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This study delves into the complexities of time series forecasting, a field that intersects 

statistics, data science, and econometrics to predict sequential data patterns. Focusing on 

the challenge of forecasting Netflix's closing stock prices from February 2018 to January 

2022, we evaluated the performance of three distinct models: SARIMA (seasonal 

autoregressive integrated moving average), Prophet, and XGBoost (extreme gradient 

boosting). Each model demonstrated unique strengths and limitations. SARIMA offered 

solid baseline accuracy but struggled to capture abrupt price fluctuations inherent in stock 

market behavior. Prophet enhanced interpretability by effectively modeling seasonality and 

trends, yet it showed limitations in precision. In contrast, XGBoost excelled in capturing 

complex nonlinear patterns and better reflected the dynamic nature of stock price 

movements. The core innovation of this research lies in the development of a hybrid model 

combining SARIMA and XGBoost through optimized weighting. This hybrid approach 

outperformed individual models by balancing statistical robustness with adaptive learning 

capabilities, leading to improved accuracy and better trend representation. However, while 

Root Mean Square Error (RMSE) was used as the primary evaluation metric, it became 

evident that RMSE alone is insufficient to fully assess forecasting quality, particularly in 

capturing trend dynamics. This highlights the necessity for more comprehensive evaluation 

metrics, paving the way for future research in advancing time series forecasting 

methodologies. 
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1. INTRODUCTION

The challenge of predicting time series data has been a 

longstanding focus for researchers, mathematicians, and 

statisticians for many years. Situated at the intersection of 

statistics, econometrics, and data science, time series 

forecasting functions as an indispensable asset across a diverse 

array of industries, including finance, economics, meteorology, 

and energy management. The appeal of time series prediction 

extends beyond academic curiosity; its practical applications 

are equally significant. Reliable forecasts can aid decision-

making, improve operational efficiency, and help identify 

emerging trends. 

Among these applications, stock price forecasting holds a 

particularly critical role in financial markets. Accurate 

predictions of stock prices can support investors in portfolio 

management, risk assessment, and strategic planning. For 

companies, it can provide insights into market sentiment and 

valuation trends. Furthermore, financial institutions and hedge 

funds increasingly rely on advanced forecasting techniques to 

gain a competitive edge in high-frequency trading and 

investment strategies. Thus, the ability to anticipate market 

movements, even partially, can translate into substantial 

economic value. 

However, forecasting stock prices presents unique and 

complex challenges. Unlike other time series data, financial 

markets are characterized by high volatility, where prices can 

fluctuate significantly within short periods due to market 

sentiment, investor behavior, or speculative actions. This 

volatility introduces a level of unpredictability that traditional 

models often struggle to capture effectively. Moreover, stock 

prices are inherently non-stationary, meaning their statistical 

properties, such as mean and variance, change over time, 

complicating model assumptions and requiring advanced 

techniques to ensure robust predictions. 

Another major challenge lies in the influence of external 

shocks. Events such as geopolitical tensions, economic crises, 

and global pandemics like COVID-19 can cause abrupt and 

severe disruptions in financial markets. The COVID-19 

pandemic, in particular, led to unprecedented levels of 

uncertainty and market turbulence, highlighting the 

vulnerability of stock prices to factors beyond historical 

patterns. These external variables are difficult to model and 

often require adaptive or hybrid approaches capable of 

responding to sudden changes in market dynamics. 

In addition, the efficient market hypothesis (EMH) suggests 

that stock prices fully reflect all available information, 

implying that predicting future price movements based solely 

on past data is inherently limited. While this theory challenges 

the feasibility of consistent outperformance, advancements in 

machine learning and data-driven approaches have reopened 

the debate by uncovering subtle patterns and dependencies that 
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traditional statistical methods might overlook. 

