
ineuralFPGA: Implementation of an Optimized DNN Model for Real-Time Applications

Vineet Jain1 , Abhishek Sharma1 , Prateek Jain2 , Augusto Bezerra3 , Sunil Sharma4* , Sultan Alasmari4,5

1 Electronics & Communication Department, and L-CST, The LNMIIT, Jaipur 302017, India
2 Electronics & Instrumentation Engge. Department, Nirma University, Ahmedabad 382481, India
3 SpaceLab, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
4 Department of Information Systems, College of Computer and Information Sciences, Majmaah 11952, Saudi Arabia
5 College of Technology and Business, Riyadh Elm University, Riyadh 12734, Saudi Arabia

Corresponding Author Email: s.sharma@mu.edu.sa

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300425 ABSTRACT

Received: 3 April 2024

Revised: 31 January 2025

Accepted: 14 February 2025

Available online: 30 April 2025

The real-time uses of intelligent computing models are becoming most prominent part of

recent technologies. Implementation of computing model is required using multiple

framework for design perspective. To create the smart era, the real-time implementation is

needed for different applications. This paper presents efficient, faster, and hardware friendly

implementation for synthesizable deep neural network (DNN) which are targeting low-cost

hybrid FPGA platforms like Xilinx Zynq, Micro Blaze, Micro Zed, etc. “neural net” is an

IP core neural-network written in Verilog HDL, parameterized via Python and based on

hardware-software co-design approach providing flexibility to utilize both hardware and

software aspects of design. Results show significant performance and accuracy with

minimal resource utilization. The Fully Connected network with 8-bit of data with int. part

of 6bits and “relu” activation function achieves best-optimized results for small architecture

like [784,30,20,10] with the accuracy of around 98%, power of 0.57 Watt with 195.407

MHz of max frequency on EDGE Zynq FPGA. The implementation of proposed

“neuralnet” on FPGA demonstrated the large applications in consumer electronics era.

Keywords:

FPGA, Artificial Intelligence

1. INTRODUCTION

In the present era, with the rapid growth of technology in the

field of IoT and Embedded systems, we generally require

computational devices [1]. It is mandatory to target to achieve

energy efficient, highly secured with low cost, power, and

resource consumption and an increased performance of the

device. With an era of increasing complexity, it is challenging

to solve problems by the algorithmic approach. Hence the

foundation for the machine learning approach was laid. Neural

networks find a way of transforming data into decisions [2].

Nowadays, with an increase in demand of IoT-enabled

applications, this interest of neural nets implementation on

low-cost edge computing devices has increased [3]. The

applications of neural network for IoT enabled devices has

been represented in Figure 1. It has been shown many times

that FPGA-based models can outperform their software

implementation of DNN because of its concurrency, re-

configurability etc. [4]. There are few hardware platforms

available with their own factors and constraints (like limited

power, size, etc.). These are kept in mind while developing an

algorithm or any hardware design that differs totally from

where scientific research over these occurs. Due to cost,

power, and development time on data-centers, these methods

are now becoming recent trends for consumer era [5]. Till

present time, AI models have been validated and tested using

virtual platforms. But it is required to implement the AI or

predicting models for real time application, which enhance

visibility to adapt the new technology for smart scenario. The

performance parameters are the important benchmarks in the

era of implementation.

Figure 1. General applications of computing model for IoT

enabled devices

The organization of the paper has been represented, which

demonstrate the connecting discussion on proposed work. In

Section 3, the necessity of neural networks in the current

context is elucidated. Additionally, this section delves into the

advantages and disadvantages of neural networks, reviews

Ingénierie des Systèmes d’Information
Vol. 30, No. 4, April, 2025, pp. 1101-1110

Journal homepage: http://iieta.org/journals/isi

1101

https://orcid.org/0009-0009-4455-2927
https://orcid.org/0000-0002-8821-9837
https://orcid.org/0000-0002-8191-9785
https://orcid.org/0000-0002-2191-6064
https://orcid.org/0000-0002-1732-2677
https://orcid.org/0009-0008-8871-2833
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300425&domain=pdf

relevant prior work, and explores the novel contributions

presented in this study. Description of the proposed model with

architecture selection and simulation have represented in

Sections 4, 5 and 6 respectively. Applicability in different

scenario for proposed design and conclusion of the work has

been explored in Sections 7 and 8. This particular organization

enlightens the feasibility of the proposed model in real time

domain.

