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The real-time uses of intelligent computing models are becoming most prominent part of 

recent technologies. Implementation of computing model is required using multiple 

framework for design perspective. To create the smart era, the real-time implementation is 

needed for different applications. This paper presents efficient, faster, and hardware friendly 

implementation for synthesizable deep neural network (DNN) which are targeting low-cost 

hybrid FPGA platforms like Xilinx Zynq, Micro Blaze, Micro Zed, etc. “neural net” is an 

IP core neural-network written in Verilog HDL, parameterized via Python and based on 

hardware-software co-design approach providing flexibility to utilize both hardware and 

software aspects of design. Results show significant performance and accuracy with 

minimal resource utilization. The Fully Connected network with 8-bit of data with int. part 

of 6bits and “relu” activation function achieves best-optimized results for small architecture 

like [784,30,20,10] with the accuracy of around 98%, power of 0.57 Watt with 195.407 

MHz of max frequency on EDGE Zynq FPGA. The implementation of proposed 

“neuralnet” on FPGA demonstrated the large applications in consumer electronics era. 
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1. INTRODUCTION

In the present era, with the rapid growth of technology in the 

field of IoT and Embedded systems, we generally require 

computational devices [1]. It is mandatory to target to achieve 

energy efficient, highly secured with low cost, power, and 

resource consumption and an increased performance of the 

device. With an era of increasing complexity, it is challenging 

to solve problems by the algorithmic approach. Hence the 

foundation for the machine learning approach was laid. Neural 

networks find a way of transforming data into decisions [2]. 

Nowadays, with an increase in demand of IoT-enabled 

applications, this interest of neural nets implementation on 

low-cost edge computing devices has increased [3]. The 

applications of neural network for IoT enabled devices has 

been represented in Figure 1. It has been shown many times 

that FPGA-based models can outperform their software 

implementation of DNN because of its concurrency, re-

configurability etc. [4]. There are few hardware platforms 

available with their own factors and constraints (like limited 

power, size, etc.). These are kept in mind while developing an 

algorithm or any hardware design that differs totally from 

where scientific research over these occurs. Due to cost, 

power, and development time on data-centers, these methods 

are now becoming recent trends for consumer era [5]. Till 

present time, AI models have been validated and tested using 

virtual platforms. But it is required to implement the AI or 

predicting models for real time application, which enhance 

visibility to adapt the new technology for smart scenario. The 

performance parameters are the important benchmarks in the 

era of implementation.  

Figure 1. General applications of computing model for IoT 

enabled devices 

The organization of the paper has been represented, which 

demonstrate the connecting discussion on proposed work. In 

Section 3, the necessity of neural networks in the current 

context is elucidated. Additionally, this section delves into the 

advantages and disadvantages of neural networks, reviews 
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relevant prior work, and explores the novel contributions 

presented in this study. Description of the proposed model with 

architecture selection and simulation have represented in 

Sections 4, 5 and 6 respectively. Applicability in different 

scenario for proposed design and conclusion of the work has 

been explored in Sections 7 and 8. This particular organization 

enlightens the feasibility of the proposed model in real time 

domain. 

 

 

2. LITERATURE REVIEW 

 

2.1 Why neuralnet implementation is required for 

consumer electronics 

 

As per the recent demand in the market, the computing or 

predicting model should be highly efficient in terms of 

performance parameters after real time implementation. The 

complicated computing model should be implemented with 

minimum hardware resources for better results. With the rapid 

growth of technology, neural computing has become a 

prominent way of dealing with complex computing problems. 

Nowadays, with the prevalence of smart and IoT-based 

applications, the shift in momentum towards smart designs 

using neural networks has opened new opportunities for low-

cost Hybrid FPGAs as they are based on concurrent computing 

and freely programmable configurable logic blocks (CLBs), 

etc. A digital circuit representing neural network embedded on 

FPGA introduced a physical design for intelligent computation 

with high speed and low cost solution. The proposed 

programmed FPGA can be used for multiple paradigm which 

are represented in Figure 2. Due to significant advantages of 

physical computation model design, it is highly recommended 

for real-time applications. 

 

 
 

Figure 2. Applications of DNN model implementation on 

FPGA for consumer electronics 

 

2.2 Prior related work 

 

This section reviews some important observations and 

results captured in neural network implementation, focusing 

on FPGAs-based methodology and solutions. The DNN model 

implementation has been done for different applications. For 

architecture point of view, many people represented the 

challenges to optimize the parameters such as speed, power & 

resource consumption and precision level of implemented 

model. Depending upon the various features of DNN models, 

the parameters were optimized at individual level for multiple 

applications. But, there is a requirement to set the parameters 

as an optimized gradient which would be applicable for 

multiple purpose. For such kind of objective, people are still 

working to set the standard parameters for their applications. 