In this paper, we examine three distinct time series 

forecasting models: SARIMA, FBProphet, and XGBoost, to 

evaluate their respective strengths and limitations in stock 

price prediction. We will concentrate on Netflix's stock prices 

over the period spanning from February 2018 to January 2022. 

Stock market predictions, known for their volatility and 

unpredictability, provide an ideal context to test and compare 

the capabilities of these models. 

These datasets are publicly available under the CC0 Public 

Domain License, which supports the reproducibility of 

scientific research and encourages open access to data for 

researchers globally. 
 

 

2. LITERATURE REVIEW 
 

Time series forecasting has long been a cornerstone of 

quantitative analysis across various domains, notably in 

finance where anticipating market movements is of strategic 

importance. A time series is fundamentally a sequence of data 

points indexed in time order, capturing the dynamic behavior 

of systems over intervals. The complexity of forecasting arises 

from the intrinsic characteristics of time series data, such as 

trends, seasonality, autocorrelation, and potential non-

stationarity. Over the decades, a wide range of methodologies 

has been developed to address these challenges, evolving from 

classical statistical approaches to modern machine learning 

and deep learning techniques. 
 

2.1 Classical statistical models 
 

The foundation of time series forecasting is built upon 

statistical models that assume linear relationships within data. 

Among the earliest models are the Autoregressive (AR) and 

Moving Average (MA) models. The AR model predicts future 

values based on a linear combination of past observations, 

while the MA model relies on past forecast errors. The 

integration of these two approaches led to the ARMA model, 

suitable for stationary time series where statistical properties 

remain constant over time [1]. 

However, real-world data, especially financial time series, 

often exhibit non-stationary behavior due to trends or external 

shocks. To address this, the ARIMA model was introduced, 

incorporating differencing techniques to transform non-

stationary data into a stationary form before applying ARMA 

processes. ARIMA became a widely adopted tool due to its 

balance of simplicity and effectiveness in capturing linear 

dependencies. 

When seasonality is present, ARIMA is extended to 

SARIMA by adding seasonal components. SARIMA models 

are effective for datasets with clear periodic patterns, such as 

monthly sales or quarterly economic indicators. Despite their 

robustness, these models are constrained by their linear 

assumptions and require manual identification of parameters 

like order of differencing, lags, and seasonal cycles. They also 

struggle to adapt to structural changes or nonlinear dynamics, 

which are prevalent in stock market data. 
 

2.2 Multivariate statistical approaches 
 

Univariate models, while useful, often ignore the influence 

of external variables. To capture interactions among multiple 

time-dependent variables, Vector Autoregression (VAR) 

models were developed. VAR models generalize the AR 

approach by allowing for interdependencies across several 

series, making them valuable in macroeconomic and financial 

analyses [2]. 

In cases where non-stationary multivariate series exhibit 

long-term equilibrium relationships, the Vector Error 

Correction Model (VECM) is employed. VECM integrates 

cointegration concepts, ensuring that deviations from 

equilibrium are corrected over time [3]. While these models 

enhance forecasting by incorporating more information, they 

remain bound by linear frameworks and assumptions of 

stationarity or cointegration, limiting their flexibility in 

volatile environments. 

 

2.3 Additive models: The role of prophet 

 

Recognizing the need for more adaptive and user-friendly 

forecasting tools, Facebook introduced Prophet, an additive 

model designed to handle datasets with strong seasonality and 

trend shifts [4]. Prophet decomposes time series into trend, 

seasonality, and holiday effects, allowing analysts to model 

complex patterns without deep statistical expertise. 

One of Prophet’s key strengths lies in its ability to manage 

multiple seasonalities, handle missing data, and remain robust 

to outliers. It is particularly suited for business applications 

like demand forecasting or website traffic analysis. However, 

Prophet assumes that trends evolve smoothly over time, which 

can be a significant limitation when applied to financial time 

series characterized by abrupt changes and irregular patterns. 

While it offers interpretability and ease of implementation, its 

predictive performance on volatile datasets such as stock 

prices often falls short compared to more sophisticated 

algorithms. 

