusion Matrix, 

Test Accuracy, Precision, Recall, and F1-score. Visualization 

results of the modeling from all three databases are displayed 

in the images below. The image augmentation process is 

implemented to enhance and expand the diversity of the 

dataset, thereby improving the robustness and generalization 

capabilities of the desired image model. By applying various 

transformations to the original images, such as rotation, 

flipping, scaling, and brightness adjustments, this process 

creates new, synthetic variations of the dataset. These 

augmented images mimic real-world variations, enabling the 

model to better recognize and understand patterns even when 

the input data differs in orientation, scale, or lighting 

conditions. After augmentation, the dataset is divided into 

training and validation sets using an 80:20 ratio, where 80 

percent of the data is used for training and the remaining 20 

percent is used for validation to evaluate the model’s 

performance during the learning process. The following 

augmentation techniques were applied to achieve this 

enhancement. 

Table 2. Results of Inception ResNet V2 analysis running 

Steps Layer and Output Shape Description 

Input 299×299×3 Citra 

Stem Block Initial process for basic feature extraction 

Conv2D 149×149×32 Kernel: 3×3, Stride: 2×2, Padding: valid 

BatchNormalization 149×149×32 Batch normalization 

ReLU 149×149×32 Activation function 

Conv2D 147×147×32 Kernel: 3×3, Stride: 1×1, Padding: valid 

BatchNormalization 147×147×32 Batch normalization 

ReLU 147×147×32 Activation function 

Conv2D 147×147×64 Kernel: 3×3, Stride: 1×1, Padding: same 

BatchNormalization 147×147×64 Batch normalization 

ReLU 147×147×64 Activation function 

MaxPooling2D 73×73×64 Pool size: 3×3, Stride: 2×2, Padding: valid 

Inception ResNet Block A 
Repeated 5 times, each block integrates residual connections for 

enhanced stability. 

Mixed Layer 35×35×256 
Combination of multiple parallel convolutions with residual 

connections 

Reduction A 17×17×896 Reducing spatial dimensions while maintaining or increasing depth. 

Inception ResNet Block B 
Repeated 10 times, deepening feature extraction using convolutions 

and residual connections. 

Mixed Layer 17×17×1152 More complex combination of parallel convolutions. 

Reduction B 8×8×1152 
Dimensionality reduction to prepare for further feature processing in 

subsequent blocks 

Inception ResNet Block C 
Repeated 5 times, integrating the final features before the final 

classification. 

Mixed Layer 8×8×2048 
Aggregation of features from various scales using residual 

connections. 

Classification 

Average Pooling2D 

1×1×2084 
Dropout 0.5 

Flatten 

Nonex2048 

Dense: Nonex2048 

Dropout: Nonex2048 
Fully Connected Layer 

Dense 1/Output/Softmax 

Nonex3 

Total params: 55,125,219 

Trainable params: 4,919,267 

Non-trainable params: 50,205,952 

Table 3. Image augmentation 

Parameter Value 

Augmentation Rotation 30 

Width Shift 0.2 

Height Shift 0.2 

Horizontal Flip True 

Vertical Flip True 

Brightness [0.4, 1.5] 

Zoom range 0.3 

Rescale 1./255 

Validation split 0.2 

As a result of the image augmentation process, the dataset 

size increases significantly (excluding the validation split). 

Augmentation techniques applied to the dataset introduce new 

variations of the existing images, enhancing the model's ability 

to generalize across different conditions and scenarios. These 

transformations include changes in orientation, scale, 

brightness, and positioning, which simulate real-world 

variability in data. The details of the augmentation techniques 

applied are summarized in Table 3, providing an overview of 

the strategies implemented to diversify the dataset and 

strengthen the model’s robustness.  