2. LITERATURE REVIEW

2.1 Why neuralnet implementation is required for

consumer electronics

As per the recent demand in the market, the computing or

predicting model should be highly efficient in terms of

performance parameters after real time implementation. The

complicated computing model should be implemented with

minimum hardware resources for better results. With the rapid

growth of technology, neural computing has become a

prominent way of dealing with complex computing problems.

Nowadays, with the prevalence of smart and IoT-based

applications, the shift in momentum towards smart designs

using neural networks has opened new opportunities for low-

cost Hybrid FPGAs as they are based on concurrent computing

and freely programmable configurable logic blocks (CLBs),

etc. A digital circuit representing neural network embedded on

FPGA introduced a physical design for intelligent computation

with high speed and low cost solution. The proposed

programmed FPGA can be used for multiple paradigm which

are represented in Figure 2. Due to significant advantages of

physical computation model design, it is highly recommended

for real-time applications.

Figure 2. Applications of DNN model implementation on

FPGA for consumer electronics

2.2 Prior related work

This section reviews some important observations and

results captured in neural network implementation, focusing

on FPGAs-based methodology and solutions. The DNN model

implementation has been done for different applications. For

architecture point of view, many people represented the

challenges to optimize the parameters such as speed, power &

resource consumption and precision level of implemented

model. Depending upon the various features of DNN models,

the parameters were optimized at individual level for multiple

applications. But, there is a requirement to set the parameters

as an optimized gradient which would be applicable for

multiple purpose. For such kind of objective, people are still

working to set the standard parameters for their applications.

In this way, Guo et al. [6] represented a design flow of CNN

mapping on an FPGA. Various FPGA platforms have been

analyzed to get the optimized parameters. Radial basis

function based neural network classifier is proposed for FPGA

implementation [7]. Wang et al. [8] demonstrated deep CNN

model on Xilinx Zynq ZC706 and Virtex VC707 boards with

86.25% claimed accuracy. Shawahna et al. [9] represented

neural networks in image detection and recognition

applications. Lian et al. [10] developed an FPGA-based DNN

model using Virtex-7 XC7VX690T FPGA with more than

1000 DSPs. Nguyen et al. [11] explained CNN model for

object detection with reduced DRAM power consumption.

CNN model implementation has been done using 512 DSP

blocks in terms of an optimized implemented model [12]. Abd

El-Maksoud et al. [13] explored the CNN model for image

recognition and object detection. 91% average classification

accuracy has been claimed with 3.92 W power consumption

only. A low resource CNN based accelerator is demonstrated

for drones with 1.9 W power consumption. The model is

implemented on two FPGA-based platforms Ultra96-V2 and

PYNQ-Z1 [14]. The presented work enlightens the

implementation with optimized parameters. The challenges

have been overcome for future perspective. Still, the

parameters are required to optimize for specific applications in

design perspective. Hence, the DNN model implementation on

low-cost FPGA platform has been proposed for wearable-end

solutions.

2.3. Advantages and recent challenges of computing

models implementation

Hybrid FPGAs like Xilinx’s Zynq, Intel’s Cyclone, etc.,

have an advantage in these regards because of their freely

programmable, highly configurable logic blocks (CLBs), look-

up tables (LUTs), and DSP architecture blocks that harden

functional units inside fabric. They are relatively cheap,

consumed less power, and have support of hardware-software

based design which provides a better way to utilize both

hardware and software aspects of design hence providing

better flexibility. The configuration stored in temporary

memory cells inside FPGA can be reprogrammed many times,

and hence it can be used in terms of specialized accelerators

over specific applications (improving efficiency) or

prototyping of new design on hardware. There are some

challenges that FPGAs implementation of network hardware

outperforms their software counterpart. However, there are

AI/ML development environment provided by different FPGA

vendors but they generally targeted for high-end devices [15].

Also, methods are not friendly as on hardware against their

software counterparts [16]. To overcome the challenges, an

efficient, faster, and hardware friendly implementation is

proposed for low cost device. This low cost computing device

can be used for real-time applications.