 

2.4 Machine learning approaches 

 

The advent of machine learning has transformed time series 

forecasting by introducing models capable of capturing 

nonlinear relationships and complex interactions within data. 

Unlike statistical models, machine learning techniques do not 

require assumptions about data distribution or linearity, 

offering greater flexibility [5]. 

Among these techniques, ensemble methods, particularly 

gradient boosting algorithms like XGBoost, have gained 

prominence. XGBoost builds a series of decision trees 

sequentially, where each tree attempts to correct the errors of 

the previous ones. This iterative process, combined with 

regularization techniques, enhances predictive accuracy while 

controlling overfitting. 

In time series forecasting, XGBoost is adapted through 

feature engineering, where temporal structures are converted 

into supervised learning problems. Features such as lag 

variables, rolling averages, and calendar effects are crafted to 

provide context. While XGBoost excels in handling structured 

data and delivering high accuracy, it lacks inherent 

mechanisms to account for temporal dependencies, relying 

heavily on the quality of engineered features. Moreover, its 

black-box nature can be a drawback in domains where 

interpretability is crucial. 

 

2.5 Deep learning and LSTM networks 

 

Deep learning has further expanded the horizons of time 

series forecasting, particularly through architectures designed 

to process sequential data. Recurrent Neural Networks (RNNs) 

1006



 

introduced the concept of retaining information across time 

steps, but they suffered from issues like vanishing gradients. 

Long Short-Term Memory (LSTM) networks addressed these 

limitations by incorporating memory cells that retain 

information over longer sequences [6]. 

LSTM networks are adept at capturing long-term 

dependencies and complex temporal patterns, making them 

suitable for financial forecasting where historical context can 

influence future movements [7]. Their ability to model 

nonlinear dynamics without extensive feature engineering is a 

significant advantage. However, LSTMs require large datasets 

to perform effectively, are computationally intensive, and 

often criticized for their lack of transparency. The 

interpretability challenge, coupled with the risk of overfitting, 

necessitates careful tuning and validation. 

 

2.6 Evaluation metrics in time series forecasting 

 

Assessing the performance of forecasting models is a 

critical aspect of time series analysis. Traditional metrics such 

as Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE) are 

commonly used to quantify prediction accuracy [8]. These 

metrics provide insights into the average deviation between 

predicted and actual values. 

However, these measures primarily focus on point-wise 

accuracy and may not adequately capture a model's ability to 

follow underlying trends or predict directional changes. In 

financial contexts, correctly anticipating whether a stock price 

will rise or fall can be more valuable than minimizing 

numerical error. This has led to discussions around 

incorporating directional accuracy metrics and developing 

custom evaluation frameworks that better align with practical 

forecasting objectives. 

 

2.7 Critical analysis and synthesis 

 

The evolution of time series forecasting reflects a 

continuous effort to balance simplicity, interpretability, and 

predictive power. Classical statistical models offer 

transparency and perform well on linear, stationary data with 

predictable patterns. However, their rigidity makes them less 

suitable for complex, volatile datasets. 

Machine learning models, particularly XGBoost, provide 

enhanced flexibility and accuracy but depend heavily on 

feature engineering and often operate as black-box systems. 

Deep learning approaches like LSTM push the boundaries of 

what can be modeled but introduce challenges related to data 

requirements, computational cost, and explainability. 

Additive models like Prophet fill a niche for business 

applications requiring rapid deployment and interpretability 

but are not designed for highly erratic data such as stock prices. 

Finally, the choice of evaluation metrics plays a crucial role 

in determining the perceived success of a forecasting model. 

Over-reliance on traditional error metrics can obscure 

important aspects of model performance, particularly in 

domains where trend fidelity and directional correctness are 

paramount. 

In conclusion, the literature highlights that no single 

approach universally outperforms others across all scenarios. 