Below is a summary of the outcomes produced by the 

augmentation process. The results demonstrate the significant 

expansion of the dataset, along with the number of images 

generated for each class and dataset type after applying various 

augmentation techniques. These details are provided in Table 

4, which outlines the augmentation values obtained after the 

completion of the augmentation process. 
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Table 4. Augmentation values after augmentation 

Dataset Value Data Augmentation 

RGB 570 4,560 

Grayscale 570 4,560 

Combine 1140 9,120 

4.1 Results for RGB 

The augmentation process is carried out based on the nature 

of the damage, and the images are transformed accordingly to 

match the specific augmentations applied. This procedure 

helps to enrich the existing dataset by generating a wider range 

of variations from the original data, making the model more 

robust and capable of handling different scenarios. Through 

these augmentations, the dataset becomes more 

comprehensive, allowing the model to better understand and 

detect the specific types of damage it is being trained on. The 

results of the augmentation process for the RGB dataset are 

illustrated in Figure 3, highlighting the enhanced diversity and 

variation achieved through augmentation techniques. 

Figure 3. Results augmentation for dataset RGB 

The training process for the model was conducted using 

Google Colaboratory. The results obtained can be seen in the 

images below. 

Figure 4 shows the training log of a deep learning model 

over multiple epochs, with a focus on accuracy and loss for 

both training and validation datasets. The model was initially 

set to train for 200 epochs but was stopped early at epoch 37 

due to the implementation of early stopping, which helps 

prevent overfitting by halting training when no further 

significant improvements are observed. By epoch 37, the 

model achieved a training accuracy of 98.62% and a validation 

accuracy of 96.88%, with a training loss of 0.0289 and a 

validation loss of 0.2019. 

The two graphs illustrate the training and validation (test) 

accuracy and loss of a deep learning model over 37 epochs. In 

the accuracy graph, both training and test accuracies show an 

overall upward trend, with training accuracy consistently 

hovering around 95–100%, indicating effective learning from 

the training data. Test accuracy also remains high, despite 

some fluctuations, suggesting that the model generalizes well 

to unseen data. The training and validation accuracy over 

epochs are presented in Figure 5, demonstrating the model's 

strong and consistent performance. 

In the loss graph, training loss remains low and stable 

throughout the epochs, indicating that the model is learning 

effectively without overfitting. The training and validation 

loss over epochs are shown in Figure 6, highlighting the 

model's stability and its ability to maintain low error rates 

across training iterations. 

Figure 4. Training and validation process for RGB 

Figure 5. Accuracy vs. epoch graph for RGB 

Figure 6. Loss vs. epoch graph for RGB 
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The classification model was designed to distinguish 

between three categories of damage severity: Class 0 (No 

Damage), Class 1 (Minor Damage), and Class 2 (Severe 

Damage). These labels were used to interpret model 

predictions and assess performance metrics. The confusion 

matrix for the RGB dataset, which visualizes the distribution 

of correct and incorrect predictions across these classes, is 

presented in Figure 7. 

Furthermore, the model’s balance between precision and 

recall for each class is depicted in Figure 8, through the recall 

versus precision curve for the RGB dataset. This curve 

provides additional insight into the model's classification 

performance, particularly its ability to maintain high precision 

and recall simultaneously. 

Figure 7. Confusion matrix for RGB 

Figure 8. Recall vs. precision curve for RGB 

The confusion matrix and classification report show that the 

model has strong performance, with an overall test accuracy 

of 93.33%. The model perfectly classified instances of class 0 

and class 2, but misclassified 2 instances of class 1 as class 2. 

Precision, recall, and F1-score for class 0 are all 1.00, while 

class 1 has a precision of 1.00 but a lower recall of 0.80, 

resulting in an F1-score of 0.89. Class 2 has a precision of 0.83 

and recall of 1.00, with an F1-score of 0.91. Overall, macro 

and weighted averages for precision, recall, and F1-score are 

approximately 0.93, indicating consistent and reliable 

classification performance. The overall test accuracy achieved 

by the model for the RGB dataset is illustrated in Figure 9, 

providing a visual confirmation of the high accuracy obtained. 