In this way, Guo et al. [6] represented a design flow of CNN 

mapping on an FPGA. Various FPGA platforms have been 

analyzed to get the optimized parameters. Radial basis 

function based neural network classifier is proposed for FPGA 

implementation [7]. Wang et al. [8] demonstrated deep CNN 

model on Xilinx Zynq ZC706 and Virtex VC707 boards with 

86.25% claimed accuracy. Shawahna et al. [9] represented 

neural networks in image detection and recognition 

applications. Lian et al. [10] developed an FPGA-based DNN 

model using Virtex-7 XC7VX690T FPGA with more than 

1000 DSPs. Nguyen et al. [11] explained CNN model for 

object detection with reduced DRAM power consumption. 

CNN model implementation has been done using 512 DSP 

blocks in terms of an optimized implemented model [12]. Abd 

El-Maksoud et al. [13] explored the CNN model for image 

recognition and object detection. 91% average classification 

accuracy has been claimed with 3.92 W power consumption 

only. A low resource CNN based accelerator is demonstrated 

for drones with 1.9 W power consumption. The model is 

implemented on two FPGA-based platforms Ultra96-V2 and 

PYNQ-Z1 [14]. The presented work enlightens the 

implementation with optimized parameters. The challenges 

have been overcome for future perspective. Still, the 

parameters are required to optimize for specific applications in 

design perspective. Hence, the DNN model implementation on 

low-cost FPGA platform has been proposed for wearable-end 

solutions. 

 

2.3. Advantages and recent challenges of computing 

models implementation  

 

Hybrid FPGAs like Xilinx’s Zynq, Intel’s Cyclone, etc., 

have an advantage in these regards because of their freely 

programmable, highly configurable logic blocks (CLBs), look-

up tables (LUTs), and DSP architecture blocks that harden 

functional units inside fabric. They are relatively cheap, 

consumed less power, and have support of hardware-software 

based design which provides a better way to utilize both 

hardware and software aspects of design hence providing 

better flexibility. The configuration stored in temporary 

memory cells inside FPGA can be reprogrammed many times, 

and hence it can be used in terms of specialized accelerators 

over specific applications (improving efficiency) or 

prototyping of new design on hardware. There are some 

challenges that FPGAs implementation of network hardware 

outperforms their software counterpart. However, there are 

AI/ML development environment provided by different FPGA 

vendors but they generally targeted for high-end devices [15]. 

Also, methods are not friendly as on hardware against their 

software counterparts [16]. To overcome the challenges, an 

efficient, faster, and hardware friendly implementation is 

proposed for low cost device. This low cost computing device 

can be used for real-time applications. 

 

2.4. Novel contribution in the paper 

 

This paper discusses the methodology and presents an 

efficient and hardware-friendly implementation of 

synthesizable DNN code and integrate it with Zynq and 

Microblaze with other required peripherals to develop a 

complete system-design based solution. In this case low-cost 

hybrid FPGA platforms are the targeted hardware device, but 

the approach and solution are not limited and can be extended 
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to any FPGA independent of their vendor, and the DNN code 

can be synthesized and implemented with any logic 

synthesizer tool. The contribution in present work is judiciary 

explored to represent the effort in term of advancement. The 

novel contribution is presented as:  

1) Implementation of cost effective IP core using DNN 

model has been done for real-time applications. 

2) DNN features such as Hidden layers, activation function 

and line buffers are explored to form an activated DNN model. 

3) Utilization of Microblaze, BRAM for development has 

been enlighten for Smart IP core. 

4) Softcore, easy to implement edge-IP based solution has 

been proposed using deep learning features. 

5) AI based approach has been involved for smart utilization 

of AXI-DMA controller for streaming application. 

As per the presented contribution, the DNN model is 

proposed with utilization of Microblaze hardware for reliable 

efficiency and other performance parameters. The low power 

hardware is needed with portable device. These presented 

features demonstrate the fulfillment of required benchmarks. 

 

 

3. A DESCRIPTION OF PROPOSED INEURALFPGA 

IMPLEMENTATION 

 

   The core architecture of neural network despite recent 

developments have been the same. All input pixels or flattened 

features are provided to the next layer of neurons (less in size 

as of preceding layers), and after the operation, the output is 

provided as an input to the next layers. The following section 

discusses the architecture of neuralnet and number system 

which is used. 

 

3.1 Representation of number 

 

There are numerous ways but majorly two ways to store real 

numbers in modern computing i.e., floating-point and fixed-

point representation. Recently, posits have also been new on 

the list, which solves the major problem of floating point with 

an ability to toggle between dynamic range and precision given 

out by a number or bits and also removes numerous ways to 

represent NaN (not a number), Infinity, etc. [17]. The number 

representation carries a significant impact on performance and 

resource utilization of hardware used. Floating points are 

precise more accurate. But on hardware, the calculations are 

slower than fixed-point representation due to its complexity in 

operation such as controlling both mantissa and exponent 

values for various operation. But, it has been analyzed shown 

in context of FPGAs, the fixed-point approach results in better 

performance [18]. 