The selection of an appropriate forecasting method must 

consider the specific characteristics of the dataset, the 

forecasting horizon, the need for interpretability, and the 

operational context. This ongoing challenge continues to drive 

research toward more adaptive, accurate, and interpretable 

forecasting solutions. 

 

 

3. MODEL METHODOLOGIES FOR TIME SERIES 

FORECASTING 
 

3.1 SARIMA  
 

SARIMA is an extension of the ARIMA model that 

incorporates seasonality. Let's decompose its components: 

Autoregressive (AR): This component captures the 

relationship between an observation and a number of lagged 

observations (previous time steps). Mathematically, the AR 

term can be represented as:  

 

𝐴𝑅(𝑝) = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 

 

where, Ø represents the parameters of the model, and p is the 

order of the autoregression. 

Moving Average (MA): This facet of the model represents 

the relationship between an observation and a residual error 

from a moving average model applied to lagged observations. 

In mathematical terms, this can be written as:  
 

𝑀𝐴(𝑞) = 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 

 

where, θ are the parameters of the model, e represents the error 

term, and q is the order of the moving average. 

Integrated (I): This refers to the differencing of 

observations to make the series stationary (i.e., constant mean 

and variance over time). A series is integrated of order d if we 

difference it d times to achieve stationarity.  

 

𝐼(𝑑) = (1 − 𝐵)𝑑𝑌𝑡 
 

where, B is the backshift operator, and d is the order of 

differencing. 

Seasonality is incorporated into SARIMA as seasonal AR, 

MA, and differencing terms. The seasonal component is 

generally represented as SARIMA (p,d,q) (P, D, Q)s , where 

P, D, Q are the seasonal counterparts of p,d,q and s is the 

seasonal length [9-11]. 
 

3.2 FBprophet 

 

Created by Facebook, FBprophet is a tool specifically 

designed to forecast time series data with patterns that 

fluctuate across different time scales, such as yearly, weekly, 

and daily cycles. It excels when working with time series that 

exhibit strong seasonal patterns and have multiple years of 

historical data. FBprophet is also highly adaptable, managing 

missing data and changes in trends effectively while being 

resilient to outliers. 

The underlying model for FBprophet can be described as:  

 

y(t)=g(t)+s(t)+h(t)+ϵt 

 

where:  

g(t) represents the trend function which models non-

periodic changes. 

s(t) captures periodic changes, i.e., seasonality. 

h(t) denotes the effects of holidays. 

ϵt is the error term. 

The trend function g(t) is typically modeled using a logistic 
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growth model or a piecewise linear model. Seasonal effects s(t) 

are modeled using Fourier series. 

 

3.3 XGBoost  

 

XGBoost is not inherently a time series forecasting model 

but rather a powerful ensemble machine learning algorithm 

primarily used for structured/tabular data. It builds the model 

in a stage-wise fashion and generalizes the model by allowing 

optimization of an arbitrary differentiable loss function. 

The principle behind XGBoost is to iteratively add new 

models (typically decision trees) to correct the errors made by 

the existing set of models. Mathematically, if we let yi be the 

prediction of the i-th tree, then the prediction of n trees is: 

 

𝑦(𝑥) = 𝛴𝑖=1
𝑛 𝑦𝑖(𝑥) 

 

In the context of time series forecasting, features derived 

from the time series data, such as lags, rolling statistics, and 

date-related attributes, serve as input for the model, enabling 

it to predict future data points. 
 

 

4. DATA ANALYSIS AND PREPARATION FOR 

FORECASTING 

 

In this section, we dive deep into a practical application of 

time series forecasting, focusing on the closing prices of 

Netflix stock from February 2018 to January 2022. This span 

of nearly four years provides a comprehensive dataset, 

allowing for a robust analysis and prediction. 