Figure 9. Test accuracy for RGB 

4.2 Results for grayscale 

The image augmentation process was applied to a dataset 

focused on detecting damage levels on surfaces. This 

augmentation process aims to generate new variations of the 

dataset by applying transformations. These variations enable 

the model to better recognize and detect different types of 

damage under various conditions. The results of the 

augmentation process for the grayscale dataset are illustrated 

in Figure 10, showing examples of the generated variations 

that help improve the model's robustness. 

Figure 11 shows the training log of a deep learning model 

over multiple epochs, focusing on grayscale image processing. 

The training process was initially set to run for 200 epochs but 

was halted early at epoch 68 due to early stopping criteria, 

indicating that further training would not yield significant 

improvement. By the end of the training, the model achieved 

a training accuracy of 99.03% with a corresponding loss of 

0.027, while the validation accuracy reached 95.83% with a 

validation loss of 0.1311. 

In this process, the results are better with RGB, even though 

some outcomes are similar. However, during training and 

validation, RGB showed superior performance compared to 

other methods. 

Figure 10. Results augmentation for dataset grayscale 
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Figure 11. Training and validation process for grayscale 

Figure 12. Accuracy vs. epoch graph for grayscale 

Figure 13. Loss vs. epoch graph for grayscale 

The graphs illustrate the training and validation (test) 

accuracy and loss of a deep learning model using grayscale 

images over 68 epochs. In the accuracy graph, both training 

and test accuracies show a significant improvement, with 

training accuracy quickly reaching nearly 100% and test 

accuracy stabilizing above 95% after the initial epochs. This 

indicates effective learning and good generalization. The 

training and validation accuracy trends over the epochs are 

shown in Figure 12, providing a clear depiction of the model's 

progressive learning behavior. 

The loss graph shows that training loss decreases steadily, 

remaining low and stable, suggesting that the model is 

efficiently minimizing error on the training data. The trend of 

training and validation loss over epochs is illustrated in Figure 

13, highlighting the model’s ability to maintain low error rates 

throughout the learning process. 

The confusion matrix and classification report indicate the 

performance of the model on the grayscale image test set. The 

confusion matrix, shown in Figure 14, reveals that the model 

correctly classified all instances of class 0 (10/10) and class 2 

(10/10), but misclassified 2 instances of class 1 as class 2, 

achieving 8 correct classifications for class 1. 

The classification report complements these findings, with 

perfect precision, recall, and F1-score (1.00) for class 0, while 

class 1 shows high precision (1.00) but a lower recall (0.80), 

leading to an F1-score of 0.89. Class 2 has a precision of 0.83, 

perfect recall (1.00), and an F1-score of 0.91. 

Further insight into the model's balance between precision 

and recall for each class can be seen in Figure 15, which 

displays the recall versus precision curve for the grayscale 

dataset. 

The overall test accuracy for grayscale images, confirming 

the model’s strong classification performance, is illustrated in 

Figure 16. 

Figure 14. Confusion matrix for grayscale 

Figure 15. Recall vs. precision curve for grayscale 
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Figure 16. Test accuracy for grayscale 

4.3 Results for combine 

The results from the augmentation process applied to this 

combined dataset resulted in a twofold increase in data size, 

bringing the total to 9,120 images. This significant expansion 

of the dataset enhances the model’s ability to generalize and 

improve performance across various conditions and scenarios. 

By creating diverse variations of the original images, the 

augmentation process strengthens the model’s capacity to 

recognize patterns, detect damage, and handle different levels 

of severity more effectively. The analyzed outcomes from this 

augmentation process are illustrated in Figure 17, highlighting 

the enriched dataset and its potential impact on model 

performance. 