 
Algorithm 1. Fixed-point floating notation to binary 

1. Given: 

num: floating point number to convert 

IDW: input data width 

fracbits: number of fraction bits 

2 scaled_num = int(num × 2^fracBits) 

3 if scaled_num > 0 

4     if scaled_num = 0 then, Return ‘0’ 

5     else, Return ‘scaled_num’ 

6  elseif scaled_num < 0 

7  Return ‘(2^IDW) + scaled_num’ 

 

Hence, in this case floating fixed-point data representation 

approach is used, which makes design more simple, resource 

friendly and robust. If given is IDW (input data width) bits in 

size, then the addition and multiplication at max takes around 

2*IDW-1 bits. Also, since the output of addition is presented 

as input to next layer, the final result after operation is then 

truncated to match inputs characteristics. Algorithm 1 shows 

the mechanism to convert fixed-point notation to binary (2’s 

complement) value. 

 

3.2 Mechanism behind designing of neuron 

 

Each and Every neuron has its own set of configurations (i.e. 

weights, bias) stored in memory, and parameters (activation 

function, etc.) are declared from the instantiating module 

above it. All the weights and basis of the pre-trained network 

are stored in a Weight memory, as shown in Figure 3. The 

depth of memory for each neuron is indicated by the number 

of inputs (or no. of neurons in the preceding layer) and in each 

memory location. The corresponding weight values are stored. 

Irrespective of the number of neurons in preceding layer, there 

will be a single input interface for accepting data. By this 

method, the efficiency, clock performance, and scalability of 

design is increased for a large network while compromising 

with the latency of system. 

 

 
 

Figure 3. Block representation of proposed DNN model 

implementation for single neuron 

 

The Single Neuron architectural implementation is shown in 

Figure 3. The memory is instantiated as ROM and initialized 

with pre-trained weights and bias. Since, it has one cycle of 

read latency, the memout is multiplied by delayed version of 

input i.e. inputd. After multiplication, the value is added with 

its previous accumulated value i.e. sum. Depending upon if 

multiplication is valid i.e. mulvalid the operation will continue 

for all Inputs coming inside neuron. On the falling edge of 

mulvalid or last cycle of valid multiplication operation, the 

total sum is added with bias value. The $ signed task of Verilog 

is used to preserve 2’s complement representation for 

multiplication and addition. At last, the final sum is given to 

activation function. The type of activation function configures 

a look-up-table (for non-linear function), such as sigmoid, 

softsign, tanh, etc. The depth of LUT for these can be 

configured as per required constraints. A circuit-based 

function (for linear function) such as relu, linear, etc. is 

implemented. The type of activation function and its depth has 

a direct impact on resource utilization, performance and 

accuracy of the network. After the completion of operation, the 
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outvalid is asserted and out is produced by the neuron. 

 
Algorithm 2. Designing of neuron 

1. Given: 

N: no. of weights 

IDW: input data width 

WS: weights Int size 

AF: activation function 

DS: depth size of activation function 

biasFile, weightFile 

Main Neuron: 

2 if rst | outvalid then 

3 memRdAddr,sum = 0 

4 else if inputvalid then 

5 memRdAddr += 1 

6 end if 

7 READ BIAS FROM BIASFILE 

8 bias⇐{biasReg[0][IDW −1 : 0],{IDW{1′b0}}} ▷ 

adjusting bias according to 

fixed point representation 

9 INSTANTIATE WEIGHT MEMORY 

10 mul ⇐$signed(inputd)×$signed(memout) 

11 sumadd = mul+sum 

12 biasadd = bias+sum 

13 if memRdAddr==N & pmultvalid then ▷ If previous cycle 

was vaild last 

14 if! bias[msb] &! sum[msb] & biasadd[msb] then ▷ If 

positive overflow with 

bias 

15 sum={1’b0, else(1)} ▷ positive saturate 

16 else if bias[msb] & sum[msb] & !biasadd[msb] then ▷ If 

negative overflow 

with bias 

17 sum={1’b1, else(0)} ▷ negative saturate 

18 else 

19 sum⇐biasadd 

20 end if 

21 else if multvalid then ▷ if multiplication is valid 

22 Overflow with sum and mult 

23 else 

24 sum⇐muladd 

25 end if 

26 INSTANTIATE ACTIVATION FUNCTION 

 
Algorithm 3. Activation function 

1. GIVEN: 

IDW: input data width 

WS: weights Int size 

DS: depth size of activation function 

Implementing Relu: ▷ linear activation function follows the 

same 

2 if signed(input) >= 0 then 

3 if input[2 ∗ IDW −1− :WS+1] then ▷ if positive overflow 

in integer part 

4 out⇐ {1’b0, else(1)} ▷ positive saturate 

5 else 

6 out ⇐input[2 ∗ IDW −1−WS− : IDW] 