 

4.1 Data acquisition and preliminary analysis 

 

The dataset in consideration captures the closing prices of 

Netflix over the selected duration. It is crucial to understand 

the behavior of this time series before applying any forecasting 

techniques. A visualization, typically a time series plot, serves 

as an excellent starting point. By plotting the data, we can 

obtain insights into potential trends, seasonalities, or other 

patterns in the stock's behavior. 

Visually, we observe on the Figure 1 an annual seasonality 

between 2018 and 2019, followed by an upward trend starting 

from the end of 2019. Additionally, there is a noticeable 

decline in the stock price beginning in November 2022. 

 

 
 

Figure 1. Netflix stock price history (February 2018–January 

2022) 

 

4.2 Data cleaning and imputation 

 

Despite best efforts at data collection, datasets occasionally 

have missing values. This can be due to a multitude of reasons: 

holidays when the stock market is closed, data recording errors, 

or other unanticipated factors. 

Missing data can distort predictions if not handled properly. 

In our analysis, we adopted a simple yet effective approach 

to manage missing data points: imputation by averaging. For 

any missing value, we calculated the mean of the immediately 

preceding and succeeding values. This method ensures a 

smooth transition and reduces any potential shocks in the time 

series that could arise from abrupt imputations. 

 

4.3 Model preparation: Training and testing 

 

Before we delve into forecasting, it is paramount to split the 

dataset into training and test sets. This approach ensures that 

we train our models on a majority of the data and subsequently 

test their accuracy on unseen data. Given the noticeable 

decline in stock price beginning in November 2022, we 

decided to use the data from October 2022 as our test set. The 

historical data leading up to this point forms our training set. 

 

 

5. FORECASTING WITH DEFINED MODELS 

 

With the dataset duly preprocessed and split, we proceeded 

to apply the forecasting models detailed earlier in this paper: 

SARIMA, FBprophet, and XGBoost. Each of these models 

offers unique methodologies and insights, making it 

fascinating to juxtapose their predictions. 

 

5.1 SARIMA 

 

To ascertain the optimal parameters for SARIMA, PAC 

(Partial Autocorrelation Function) and AC (Autocorrelation 

Function) plots were utilized to probe the p, d, and q orders. A 

grid search was subsequently conducted using the 

stepwise_model to identify the optimal parameters, landing on 

arima_order=(1,1,0) and seasonal_order=(2,1,0,52). However, 

it's salient to note that the prediction variance remains slight, 

with a relatively flat prediction curve. 

After analyzing our initial time series data, the Dickey-

Fuller test yielded a p-value of P=0.42 as shown in Figure 2, 

which is above the 0.05 threshold. This result indicates that 

our series is non-stationary. In simpler terms, the series doesn't 

have consistent statistical properties like mean and variance 

over time. 

 

 
 

Figure 2. Stationarity test for the series (Dickey-Fuller) 

 

One common approach to make a time series stationary is 

to use differencing [12, 13]. This involves subtracting the 

current value from the previous one. In our case, we applied 

first-order differencing as depicted in Figure 3 below. 

 

 
 

Figure 3. First-order differencing and Dickey-Fuller test 
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After this transformation, we performed the Dickey-Fuller 

test again to evaluate the stationarity of the now transformed 

series. The visual representation from our updated chart shows 

a more consistent pattern, suggesting that the series has 

become stationary (p<0,05). 

Upon examining the Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF) plots of our time 

series data, vital insights regarding the SARIMA model 

parameters were gleaned: 
 

 
 

Figure 4. Autocorrelation function and partial 

autocorrelation function 

 

The sharp cut-off observed in the ACF plot (Figure 4) after 

the first lag suggests the presence of a significant moving 

average component in the data. This indicates a 'q' parameter 

value of 1 for the SARIMA model. 

Similarly, the PACF plot (Figure 4) also displayed a sharp 

drop after the first lag, highlighting the influence of an 

autoregressive term. This justifies selecting a 'p' parameter 

value of 1. 