2.4. Novel contribution in the paper

This paper discusses the methodology and presents an

efficient and hardware-friendly implementation of

synthesizable DNN code and integrate it with Zynq and

Microblaze with other required peripherals to develop a

complete system-design based solution. In this case low-cost

hybrid FPGA platforms are the targeted hardware device, but

the approach and solution are not limited and can be extended

1102

to any FPGA independent of their vendor, and the DNN code

can be synthesized and implemented with any logic

synthesizer tool. The contribution in present work is judiciary

explored to represent the effort in term of advancement. The

novel contribution is presented as:

1) Implementation of cost effective IP core using DNN

model has been done for real-time applications.

2) DNN features such as Hidden layers, activation function

and line buffers are explored to form an activated DNN model.

3) Utilization of Microblaze, BRAM for development has

been enlighten for Smart IP core.

4) Softcore, easy to implement edge-IP based solution has

been proposed using deep learning features.

5) AI based approach has been involved for smart utilization

of AXI-DMA controller for streaming application.

As per the presented contribution, the DNN model is

proposed with utilization of Microblaze hardware for reliable

efficiency and other performance parameters. The low power

hardware is needed with portable device. These presented

features demonstrate the fulfillment of required benchmarks.

3. A DESCRIPTION OF PROPOSED INEURALFPGA

IMPLEMENTATION

 The core architecture of neural network despite recent

developments have been the same. All input pixels or flattened

features are provided to the next layer of neurons (less in size

as of preceding layers), and after the operation, the output is

provided as an input to the next layers. The following section

discusses the architecture of neuralnet and number system

which is used.

3.1 Representation of number

There are numerous ways but majorly two ways to store real

numbers in modern computing i.e., floating-point and fixed-

point representation. Recently, posits have also been new on

the list, which solves the major problem of floating point with

an ability to toggle between dynamic range and precision given

out by a number or bits and also removes numerous ways to

represent NaN (not a number), Infinity, etc. [17]. The number

representation carries a significant impact on performance and

resource utilization of hardware used. Floating points are

precise more accurate. But on hardware, the calculations are

slower than fixed-point representation due to its complexity in

operation such as controlling both mantissa and exponent

values for various operation. But, it has been analyzed shown

in context of FPGAs, the fixed-point approach results in better

performance [18].

Algorithm 1. Fixed-point floating notation to binary

1. Given:

num: floating point number to convert

IDW: input data width

fracbits: number of fraction bits

2 scaled_num = int(num × 2^fracBits)

3 if scaled_num > 0

4 if scaled_num = 0 then, Return ‘0’

5 else, Return ‘scaled_num’

6 elseif scaled_num < 0

7 Return ‘(2^IDW) + scaled_num’

Hence, in this case floating fixed-point data representation

approach is used, which makes design more simple, resource

friendly and robust. If given is IDW (input data width) bits in

size, then the addition and multiplication at max takes around

2*IDW-1 bits. Also, since the output of addition is presented

as input to next layer, the final result after operation is then

truncated to match inputs characteristics. Algorithm 1 shows

the mechanism to convert fixed-point notation to binary (2’s

complement) value.

3.2 Mechanism behind designing of neuron

Each and Every neuron has its own set of configurations (i.e.

weights, bias) stored in memory, and parameters (activation

function, etc.) are declared from the instantiating module

above it. All the weights and basis of the pre-trained network

are stored in a Weight memory, as shown in Figure 3. The

depth of memory for each neuron is indicated by the number

of inputs (or no. of neurons in the preceding layer) and in each

memory location. The corresponding weight values are stored.

Irrespective of the number of neurons in preceding layer, there

will be a single input interface for accepting data. By this

method, the efficiency, clock performance, and scalability of

design is increased for a large network while compromising

with the latency of system.

Figure 3. Block representation of proposed DNN model

implementation for single neuron

The Single Neuron architectural implementation is shown in

Figure 3. The memory is instantiated as ROM and initialized

with pre-trained weights and bias. Since, it has one cycle of

read latency, the memout is multiplied by delayed version of

input i.e. inputd. After multiplication, the value is added with

its previous accumulated value i.e. sum. Depending upon if

multiplication is valid i.e. mulvalid the operation will continue

for all Inputs coming inside neuron. On the falling edge of

mulvalid or last cycle of valid multiplication operation, the

total sum is added with bias value. The $ signed task of Verilog

is used to preserve 2’s complement representation for

multiplication and addition. At last, the final sum is given to

activation function. The type of activation function configures

a look-up-table (for non-linear function), such as sigmoid,

softsign, tanh, etc. The depth of LUT for these can be

configured as per required constraints. A circuit-based

function (for linear function) such as relu, linear, etc. is

implemented. The type of activation function and its depth has

a direct impact on resource utilization, performance and

accuracy of the network. After the completion of operation, the

1103

outvalid is asserted and out is produced by the neuron.