7 end if 

8 else 

9 out ⇐0 

10 end if  

Implementing Sigmoid: ▷ Non-linear activation function 

(softsign, tanh) follows the same 

11 READ SIGMOID LUT MEMORY ▷ look up table 

12 if $signed(input) >= 0 then 

13 out ⇐input +(1 << (DS−1)) ▷ provide offset 

14 else 

15 out ⇐input −(1 << (DS−1)) 

16 end if 

 

The Algorithm 2 shows the Hardware implementation of a 

Single neuron. Initially the weight memory read address 

register is reset. If reset is applied or the operation in finished 

(indicated by outvalid) else, it will increment by 1. Also, the 

bias values are read from BIASFILE and padded with 0 at the 

back to transform it according to Fixed-point representation 

format followed by other operands like sum and mul. If the 

output of arithmetic operations in neuron Overflows or 

Underflow, it is saturated accordingly. 

The Algorithm 3 shows the Hardware implementation of a 

“relu” and “sigmoid” Activation Function but the same 

approach can be used to design other functions. The non-linear 

function requires LUTs for mapping input to output with 

required offset and also with various depths (or size) it. The 

advantage of linear (vs non-linear) function in terms of 

hardware is the memory size requirement. The more depth of 

LUTs, more would be accuracy and also the memory size 

requirement. While linear function just requires rather simple 

computation which is easy inferred by target hardware 

platform or FPGAs. For Linear activation function like “relu” 

input follows output until positive or negative saturates occurs 

(due to datawidth constraints), on the other hand for non-linear 

activation functions we need to dump a sampled values and 

read these value as LUT look-up table.  

 

3.3 Designing of hidden layers of proposed DNN model 

 

The no. of neurons in each layer specified are instantiated 

and stitched together, forming path for data movement. Since 

in our implementation, only a single input is provided to 

neuron at a time. All output values generated by the neurons 

(outvalid is true) between layers. It is stored in shift register 

and shifted out at every clock cycle as shown in Figure 4. Since 

inputs are provided at same time, the output and outvalid is 

also produced at same time and a small FSM decides the state 

of operation. At last the outputs from the final layer is given to 

hardmax activation function which calculates the max. value 

from output and generates ”intr” (interrupt) to the PS 

indicating completion of task. 

 

 
 

Figure 4. Description of layers’ design of ineuralnet 

 

3.4 Architectural description of proposed neuralnet 

 

The complete system architecture implementation is shown 

in Figure 5 using Zynq platform. The neural network is 

packaged as an IP core (called neural net) and it is integrated 

with Zynq PS via AXI-Lite interface and connected to its 

GP0(General purpose) port. The interface is used for writing 

the soft-reset to the IP, reading/displaying out the weight and 

bias value of particular neuron, the status of network operation 

and the final ouput (i.e. after harmax layer) value from 

network. The AXILite interface is generated with help of 
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Vivado’s IP’s generator tool and the neural net design is not 

restricted to Zynq but any platform with AXI-Lite support (i.e. 

Microblaze, etc.) is required. The neural net IP is connected 

with AXI DMA controller via AXI4 stream point-point 

interface (axis port) and DMA is connected to Zynq HP0. 

 

 
 

Figure 5. An FPGA representation of implementation 

paradigm 

 

(High Performance) port via AXI-Lite (i.e. axi) port, in 

which turn is connected to the external memory on FPGA. This 

allows the inputs to neural net IP to be directly streamed from 

external memory via DMA. The AXI-stream provides 784 

inputs to IP one after the another. s axis data is given as input 

to first layer. The s axis valid as inputvalid and s axis ready are 

driven to constant 1’b1. The Interrupt signals from both DMA 

and neural net is concatenated and connected to Zynq PS 

though IRQ (interupt request handler) port. After receiving the 

interrupt, the PS can read out the output result from base 

IP+0x4(offset) address. The control register is attached to 

baseIP+0x8(offset) address, which is used for issuing soft-

reset and the status register attached to baseIP+0xC(offset) 

address gives status of network (i.e. completion of operation) 

and it is attached to” intr” signal of IP (i.e. clears the status 

when valid output is generated). 

 

 

4. CONVOLUTION ARCHITECTURE OF PROPOSED 

INEURALNET 

 

Images are stored as 2D or 3D array format depending upon 

the channel required to represent them. Graycale have one 

channel and pixel size is 1 byte in size while RGB image 

contain 3 channels and pixel size is 24-bit (considering each 

channel of 1byte). In point processing, the output of pixel 

depends upon value of pixel at that corresponding position and 

the transformation being performed on it. While in 

Neighborhood processing, the output depends upon 

corresponding pixel too. The Convolution performed over 

image falls under this category in which the kernel (or filter) is 

shifted over image (the shift amount is known as Stride) and 

MAC operation implemented in fully streaming architecture, 

rather it is stored over a memory location (generally BRAM). 