Given these observations from both plots, it became evident 

that the appropriate values for the autoregressive (p) and 

moving average (q) parameters are both set to 1, enhancing the 

SARIMA model's predictive capability for the dataset. 

To determine the seasonal component of the SARIMA 

model, an initial exploratory analysis of the time series was 

conducted to detect potential periodic patterns. Given that 

stock market data often exhibits recurring behaviors 

influenced by weekly trading cycles, we hypothesized the 

presence of a weekly seasonality. Since the dataset is based on 

daily closing prices, a full seasonal cycle corresponds to 

approximately 52 weeks in a year, leading to the selection of 

s=52 as the seasonal period. And while the initial PACF 

analysis suggested limited visible seasonal lags, further 

empirical testing through grid search optimization indicated 

that setting the seasonal autoregressive order to P=2 provided 

a better balance between model fit and predictive stability. 

This choice likely captures latent seasonal dependencies that 

are not immediately apparent due to the inherent noise and 

volatility of financial time series data. The seasonal 

differencing order was set to D=1 to address residual 

seasonality, and Q=0 was maintained given the absence of 

significant autocorrelation at seasonal lags. The overall 

configuration, validated by minimizing the Akaike 

Information Criterion (AIC), confirmed seasonal_order = 

(2,1,0,52) as optimal for this dataset. 

In the process of analyzing time series data, the 

determination of optimal parameters for models like SARIMA 

stands as a pivotal step. Not only do autocorrelation function 

(ACF) and partial autocorrelation function (PACF) plots offer 

insights into this, but also a grid search method proves 

instrumental. We operate this search with the stepwise_model 

to pinpoint the most suitable parameters.  

Figure 5 shows the results of the stepwise selection: the 

parameters emerge as arima_order=(1,1,0) and 

seasonal_order=(2,1,0,52). 

The search hinges on the Akaike Information Criterion 

(AIC) as its guiding metric. AIC quantifies the goodness of fit 

of a model, yet simultaneously penalizes models that veer into 

excessive complexity. Ideally, a model possesses a low AIC 

value, signifying a superior fit. Hence, the essence of the grid 

search revolves around identifying the parameter combination 

that minimizes the AIC, ensuring a harmonious balance 

between model fit and its inherent simplicity. 

 

 
 

Figure 5. Stepwise search of SARIMA model parameters 

 

The prediction process now commences using the SARIMA 

model with the chosen parameters. The forecast specifically 

targets the test sample for October 2022. To assess the model's 

accuracy and precision, several metrics come into play. Firstly, 

the RMSE, a common metric for accuracy, stands at 41.33. 

Additionally, the average stock price during this period is 

643.11. By comparing the RMSE to this average, the error, 

expressed as a percentage of the mean, is calculated to be 6.4%. 

This percentage provides us a relative measure of the model's 

performance against the mean stock price. 

 

 
 

Figure 6. SARIMA forecast for Netflix stock price-October 

2022 

 

While the SARIMA prediction exhibits a commendable 

accuracy with only a 5.35% error relative to the average, we 

notice from the Figure 6 representation that the model fails to 

capture the intricate price fluctuations. Instead, it renders a 

forecast that appears largely linear in nature [14]. 
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5.2 FBprophet 

 

Transitioning to forecasting using Facebook Prophet, this 

model employs Fourier series to encapsulate both monthly and 

weekly seasonality (Figure 7). 

 

 
 

Figure 7. FBprophet trend and seasonality modelisation 

 

 
 

Figure 8. FBprophet forecast for Netflix stock price-October 

2022 

 

Upon examination of the prediction outcomes, as we can see 

on the Figure 8, Prophet's results offer a less linear projection 

in comparison to SARIMA. This is in alignment with Prophet's 

ability to capture more nuanced fluctuations. However, when 

considering the RMSE value of 96 and an error percentage of 

14.92% relative to the average stock price of 643.11, it's 

evident that while Prophet tries to capture the stock's volatile 

tendencies [4, 15]. But it does so at the expense of overall 

accuracy. 