Algorithm 2. Designing of neuron

1. Given:

N: no. of weights

IDW: input data width

WS: weights Int size

AF: activation function

DS: depth size of activation function

biasFile, weightFile

Main Neuron:

2 if rst | outvalid then

3 memRdAddr,sum = 0

4 else if inputvalid then

5 memRdAddr += 1

6 end if

7 READ BIAS FROM BIASFILE

8 bias⇐{biasReg[0][IDW −1 : 0],{IDW{1′b0}}} ▷

adjusting bias according to

fixed point representation

9 INSTANTIATE WEIGHT MEMORY

10 mul ⇐$signed(inputd)×$signed(memout)

11 sumadd = mul+sum

12 biasadd = bias+sum

13 if memRdAddr==N & pmultvalid then ▷ If previous cycle

was vaild last

14 if! bias[msb] &! sum[msb] & biasadd[msb] then ▷ If

positive overflow with

bias

15 sum={1’b0, else(1)} ▷ positive saturate

16 else if bias[msb] & sum[msb] & !biasadd[msb] then ▷ If

negative overflow

with bias

17 sum={1’b1, else(0)} ▷ negative saturate

18 else

19 sum⇐biasadd

20 end if

21 else if multvalid then ▷ if multiplication is valid

22 Overflow with sum and mult

23 else

24 sum⇐muladd

25 end if

26 INSTANTIATE ACTIVATION FUNCTION

Algorithm 3. Activation function

1. GIVEN:

IDW: input data width

WS: weights Int size

DS: depth size of activation function

Implementing Relu: ▷ linear activation function follows the

same

2 if signed(input) >= 0 then

3 if input[2 ∗ IDW −1− :WS+1] then ▷ if positive overflow

in integer part

4 out⇐ {1’b0, else(1)} ▷ positive saturate

5 else

6 out ⇐input[2 ∗ IDW −1−WS− : IDW]

7 end if

8 else

9 out ⇐0

10 end if

Implementing Sigmoid: ▷ Non-linear activation function

(softsign, tanh) follows the same

11 READ SIGMOID LUT MEMORY ▷ look up table

12 if $signed(input) >= 0 then

13 out ⇐input +(1 << (DS−1)) ▷ provide offset

14 else

15 out ⇐input −(1 << (DS−1))

16 end if

The Algorithm 2 shows the Hardware implementation of a

Single neuron. Initially the weight memory read address

register is reset. If reset is applied or the operation in finished

(indicated by outvalid) else, it will increment by 1. Also, the

bias values are read from BIASFILE and padded with 0 at the

back to transform it according to Fixed-point representation

format followed by other operands like sum and mul. If the

output of arithmetic operations in neuron Overflows or

Underflow, it is saturated accordingly.

The Algorithm 3 shows the Hardware implementation of a

“relu” and “sigmoid” Activation Function but the same

approach can be used to design other functions. The non-linear

function requires LUTs for mapping input to output with

required offset and also with various depths (or size) it. The

advantage of linear (vs non-linear) function in terms of

hardware is the memory size requirement. The more depth of

LUTs, more would be accuracy and also the memory size

requirement. While linear function just requires rather simple

computation which is easy inferred by target hardware

platform or FPGAs. For Linear activation function like “relu”

input follows output until positive or negative saturates occurs

(due to datawidth constraints), on the other hand for non-linear

activation functions we need to dump a sampled values and

read these value as LUT look-up table.

3.3 Designing of hidden layers of proposed DNN model

The no. of neurons in each layer specified are instantiated

and stitched together, forming path for data movement. Since

in our implementation, only a single input is provided to

neuron at a time. All output values generated by the neurons

(outvalid is true) between layers. It is stored in shift register

and shifted out at every clock cycle as shown in Figure 4. Since

inputs are provided at same time, the output and outvalid is

also produced at same time and a small FSM decides the state

of operation. At last the outputs from the final layer is given to

hardmax activation function which calculates the max. value

from output and generates ”intr” (interrupt) to the PS

indicating completion of task.