Image pixels are streamed as complete row at a time. Since the 

required pixels for operation/processing are not consecutive. It 

is also shown in Figure 6. An output pixel requires different 

position of input image. It needs small buffer (or called Line 

Buffers) for operation. As, it is almost impractical to buffer the 

entire image. If the image size is 512×512 bits and considering 

greyscale it requires 512×512×1=262144 bytes of memory 

location in FPGA, which is just for a single layer. It is not 

possible in small platforms using BRAMS (BRs), LUTs and 

FF, even if, it is required to store on external memory. The 

most of useful space, resource and operation time of hardware 

are lost in storage and accessing data rather than utilization it 

for computation. The idea with line buffers is to store only 

minimum required buffers depending upon Y-dimension of 

kernel (such as 3×3 kernel need at least 3 line buffers). In 

contrast of storing complete image, it now required 

512×3=1536 bytes of memory to compute convolution 

operation at a time. The Algorithm 4 shows implementation of 

line buffer which simply storing a row of inputs and outputs a 

block of array value depends upon Kernel’s X-dimension 

without any latency. The Algorithm 5 generates control logic 

for filling, selecting buffers and outputs to MAC module.  

Algorithm 4 describes the designing of control logic for 

convolution neural network. Control logic instantiate and 

contain FSM for line buffers. 

 

 
 

Figure 6. Architectural representation of convolution layers 

 
Algorithm 4. Designing of line buffer 

1. Given: 

IIS_X, IIS_Y: input image size x and y dimension KS_X, 

KS_Y: kernel size x and y dimension 

nDS: depth size of particular layer 

S: no. of stride 

nLB: no. of line buffer 

Single Line Buffer: 

2 if rst(readvalid & (rdPntr >= IIS_X - (KS_X-1) - S)) 

(inputvalid & (wrPntr == IIS_X - 1)) then               ▷ either 

reset or last read,write pointer 

3     wrPntr, rdPntr = 0 ▷ reset all to 0 

4 else if inputvalid then 

5     wrPntr += 1 ▷ increase write pointer 

6 else if rdPntr > IIS_X - (KS_X - 1) - S then 

7     rdPntr += S ▷ increase read pointer 

8 end if 

9 if inputvalid then 

10     linebuffer[wrPntr] = input data ▷ storing data 

11 end if 

pre-fetching Output Data 

12 for (i = 0; i (KS_X-1); i = i + 1) begin 

13     assign o_data [i nDS+: nDS] = linebuffer[rdPntr + 

((KS_X-1)-i)] 

14 end 

 
Algorithm 5. Designing of control logic for convolution 

GIVEN: 

nDS: depth size of particular layer S: no. of stride 

tPC: total pixel counter iPC: input pixel counter 

rC: output pixel read counter 

cWLB: select which line buffer to write lBDV: selects line buffer 

write enable cRLB: select which line buffer for read rLB: selects 

line buffer read enable  

 

Implementation: 

1) Counting total pixel value for complete block 
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if rst then 

 tPC = 0 

else if (inputvalid & output ready) & !rdlinebuffer then 

 tPC += 1 

else if !inputvalid & rdlinebuffer then 

 tPC -= (S*S) 

else if (inputvalid & output ready) & rdlinebuffer then 

 tPC -= (S*S) - 1 

end if 

 

2) Counts the number of valid input data and reset it at the 

end of line buffer 
 

if rst || ((inputvalid & output ready) & iPC== IIS_X) then 

 iPC = 0 

else if (inputvalid & output ready) then 

 iPC += 1 

end if 

 

3) Selects which line buffer to write on 
 

if rst then 

 cWLB = 0 

else if ((iPC==IIS_X) & (inputvalid & output ready) then 

 cWLB = (cWLB + 1) % nLB ▷ cyclic rotation 

end if 

lBDV = numLineBuffer 1′b0 

lBDV [cWLB] = (inputvalid & output ready) 

 

4) Counts the number of valid output data of a row in line 

buffer (read count) 
 

if rst (rLB & (rC == (IIS_X- KS_X) / S)) then 

 rC = 0 

else if (rLB) then 

 rC += 1 

end if 

 

5) Selects which line buffer to read from (current read line 

buffer) 
 

if rst then 0 

 cRLB = 0 

else if ((rC == (IIS_X - KS_X) / S) & (rLB) then 

 cRLB = (cRLB + 1) % nLB ▷ cyclic rotation 

end if 

 

6) Main FSM for control logic 
 

if rst then 

 rdState, rLB, Empty = 0 

else 

 case(rdState) 0: 