 

5.3 XGBoost forecast 

 

Shifting our attention to XGBoost, this powerful ensemble 

machine learning tool is typically utilized for regression and 

classification challenges. Unlike traditional time series models, 

XGBoost operates fundamentally as a regression model, but 

when tailored aptly, can excel in time series predictions. 

A crucial facet of employing XGBoost in our analysis 

involves converting date data into external variables. To 

bolster prediction precision, we've integrated explanatory 

variables such as 'dayofweek', 'month', 'year', 'dayofyear', 

'dayofmonth', and 'weekofyear'. This method allows the model 

to assimilate calendar-related nuances potentially influencing 

stock prices [5, 12, 16, 17]. 

We note that XGBoost model produced an RMSE of 52.27. 

With an average stock price of 643.11, the error percentage 

relative to this average is 8.12%. While its RMSE is 

competitive, XGBoost's performance is somewhat surpassed 

by SARIMA but is notably better than Prophet in terms of 

accuracy. 

From Figure 9 inspection, XGBoost stands out as the most 

adept model in capturing the price variations over time. It 

accurately tracks the fluctuations and trends for the initial 21 

days of the month. However, its predictions seem to deviate in 

the latter 10 days, indicating a potential overfitting or lack of 

adaptability to sudden changes. 

 

 
 

Figure 9. XGBoost forecast for Netflix stock price-October 

2022 

 

5.4 Hybrid approach 

 

Given the notable precision of the SARIMA model coupled 

with its primary drawback of producing linear predictions that 

don't capture price fluctuations, and considering the 

performance of XGBoost in accurately tracking temporal price 

variations, we suggest a combined approach. In this paper, we 

propose a mixed-function model that blends SARIMA and 

XGBoost predictions. By judiciously adjusting the weights 

between the two models, we aim to harness the strengths of 

each while compensating for their respective weaknesses. This 

hybrid approach seeks to amalgamate the precision of 

SARIMA with the adaptability of XGBoost, offering a 
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potentially more robust forecasting tool for stock price 

prediction. 

This model can be represented mathematically using 

weighted averages: 

Let's denote: 

 Psarima as the prediction from the SARIMA model. 

 Pxgb as the prediction from the XGBoost model. 

 Wsarima as the weight for the SARIMA prediction. 

 Wxgb as the weight for the XGBoost prediction. 

 

Phybrid =  Wsarima × Psarima + Wxgb × Pxgb 

 

In our case, we choose the weights 0.6 for SARIMA and 0.4 

for XGBoost. They are the result of the optimization process 

which, based on our testing and objectives, yielded the most 

advantageous balance between capturing fluctuations and 

maintaining predictive accuracy [18]. 

To justify the weighting scheme in the hybrid SARIMA-

XGBoost model, an empirical evaluation was conducted with 

a focus beyond merely minimizing RMSE. While it is true that 

assigning a higher weight to SARIMA (up to 0.8) resulted in 

lower RMSE values, this came at the cost of producing overly 

smoothed forecasts that failed to capture the inherent volatility 

and short-term dynamics of stock price movements. 

For instance, SARIMA alone achieved an RMSE of 41.33, 

but its predictions were largely linear and did not reflect the 

actual market fluctuations. The essence of financial 

forecasting is not only statistical accuracy but also the ability 

to track realistic price behavior, which is critical for decision-

making in volatile environments. 

Several weight combinations were tested to find a balance 

between stability and responsiveness. Table 1 illustrates this 

iterative process. 