Figure 4. Description of layers’ design of ineuralnet

3.4 Architectural description of proposed neuralnet

The complete system architecture implementation is shown

in Figure 5 using Zynq platform. The neural network is

packaged as an IP core (called neural net) and it is integrated

with Zynq PS via AXI-Lite interface and connected to its

GP0(General purpose) port. The interface is used for writing

the soft-reset to the IP, reading/displaying out the weight and

bias value of particular neuron, the status of network operation

and the final ouput (i.e. after harmax layer) value from

network. The AXILite interface is generated with help of

1104

Vivado’s IP’s generator tool and the neural net design is not

restricted to Zynq but any platform with AXI-Lite support (i.e.

Microblaze, etc.) is required. The neural net IP is connected

with AXI DMA controller via AXI4 stream point-point

interface (axis port) and DMA is connected to Zynq HP0.

Figure 5. An FPGA representation of implementation

paradigm

(High Performance) port via AXI-Lite (i.e. axi) port, in

which turn is connected to the external memory on FPGA. This

allows the inputs to neural net IP to be directly streamed from

external memory via DMA. The AXI-stream provides 784

inputs to IP one after the another. s axis data is given as input

to first layer. The s axis valid as inputvalid and s axis ready are

driven to constant 1’b1. The Interrupt signals from both DMA

and neural net is concatenated and connected to Zynq PS

though IRQ (interupt request handler) port. After receiving the

interrupt, the PS can read out the output result from base

IP+0x4(offset) address. The control register is attached to

baseIP+0x8(offset) address, which is used for issuing soft-

reset and the status register attached to baseIP+0xC(offset)

address gives status of network (i.e. completion of operation)

and it is attached to” intr” signal of IP (i.e. clears the status

when valid output is generated).

4. CONVOLUTION ARCHITECTURE OF PROPOSED

INEURALNET

Images are stored as 2D or 3D array format depending upon

the channel required to represent them. Graycale have one

channel and pixel size is 1 byte in size while RGB image

contain 3 channels and pixel size is 24-bit (considering each

channel of 1byte). In point processing, the output of pixel

depends upon value of pixel at that corresponding position and

the transformation being performed on it. While in

Neighborhood processing, the output depends upon

corresponding pixel too. The Convolution performed over

image falls under this category in which the kernel (or filter) is

shifted over image (the shift amount is known as Stride) and

MAC operation implemented in fully streaming architecture,

rather it is stored over a memory location (generally BRAM).

Image pixels are streamed as complete row at a time. Since the

required pixels for operation/processing are not consecutive. It

is also shown in Figure 6. An output pixel requires different

position of input image. It needs small buffer (or called Line

Buffers) for operation. As, it is almost impractical to buffer the

entire image. If the image size is 512×512 bits and considering

greyscale it requires 512×512×1=262144 bytes of memory

location in FPGA, which is just for a single layer. It is not

possible in small platforms using BRAMS (BRs), LUTs and

FF, even if, it is required to store on external memory. The

most of useful space, resource and operation time of hardware

are lost in storage and accessing data rather than utilization it

for computation. The idea with line buffers is to store only

minimum required buffers depending upon Y-dimension of

kernel (such as 3×3 kernel need at least 3 line buffers). In

contrast of storing complete image, it now required

512×3=1536 bytes of memory to compute convolution

operation at a time. The Algorithm 4 shows implementation of

line buffer which simply storing a row of inputs and outputs a

block of array value depends upon Kernel’s X-dimension

without any latency. The Algorithm 5 generates control logic

for filling, selecting buffers and outputs to MAC module.

Algorithm 4 describes the designing of control logic for

convolution neural network. Control logic instantiate and

contain FSM for line buffers.

Figure 6. Architectural representation of convolution layers

Algorithm 4. Designing of line buffer

1. Given:

IIS_X, IIS_Y: input image size x and y dimension KS_X,

KS_Y: kernel size x and y dimension

nDS: depth size of particular layer

S: no. of stride

nLB: no. of line buffer

Single Line Buffer:

2 if rst(readvalid & (rdPntr >= IIS_X - (KS_X-1) - S))