 Empty = 0 ▷ Not ready to take inputs 

 if (tPC ((IIS X*KS Y) - 1) & (inputvalid & out put 

ready)) then 

 rLB, rdState = 1 

 end if 

    case(rdState)  1 : 

 if (rC == ((IIS X*KS X)/S)) then 

 if (tPC ((IIS X*KS Y) - 1) & (inputvalid & out put 

ready)) then 

 rLB, rdState = 1 

 else 

 rLB, rdState = 0 

 end if 

 end if 

 Empty = 1 ▷ buffers are empty, ready to take 

inputs 

 endcase 

end if 

5. HARDWARE-SOFTWARE CODESIGN APPROACH 

 

The proposed hardware-software co-design approach 

leverages the strengths of both hardware (FPGA) and software 

components to optimize the performance of the DNN model 

while ensuring flexibility and efficient resource utilization. In 

this section, we provide a detailed breakdown of the division 

of tasks between the hardware and software components, 

illustrating how each part contributes to the overall system. 

 

5.1 Hardware responsibilities (FPGA implementation) 

 

The primary responsibility of the hardware component in 

our design lies in handling the computationally intensive tasks 

of the DNN, such as matrix multiplications, activation 

functions, and weight calculations. FPGAs, with their highly 

parallel architecture, are well-suited for such tasks, enabling 

real-time performance and low power consumption. 

Key responsibilities of the FPGA in our design include: 

Neuron and layer computations: The FPGA is responsible 

for executing the core computations within each neuron, 

including weighted sums and activation functions. As 

described in the architectural design of the neuron, these 

operations are performed using fixed-point arithmetic to 

ensure speed and efficiency while minimizing resource usage. 

Weight storage and management: The FPGA stores pre-

trained weights and biases in its memory blocks (e.g., BRAMs) 

and performs all necessary weight-fetching and bias addition 

during inference. This offloads these repetitive tasks from the 

software side, ensuring that the data is processed in parallel 

with minimal latency. 

Parallel data processing: With the FPGA’s ability to 

handle multiple inputs concurrently, the design implements 

parallelism across multiple layers of the network. Each neuron 

within a layer operates simultaneously, leading to significant 

speed improvements, especially in large-scale networks. This 

parallel processing is handled entirely in hardware. 

Activation functions: The implementation of activation 

functions, such as relu and sigmoid, is performed using look-

up tables (LUTs) on the FPGA. These functions are calculated 

in hardware, reducing the computational load on the software 

and ensuring that nonlinear transformations are applied 

efficiently. 

Control of data flow: The FPGA manages the flow of data 

between layers, ensuring that each neuron receives inputs at 

the appropriate time and that outputs are transmitted between 

layers with minimal delays. This is critical for ensuring high 

throughput in real-time applications. 

 

5.2 Software responsibilities (processor/microcontroller) 

 

The software component, running on a general-purpose 

processor (e.g., ARM core in the Zynq SoC or an external 

microcontroller), is primarily responsible for high-level 

control, initialization, and peripheral management. Unlike 

hardware, software is more flexible and easier to modify, 

making it well-suited for tasks that require configuration or 

interaction with external systems. 

Key responsibilities of the software in our co-design 

approach include: 

Model initialization and configuration: Before inference 

begins, the software initializes the FPGA by loading pre-

trained model parameters (weights, biases) into the memory. It 

also configures the FPGA by setting parameters such as input 

size, precision level, and control registers via the AXI-Lite 
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interface. 

Data preprocessing: In some applications, raw data (e.g., 

images or sensor data) may require preprocessing, such as 

normalization or transformation, before being fed into the 

neural network. These preprocessing tasks are performed in 

software to reduce the complexity of the hardware design and 

to allow for easy modification depending on the application. 

Control and status monitoring: The software manages 

high-level control of the system, issuing commands such as 

reset, start, and stop signals to the FPGA. It also monitors the 

status of the FPGA during inference, reading status registers to 

determine when computations are complete or if errors occur. 

Data input and output management: The software is 

responsible for managing data inputs and outputs to and from 

the FPGA. Inputs (such as sensor data) are fed into the FPGA 

via the AXI-Stream interface, and the processed outputs (such 

as classification results) are retrieved from the FPGA and 

displayed or sent to other systems for further action. 

Peripheral interaction: For systems that require 

interaction with external devices (e.g., sensors, cameras, or 

user interfaces), the software handles communication with 

these peripherals. This allows the FPGA to focus exclusively 

on the DNN computations, ensuring optimal performance. 

 

5.3 Benefits of the co-design approach 

 

The hardware-software co-design allows for an efficient 

distribution of tasks that maximizes the strengths of both 

FPGA and software systems. The following benefits arise from 

this approach: 

Parallel processing in hardware: The FPGA accelerates 

the DNN’s core computations, leveraging its parallel 

architecture to perform operations like matrix multiplications, 

weight updates, and activation functions simultaneously. This 

dramatically improves speed compared to a software-only 

solution. 