Figure 17. Results augmentation for dataset combine 

This process shows the results of combining RGB and 

grayscale data, highlighting the differences that arise from this 

integration. Figure 18 shows the training log of a deep learning 

model over multiple epochs, showing the performance of the 

model using combined RGB and grayscale data. The training 

process was initially set for 200 epochs, but early stopping was 

triggered at epoch 58, indicating optimal performance without 

further improvement. By the end of training, the model 

achieved a training accuracy of 98.44% with a training loss of 

0.0567, while the validation accuracy reached 97.22% with a 

validation loss of 0.0555. These results demonstrate the 

model's strong learning capability and effective generalization 

to validation data. 

The graphs depict the training and validation (test) accuracy 

and loss of a deep learning model over 58 epochs, utilizing 

combined RGB and grayscale image data. In the accuracy 

graph, both training and validation accuracy steadily improve, 

with training accuracy approaching 100% and validation 

accuracy stabilizing around 95-97%. This demonstrates the 

model's ability to learn effectively and generalize well. The 

training and validation accuracy trends over epochs for the 

combined dataset are illustrated in Figure 19. 

The loss graph shows a steady decline in training loss, 

indicating effective optimization and reduced errors in 

predictions. However, validation loss exhibits some 

fluctuation, with a general downward trend, suggesting 

occasional variability in the test data but overall good 

performance. The training and validation loss patterns are 

presented in Figure 20, offering additional insight into the 

model’s convergence behavior. 

The confusion matrix for the combined dataset (Figure 21) 

illustrates the classification performance across three classes: 

Class 0 (No Damage), Class 1 (Minor Damage), and Class 2 

(Severe Damage). 

The model perfectly classified all instances of Class 0 and 

Class 2, with 20 correct predictions each. However, for Class 

1, out of 20 total instances, 15 were correctly classified, 1 

instance was misclassified as Class 0, and 4 instances were 

misclassified as Class 2. This indicates that the model had 

some difficulty distinguishing Class 1 from the others, though 

overall classification performance remains strong. 

Figure 18. Training and validation process for combine 

Figure 19. Accuracy vs. epoch graph for RGB combine 
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Figure 20. Loss vs. epoch graph for combine 

Figure 21. Confusion matrix for combine 

Figure 22. Recall vs. precision curve for combine 

Figure 23. Test accuracy for combine 

This resulted in class 1 having a recall of 0.75, indicating 

some difficulty in distinguishing class 1 from others. The 

overall test accuracy is 91.67%. The classification report 

shows precision, recall, and F1-score values across classes, 

with class 0 achieving near-perfect metrics and class 2 also 

showing high performance. Class 1, despite high precision, has 

a lower recall, affecting its F1-score. The macro and weighted 

averages for precision, recall, and F1-score are all around 0.92, 

reflecting robust overall model performance with consistent 

reliability across different classes. The balance between 

precision and recall across the classes for the combined dataset 

is visualized in Figure 22, through the recall versus precision 

curve. Meanwhile, the overall test accuracy for the combined 

dataset is depicted in Figure 23, confirming the high reliability 

of the model’s performance. 

4.4 Comparison with baseline models 

This section presents a comparative analysis between the 

proposed Inception ResNet V2 architecture and several 

baseline models to evaluate its effectiveness in hotspot 

detection on solar panels. A comparative analysis was 

conducted to evaluate the performance of Inception ResNet 

V2 against two baseline models, Inception V3 and Xception, 

using three types of datasets: RGB, grayscale, and combined. 

The comparative performance results across these models are 

summarized in Table 5, highlighting the testing accuracy and 

performance distinctions observed in the study. 