(inputvalid & (wrPntr == IIS_X - 1)) then ▷ either

reset or last read,write pointer

3 wrPntr, rdPntr = 0 ▷ reset all to 0

4 else if inputvalid then

5 wrPntr += 1 ▷ increase write pointer

6 else if rdPntr > IIS_X - (KS_X - 1) - S then

7 rdPntr += S ▷ increase read pointer

8 end if

9 if inputvalid then

10 linebuffer[wrPntr] = input data ▷ storing data

11 end if

pre-fetching Output Data

12 for (i = 0; i (KS_X-1); i = i + 1) begin

13 assign o_data [i nDS+: nDS] = linebuffer[rdPntr +

((KS_X-1)-i)]

14 end

Algorithm 5. Designing of control logic for convolution

GIVEN:

nDS: depth size of particular layer S: no. of stride

tPC: total pixel counter iPC: input pixel counter

rC: output pixel read counter

cWLB: select which line buffer to write lBDV: selects line buffer

write enable cRLB: select which line buffer for read rLB: selects

line buffer read enable

Implementation:

1) Counting total pixel value for complete block

1105

if rst then

 tPC = 0

else if (inputvalid & output ready) & !rdlinebuffer then

 tPC += 1

else if !inputvalid & rdlinebuffer then

 tPC -= (S*S)

else if (inputvalid & output ready) & rdlinebuffer then

 tPC -= (S*S) - 1

end if

2) Counts the number of valid input data and reset it at the

end of line buffer

if rst || ((inputvalid & output ready) & iPC== IIS_X) then

 iPC = 0

else if (inputvalid & output ready) then

 iPC += 1

end if

3) Selects which line buffer to write on

if rst then

 cWLB = 0

else if ((iPC==IIS_X) & (inputvalid & output ready) then

 cWLB = (cWLB + 1) % nLB ▷ cyclic rotation

end if

lBDV = numLineBuffer 1′b0

lBDV [cWLB] = (inputvalid & output ready)

4) Counts the number of valid output data of a row in line

buffer (read count)

if rst (rLB & (rC == (IIS_X- KS_X) / S)) then

 rC = 0

else if (rLB) then

 rC += 1

end if

5) Selects which line buffer to read from (current read line

buffer)

if rst then 0

 cRLB = 0

else if ((rC == (IIS_X - KS_X) / S) & (rLB) then

 cRLB = (cRLB + 1) % nLB ▷ cyclic rotation

end if

6) Main FSM for control logic

if rst then

 rdState, rLB, Empty = 0

else

 case(rdState) 0:

 Empty = 0 ▷ Not ready to take inputs

 if (tPC ((IIS X*KS Y) - 1) & (inputvalid & out put

ready)) then

 rLB, rdState = 1

 end if

 case(rdState) 1 :

 if (rC == ((IIS X*KS X)/S)) then

 if (tPC ((IIS X*KS Y) - 1) & (inputvalid & out put

ready)) then

 rLB, rdState = 1

 else

 rLB, rdState = 0

 end if

 end if

 Empty = 1 ▷ buffers are empty, ready to take

inputs

 endcase

end if

5. HARDWARE-SOFTWARE CODESIGN APPROACH

The proposed hardware-software co-design approach

leverages the strengths of both hardware (FPGA) and software

components to optimize the performance of the DNN model

while ensuring flexibility and efficient resource utilization. In

this section, we provide a detailed breakdown of the division

of tasks between the hardware and software components,

illustrating how each part contributes to the overall system.

5.1 Hardware responsibilities (FPGA implementation)

The primary responsibility of the hardware component in

our design lies in handling the computationally intensive tasks

of the DNN, such as matrix multiplications, activation

functions, and weight calculations. FPGAs, with their highly

parallel architecture, are well-suited for such tasks, enabling

real-time performance and low power consumption.

Key responsibilities of the FPGA in our design include:

Neuron and layer computations: The FPGA is responsible

for executing the core computations within each neuron,

including weighted sums and activation functions. As

described in the architectural design of the neuron, these

operations are performed using fixed-point arithmetic to

ensure speed and efficiency while minimizing resource usage.

Weight storage and management: The FPGA stores pre-

trained weights and biases in its memory blocks (e.g., BRAMs)

and performs all necessary weight-fetching and bias addition

during inference. This offloads these repetitive tasks from the

software side, ensuring that the data is processed in parallel

with minimal latency.

Parallel data processing: With the FPGA’s ability to

handle multiple inputs concurrently, the design implements

parallelism across multiple layers of the network. Each neuron

within a layer operates simultaneously, leading to significant

speed improvements, especially in large-scale networks. This

parallel processing is handled entirely in hardware.