Flexibility in software: The software component provides 

flexibility, allowing for easy reconfiguration of the model 

parameters, input preprocessing, and control logic. This 

flexibility is especially useful in applications where the system 

needs to adapt to changing requirements or be easily updated. 

Energy efficiency: Offloading the computationally 

expensive tasks to the FPGA significantly reduces the energy 

consumption of the system, as FPGAs are more power-

efficient than general-purpose processors for these types of 

operations. 

Modularity and scalability: The system can be easily 

scaled by modifying either the hardware (e.g., increasing the 

number of neurons in hardware) or the software (e.g., changing 

the input data format or preprocessing algorithms), making it 

adaptable for a wide range of applications. 

Example of operations: 

To illustrate the co-design approach in practice, consider an 

example where the DNN is used for real-time image 

classification: 

Software initialization: The software initializes the system 

by loading the DNN model parameters (weights, biases) into 

the FPGA and setting up the input data format (e.g., resizing 

images). 

Data input: The software reads an image from a camera 

sensor, preprocesses it (e.g., normalizes pixel values), and 

streams the preprocessed data into the FPGA via the AXI-

Stream interface. 

Hardware processing: The FPGA processes the image 

through the DNN layers, performing matrix multiplications 

and activation functions in parallel for each neuron in the 

network. Intermediate results are stored and passed to 

subsequent layers without software intervention. 

Software monitoring: While the hardware processes the 

data, the software monitors the status of the FPGA, checking 

status registers to determine when the computation is 

complete. 

Output handling: Once the DNN inference is complete, the 

FPGA sends the output (e.g., classification result) back to the 

software via the AXI-Lite interface. The software then handles 

post-processing or communicates the result to other systems 

for further action. 

 

 

6. SIMULATION AND RESULTS OF THE PRESENT 

WORK 

 

The presented neuron module is written in Verilog HDL and 

Python is used to parameterize the number of neuron in each 

layers and” neuralnet” IP to support any general type of fully 

connected neural network architecture. For evaluation and 

validation of neural network, the popular MNIST handwritten-

digit dataset is used which contains over 30,000 for training 

and 10,000 images for testing. The weights and biases for 

network are generated by using Tensor Flow and python 

scripts. These values are used as pre-trained hardware values 

and loaded inside the memory. For sake of testing the design, 

all implementation follows a 4 layered fixed architecture, with 

784 inputs in input layer, 1 hidden layer with 30 neurons, 1 

hidden layer with 20 neurons and an output layer with 10 

neurons. The output or final layer is attached to hard-max 

function which is analogues to software implementation of 

max-finder (or softmax) but implemented in hardware, which 

detect max value out of 10 neurons. 

For training of MNIST dataset, the Tensor-Flow library is 

used with above archi- tecture but with different activation 

function. The software implementation after 20 epoch gives 

around 95.969% accuracy for the testing data set. For 

simulation and implementation of all designs, the Xilinx 

Vivado 2018.3 version is used and for hardware validation, 

EDGE-Zynq FPGAs with xc7z020clg484-1 SoC part. 512MB. 

external DDR3 memory is used to prototype the design. The 

testing is done in the default setting of Vivado without any 

specific optimization over fabric part of FPGAs (i.e. partial 

reconfiguration, timing, power, etc.). The simulation results of 

images and the graphical representation of parametric results 

through the implemented model are presented in Figure 7. 

Tables 1 and 2 compare the resource utilization of DNN for 

different input data widths in terms of LUTs, flip-flops, 

BRAMs (BRs) and DSP slices using different activation 

functions. For non-linear activation functions having larger 

data size, the lookup table is used for mapping values to 

corresponding input values to BRAMs (BRs) which 

exponentially increases its utilization. Table 2 represents the 

similarities with few parameters change in proposed work 

compared to prior related work. 

The Table 3 contains the comparision of results with 

prevoius implemneted models as discribed in references [11, 

13]. 

In summary, the empirical data and comparative analysis 

presented in this section demonstrate that the proposed DNN 

model on FPGA offers several advantages over existing 

implementations. 

Higher accuracy: Achieves near state-of-the-art accuracy 

for real-time applications with minimal loss in precision. 
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Lower power consumption: Significantly reduces power 

usage, making it ideal for power-sensitive environments like 

IoT and portable devices. 

Faster processing: Outperforms existing implementations 

in terms of clock speed, ensuring real-time operation for 

critical applications. 

Balanced resource utilization: While the model consumes 

more resources in certain areas, it achieves superior 

performance, offering a good balance between computational 

demands and FPGA resources. 