 

Table 1. Iterative evaluation of different weight 

combinations for the hybrid SARIMA-XGBoost model 

 
Weight 

SARIMA 

Weight 

XGBoost 
RMSE Observations 

0.8 0.2 42.10 
Very flat predictions, close 

to SARIMA only behavior 

0.7 0.3 43.80 
Improved dynamics but still 

overly conservative 

0.6 0.4 45.35 

Optimal trade-off: captures 

fluctuations with controlled 

error 

0.5 0.5 46.12 
Increased reactivity but 

signs of noise 

0.4 0.6 47.80 
Highly reactive, unstable 

forecasts, higher RMSE 

 

For the hybrid model with weights of 0.6 for SARIMA and 

0.4 for XGBoost, we obtain the RMSE=45.35 With an average 

stock price of 643.11, the error percentage relative to this 

average is 7.05% 

Visually from Figure 10, the hybrid model demonstrates 

superior capability in capturing the stock price fluctuations 

over time compared to SARIMA alone. Furthermore, while 

the XGBoost model adeptly tracks these fluctuations, the 

hybrid approach commits fewer errors, offering a more 

balanced and precise forecasting tool. 

While the hybrid model demonstrated promising results 

during the evaluation period, it is important to highlight that 

the testing was conducted exclusively over October 2022. This 

period was deliberately selected due to its notable market 

volatility, providing a relevant context to assess the 

responsiveness and adaptability of the forecasting models. 

However, this limited timeframe may not fully capture the 

diversity of market conditions encountered throughout the 

year. As such, further testing across extended periods and 

varying market scenarios would be essential to confirm the 

robustness and generalizability of the proposed hybrid 

approach [19, 20]. 

To strengthen model robustness, future work should include: 

• Data augmentation techniques for financial time 

series [21-23], 

• Transfer learning for domain adaptation [24], 

• Regularization-aware hybrid architectures [25], 

• Interpretable deep learning components like attention 

mechanisms [26]. 

Finally, advanced stationarity tests, such as KPSS or 

Phillips–Perron, could be explored alongside Dickey-Fuller to 

ensure robust preprocessing [27]. 

 

 
 

Figure 10. Hybride model (SARIMA/XGBoost) forecast for 

Netflix stock price-October 2022 

 
 

6. CONCLUSION 
 

In this study, we focused on forecasting Netflix's closing 

stock price using three well-known models: SARIMA, 

Prophet, and XGBoost. Each model displayed unique 

strengths and limitations in its predictive capabilities: 

SARIMA showed strong accuracy, as indicated by its low 

RMSE, but struggled to capture the inherent fluctuations in 

stock prices over time, resulting in somewhat linear 

predictions. 

Prophet, designed to account for the periodic nature of time 

series data, was less accurate than SARIMA but offered more 

nuanced predictions, better reflecting the stock's price 

movements and avoiding overly linear outcomes. 

XGBoost, despite being traditionally a regression model, 

demonstrated notable strength in capturing the stock's price 

oscillations over the tested period. It excelled at tracking price 

fluctuations, particularly during the initial weeks of our test set. 

The highlight of this paper, however, was the introduction 

and application of a hybrid model, which combined the 

strengths of SARIMA and XGBoost. By optimizing the 

1011



 

weights of these models at 0.6 and 0.4 respectively, the hybrid 

approach outperformed the individual models. It not only 

delivered high accuracy but also effectively captured the 

stock's price variations, striking a balance between precision 

and trend representation. 

Moreover, the scope of this study was constrained by a short 

evaluation window, focusing solely on a single month of data. 

Although this allowed for a focused comparison under volatile 

conditions, future work should involve testing the hybrid 

model across longer and more diverse timeframes to ensure its 

applicability in different market environments. Expanding the 

evaluation period will be crucial to validate the consistency 

and generalizability of the forecasting performance observed 

in this study. 

Lastly, while RMSE was a reliable measure of model 

performance in this study, it doesn't tell the whole story. 

Finding a more comprehensive metric that evaluates both 

accuracy and the ability to capture trends remains an open area 

for future research. Pursuing this could bring us closer to 

developing a model that is both precise and better reflects the 

true behavior of time series data. 
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