Activation functions: The implementation of activation

functions, such as relu and sigmoid, is performed using look-

up tables (LUTs) on the FPGA. These functions are calculated

in hardware, reducing the computational load on the software

and ensuring that nonlinear transformations are applied

efficiently.

Control of data flow: The FPGA manages the flow of data

between layers, ensuring that each neuron receives inputs at

the appropriate time and that outputs are transmitted between

layers with minimal delays. This is critical for ensuring high

throughput in real-time applications.

5.2 Software responsibilities (processor/microcontroller)

The software component, running on a general-purpose

processor (e.g., ARM core in the Zynq SoC or an external

microcontroller), is primarily responsible for high-level

control, initialization, and peripheral management. Unlike

hardware, software is more flexible and easier to modify,

making it well-suited for tasks that require configuration or

interaction with external systems.

Key responsibilities of the software in our co-design

approach include:

Model initialization and configuration: Before inference

begins, the software initializes the FPGA by loading pre-

trained model parameters (weights, biases) into the memory. It

also configures the FPGA by setting parameters such as input

size, precision level, and control registers via the AXI-Lite

1106

interface.

Data preprocessing: In some applications, raw data (e.g.,

images or sensor data) may require preprocessing, such as

normalization or transformation, before being fed into the

neural network. These preprocessing tasks are performed in

software to reduce the complexity of the hardware design and

to allow for easy modification depending on the application.

Control and status monitoring: The software manages

high-level control of the system, issuing commands such as

reset, start, and stop signals to the FPGA. It also monitors the

status of the FPGA during inference, reading status registers to

determine when computations are complete or if errors occur.

Data input and output management: The software is

responsible for managing data inputs and outputs to and from

the FPGA. Inputs (such as sensor data) are fed into the FPGA

via the AXI-Stream interface, and the processed outputs (such

as classification results) are retrieved from the FPGA and

displayed or sent to other systems for further action.

Peripheral interaction: For systems that require

interaction with external devices (e.g., sensors, cameras, or

user interfaces), the software handles communication with

these peripherals. This allows the FPGA to focus exclusively

on the DNN computations, ensuring optimal performance.

5.3 Benefits of the co-design approach

The hardware-software co-design allows for an efficient

distribution of tasks that maximizes the strengths of both

FPGA and software systems. The following benefits arise from

this approach:

Parallel processing in hardware: The FPGA accelerates

the DNN’s core computations, leveraging its parallel

architecture to perform operations like matrix multiplications,

weight updates, and activation functions simultaneously. This

dramatically improves speed compared to a software-only

solution.

Flexibility in software: The software component provides

flexibility, allowing for easy reconfiguration of the model

parameters, input preprocessing, and control logic. This

flexibility is especially useful in applications where the system

needs to adapt to changing requirements or be easily updated.

Energy efficiency: Offloading the computationally

expensive tasks to the FPGA significantly reduces the energy

consumption of the system, as FPGAs are more power-

efficient than general-purpose processors for these types of

operations.

Modularity and scalability: The system can be easily

scaled by modifying either the hardware (e.g., increasing the

number of neurons in hardware) or the software (e.g., changing

the input data format or preprocessing algorithms), making it

adaptable for a wide range of applications.

Example of operations:

To illustrate the co-design approach in practice, consider an

example where the DNN is used for real-time image

classification:

Software initialization: The software initializes the system

by loading the DNN model parameters (weights, biases) into

the FPGA and setting up the input data format (e.g., resizing

images).

Data input: The software reads an image from a camera

sensor, preprocesses it (e.g., normalizes pixel values), and

streams the preprocessed data into the FPGA via the AXI-

Stream interface.

Hardware processing: The FPGA processes the image

through the DNN layers, performing matrix multiplications

and activation functions in parallel for each neuron in the

network. Intermediate results are stored and passed to

subsequent layers without software intervention.

Software monitoring: While the hardware processes the

data, the software monitors the status of the FPGA, checking

status registers to determine when the computation is

complete.

Output handling: Once the DNN inference is complete, the

FPGA sends the output (e.g., classification result) back to the

software via the AXI-Lite interface. The software then handles

post-processing or communicates the result to other systems

for further action.