 

 
 

Figure 7. Results in terms of accuracy, clock performance and power analysis for different neural network implementation 

 

Table 1. Analysis of resource utilization for various 

activation functions-I 

 
Act Tanh  Soft Sign All 

Depth LUTs FFs BRs LUTs FFs BRs DSPs 

4 4038   2309 15 4325   2330 15 0 

8 7279   3873 30 7906   3904 30 0 

12 4054   3394 30 4070   3394 30 120 

16 4756   4096 30 4767   4075 30 120 

20 12582 8300 60 12635 8310 60 60 

24 9454   6490 60 94643 6480 60 120 

28 17263 9108 61 17279 9034 61 220 

32 19705 9863 70 19583 9863 70 220 

 
Table 2. Analysis of resource utilization for various 

activation function-II 

 
Act Sigmoid  Relu  All 

Depth LUTs FFs BRs LUTs FFs BRs DSPs 

4 3517   2288 15 3889   2521 0 0 

8 7895   3884 30 8597   4373 15 0 

12 4054   3405 30 5144   4053 15 120 

16 4756   4107 30 6294   5013 15 120 

20 12630 8299 60 13705   9513 30 60 

24 9464   6480 60 10917   7915 30 120 

28 17242 9012 61 19844   10885 30 220 

32 19790 9916 70 22679   11864 40 220 

 

Table 3. Comparison of neuralnet model with previous work 

 

Metric 

Proposed 

Model (Zynq-

7000 SoC) 

Existing 

Model 1 

(Virtex-7) 

Existing Model 

2 (Ultra96-V2) 

Accuracy 98% 91% 95% 

Power Consumption 0.57 W 3.92 W 1.9 W 

Max Frequency 195.407 MHz 100 MHz 150 MHz 

LUTs Utilization 17,242 19,844 12,630 

BRAM Utilization 60 60 70 

 

 

7. APPLICABILITY OF THE MODEL FOR 

DIFFERENT APPLICATION SCENARIOS 

 

The Implementation of a NerualNet on FPGA, as presented 

in this work, demonstrates configurablitiy and flexibilty to 

tweek the KPI in terms of accuracy, speed, and power 

efficiency. For different real-world applications, we can 

control parameters like, layer-depth, data type precision, 

activation function, etc. and have diferrent requirements based 

on their specific operational needs. Below are the few 

application scenarios, discussing how the model’s parameters 

can be adjusted to optimize performance for each case. 

Consumer electronics (IoT devices, wearables): In 

consumer electronics, particularly in wearable devices and IoT 

systems, there is a high demand for real-time processing, low 

power consumption, and moderate accuracy. For instance, 
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fitness trackers or smart home devices require models that can 

perform continuous data processing but with a focus on 

extending battery life. By configuring the model with reduced 

complexity (e.g., fewer layers or lower precision), it can 

further optimize power usage for such low-power 

environments, making it an excellent choice for portable 

consumer electronics. 

Automotive industry (autonomous vehicles, driver 

assistance): Autonomous driving systems and advanced 

driver-assistance systems (ADAS) require real-time decision-

making capabilities with high accuracy and reliability, as any 

delays could result in safety risks. 

Smart cities (traffic management, public safety): In 

smart city applications, such as traffic management and public 

safety monitoring, systems must process data from a wide 

array of sensors in real-time while being energy-efficient, 

especially when deployed in large numbers. 

 

 

8. CONCLUSION AND FUTURE DIRECTION 

 

The proposed work discussed the implementation of” 

neuralnet”, a DNN generator IP core targeting low-cost 

configurable FPGA based devices. Implementation results of” 

neuralnet” shows better performance, achieving accuracy 

close to software implementations with better throughput by 

an order of magnitude. Simulation is done using Xilinx Vivado 

2018.3 and EDGE Zynq FPGA is used for prototyping the 

design. The proposed implemented DNN model with physical 

framework will be utilized as sophisticated computing model 

for real-time applications. The proposed work environment is 

compared in context of similarities with parametric changes, 

which represents an optimized solution as computing model in 

consumer system era. The proposed implementation has been 

analyzed and compared with existing FPGA model in terms of 

accuracy and other parameters. The standard data has been 

taken for prior validation of the DNN model implemented on 

FPGA. The work will be enhanced to implement for portable 

systems. Such kind of implemented system can be used in 

wearable devices for distinct applications. The optimization in 

terms of design, precision and portability of model is further 

required for low cost, high speed, easy to handle and accurate 

system formation. The modifications in terms of necessary 

parameters are future challenges of impact full design for 

future perspectives. More complicated and precise models are 

required to propose to enhance precision level of measuring 

systems. The proposed DNN model will be further tested by 

real time dataset. The proper sensing paradigm will be 

calibrated with required constraints and benchmarks for the 

data collection. The collected data will be tested further and 

accuracy will be analyzed with hardware performance. The 

particular objectives will be covered in future work. 
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