Table 5. Comparison value in baseline models 

Architecture Dataset 
Accuracy Value 

Remarks 
Training Validasi Testing 

Inception V3 

RGB 99.29% 96.88% 93.33% Bestfit 

Grayscale 100% 77.78% 90.00% Overfit 
Combine 98.52% 78.12% 66.66% Overfit 

Xception 

RGB 99.11% 97.92% 80.00% Overfit 

Grayscale 98.58% 95.83% 93.33% Bestfit 
Combine 99.09% 97.32% 85.00% Overfit 

Inception ResNet 

V2 

RGB 98.62% 96.88% 93.33% Bestfit 

Grayscale 96.93% 95.83% 93.33% Bestfit 
Combine 98.44% 97.22% 91.66% Bestfit 

The results revealed that Inception ResNet V2 achieved the 

highest performance, particularly on the combined dataset, 

with a testing accuracy of 91.66%, outperforming Inception 

V3 (66.66%) and Xception (85.00%). This model also 

demonstrated consistent results across training, validation, and 

testing phases, effectively avoiding overfitting, which was 

observed in other models, especially those trained with 

grayscale images. Although the model achieved high 

classification performance, it is important to acknowledge that 

the dataset consisted of only 570 images per class. This 

relatively limited data size may affect the generalizability of 

the model, especially when applied to more diverse or real-

world datasets.  

Future studies should consider expanding the dataset and 

incorporating additional data augmentation techniques to 

enhance the model’s robustness and reduce potential 

overfitting. The use of the combined dataset proved to enhance 

feature richness, and only the Inception ResNet V2 

architecture was able to process it effectively without 

compromising generalization capabilities. This is further 

supported by the "Bestfit" remark assigned exclusively to this 

model, whereas the others showed signs of overfitting. 

Therefore, Inception ResNet V2 is considered the most 

reliable and stable architecture for hotspot detection on solar 

panels based on the observed performance outcomes. 
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Table 6. Prediction results for RGB dataset 

Classification Inception ResNet V2 

No Damage 

(All 

predictions 

were analyzed 

and found to 

be accurate) 

Minor 

Damage 

(The analysis 

showed that 

all predictions 

were 

accurate) 

Severe 

Damage 

(Every 

prediction 

was reviewed 

and proven to 

be correct) 

Although the dataset was identical across experiments, 

performance differences were mainly due to architectural 

variations, as each model processes features differently. This 

highlights the crucial role of model design in classification 

performance. The prediction results for the RGB dataset across 

models are summarized in Table 6. 

Building upon these findings, the next step involves 

conducting further tests to predict and validate the real-world 

performance of the proposed architecture. These evaluations 

are essential for determining the model's ability to generalize 

and accurately detect the targeted patterns. The results from 

such tests will provide valuable insights into the overall 

reliability, robustness, and precision of the model, guiding 

potential improvements for future implementations. The 

prediction results specifically for the grayscale dataset are 

presented in Table 7, offering a detailed assessment of the 

model's performance on grayscale images. 

Table 7. Prediction results for grayscale dataset 

Classification Inception ResNet V2 

No Damage 

(All 

predictions 

were analyzed 

and found to 

be accurate) 

Minor 

Damage 

(The analysis 

showed that 

all predictions 

were 

accurate) 

Severe 

Damage 

(Every 

prediction 

was reviewed 

and proven to 

be correct) 

Despite expectations that the combined dataset would 

enhance model performance by incorporating both RGB and 

grayscale representations, the results show that this dataset did 

not consistently outperform the individual formats across all 

architectures. This may be attributed to potential feature 

conflicts or redundancies, where overlapping or contradictory 

information from RGB (color-based features) and grayscale 

(intensity-based features) can lead to ineffective learning, 
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particularly in models not optimized for multi-channel input 

integration. For instance, Inception V3 and Xception exhibited 

lower testing accuracy with the combined dataset compared to 

their performance with RGB-only or grayscale-only inputs. 

This finding suggests that the success of combining multiple 

image formats depends heavily on the model’s ability to 

process heterogeneous feature types effectively. The 

prediction results for the combined dataset across the 

evaluated architectures are presented in Table 8, summarizing 

the classification outcomes. 

Table 8. Prediction results for combine dataset 

Classification Inception ResNet V2 

No Damage 

(All predictions were 

analyzed and found to 

be accurate) 

Minor Damage 

(The analysis showed 

that all predictions 

were accurate) 

Severe Damage 

(Out of 8 test data 

sample, 1 was 

misclassified) 

1053



One of the main reasons is the high visual similarity 

between panels with minor damage and those with no damage. 

Minor anomalies such as faint hotspots, micro-cracks, or 

subtle discoloration often appear nearly identical to normal 

panels, particularly when viewed under consistent lighting or 

low contrast conditions. These subtle features are difficult for 

the model to distinguish, especially when relying on RGB or 

grayscale images alone, leading to frequent misclassification 

between Class 0 and Class 1. 

Furthermore, Minor Damage represents a transitional state 

that visually overlaps with both the No Damage and Severe 

Damage classes. This overlap reduces the separability of 

features learned by the model, making it harder to assign 

accurate class boundaries. The high intra-class variability 

within Minor Damage in terms of the shape, size, and intensity 

of the defects combined with the inter-class similarity with No 

Damage, contributes to reduced classification accuracy. 

Addressing this challenge may require enhancing the dataset 

with more diverse samples of minor damage, using higher-

resolution imagery, or integrating attention-based mechanisms 

to help the model focus on subtle but relevant local features. 

4.5 Statistical analysis of RGB and grayscale dataset 

performance 

To statistically validate the performance difference between 

RGB and grayscale image datasets, an independent samples t-

test was conducted using 37 accuracy values for each group. 

The mean classification accuracy for the RGB dataset was 

98.5224% (SD=1.8996), notably higher than the grayscale 

dataset, which achieved a mean accuracy of only 93.0176% 

(SD=12.8013), as shown in Table 9. 

Table 9. Independent samples T-Test results 

Assumption t df 
Sig. (2-

Tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Equal variances assumed 2.587 72 0.012 5.5049 2.1276 [1.2636, 9.7461] 

Equal variances not 

assumed 
2.587 37.585 0.014 5.5049 2.1276 [1.1963, 9.8135] 

Levene’s Test for Equality of Variances indicated a 

significant difference in variance (F=13.303, p=0.000), 

suggesting that the assumption of equal variances is not met. 

Therefore, the t-test results under “equal variances not 

assumed” were used. The test showed a statistically significant 

difference between the two groups with t=2.587, df≈37.585, 

and p=0.014 (p<0.05). The mean difference in accuracy was 

5.50486%, with a 95% confidence interval ranging from 

1.19626% to 9.81347%. 

These findings clearly demonstrate that the RGB dataset 

significantly outperforms the grayscale dataset in hotspot 

detection accuracy. The lower variance and higher mean 

accuracy of the RGB group suggest that using RGB imagery 

results in more stable, reliable, and consistent model 

performance for solar panel anomaly classification compared 

to grayscale input. 

5. CONCLUSION

This research has demonstrated the effectiveness of the 

Inception ResNet V2 architecture in detecting and classifying 

hotspot damage on solar panels by using RGB, grayscale, and 

combined image datasets. Among the evaluated models, 

Inception ResNet V2 consistently achieved high performance 

across all datasets, with the RGB input yielding the most stable 

and accurate results. The fusion of RGB and grayscale images 

further enhanced the model’s ability to extract both spectral 

and textural features, enabling more reliable detection of 

subtle anomalies. However, classification challenges 

remained for the “Minor Damage” category due to its high 

visual similarity to the “No Damage” class. Statistical analysis 

using an independent t-test confirmed a significant 

performance difference between RGB and grayscale datasets, 

reinforcing the advantage of using color information in hotspot 

detection. 

Despite these promising outcomes, the study was conducted 

on a relatively limited dataset consisting of 570 images per 

format, which may restrict the model's generalizability in more 

diverse and complex environments. Therefore, future work 

should involve testing the proposed architecture on larger, 

more varied datasets to ensure robustness under real-world 

conditions. Additionally, integrating other modalities such as 

LiDAR or thermal imaging is recommended to enrich the 

feature space and improve sensitivity to early-stage physical 

or thermal anomalies. These enhancements could pave the way 

for real-time, intelligent monitoring systems that improve 

operational efficiency and lifespan of solar panel installations. 
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