6. SIMULATION AND RESULTS OF THE PRESENT

WORK

The presented neuron module is written in Verilog HDL and

Python is used to parameterize the number of neuron in each

layers and” neuralnet” IP to support any general type of fully

connected neural network architecture. For evaluation and

validation of neural network, the popular MNIST handwritten-

digit dataset is used which contains over 30,000 for training

and 10,000 images for testing. The weights and biases for

network are generated by using Tensor Flow and python

scripts. These values are used as pre-trained hardware values

and loaded inside the memory. For sake of testing the design,

all implementation follows a 4 layered fixed architecture, with

784 inputs in input layer, 1 hidden layer with 30 neurons, 1

hidden layer with 20 neurons and an output layer with 10

neurons. The output or final layer is attached to hard-max

function which is analogues to software implementation of

max-finder (or softmax) but implemented in hardware, which

detect max value out of 10 neurons.

For training of MNIST dataset, the Tensor-Flow library is

used with above archi- tecture but with different activation

function. The software implementation after 20 epoch gives

around 95.969% accuracy for the testing data set. For

simulation and implementation of all designs, the Xilinx

Vivado 2018.3 version is used and for hardware validation,

EDGE-Zynq FPGAs with xc7z020clg484-1 SoC part. 512MB.

external DDR3 memory is used to prototype the design. The

testing is done in the default setting of Vivado without any

specific optimization over fabric part of FPGAs (i.e. partial

reconfiguration, timing, power, etc.). The simulation results of

images and the graphical representation of parametric results

through the implemented model are presented in Figure 7.

Tables 1 and 2 compare the resource utilization of DNN for

different input data widths in terms of LUTs, flip-flops,

BRAMs (BRs) and DSP slices using different activation

functions. For non-linear activation functions having larger

data size, the lookup table is used for mapping values to

corresponding input values to BRAMs (BRs) which

exponentially increases its utilization. Table 2 represents the

similarities with few parameters change in proposed work

compared to prior related work.

The Table 3 contains the comparision of results with

prevoius implemneted models as discribed in references [11,

13].

In summary, the empirical data and comparative analysis

presented in this section demonstrate that the proposed DNN

model on FPGA offers several advantages over existing

implementations.

Higher accuracy: Achieves near state-of-the-art accuracy

for real-time applications with minimal loss in precision.

1107

Lower power consumption: Significantly reduces power

usage, making it ideal for power-sensitive environments like

IoT and portable devices.

Faster processing: Outperforms existing implementations

in terms of clock speed, ensuring real-time operation for

critical applications.

Balanced resource utilization: While the model consumes

more resources in certain areas, it achieves superior

performance, offering a good balance between computational

demands and FPGA resources.

Figure 7. Results in terms of accuracy, clock performance and power analysis for different neural network implementation

Table 1. Analysis of resource utilization for various

activation functions-I

Act Tanh Soft Sign All

Depth LUTs FFs BRs LUTs FFs BRs DSPs

4 4038 2309 15 4325 2330 15 0

8 7279 3873 30 7906 3904 30 0

12 4054 3394 30 4070 3394 30 120

16 4756 4096 30 4767 4075 30 120

20 12582 8300 60 12635 8310 60 60

24 9454 6490 60 94643 6480 60 120

28 17263 9108 61 17279 9034 61 220

32 19705 9863 70 19583 9863 70 220

Table 2. Analysis of resource utilization for various

activation function-II

Act Sigmoid Relu All

Depth LUTs FFs BRs LUTs FFs BRs DSPs

4 3517 2288 15 3889 2521 0 0

8 7895 3884 30 8597 4373 15 0

12 4054 3405 30 5144 4053 15 120

16 4756 4107 30 6294 5013 15 120

20 12630 8299 60 13705 9513 30 60

24 9464 6480 60 10917 7915 30 120

28 17242 9012 61 19844 10885 30 220

32 19790 9916 70 22679 11864 40 220

Table 3. Comparison of neuralnet model with previous work

Metric

Proposed

Model (Zynq-

7000 SoC)

Existing

Model 1

(Virtex-7)

Existing Model

2 (Ultra96-V2)

Accuracy 98% 91% 95%

Power Consumption 0.57 W 3.92 W 1.9 W

Max Frequency 195.407 MHz 100 MHz 150 MHz

LUTs Utilization 17,242 19,844 12,630

BRAM Utilization 60 60 70

7. APPLICABILITY OF THE MODEL FOR

DIFFERENT APPLICATION SCENARIOS

The Implementation of a NerualNet on FPGA, as presented

in this work, demonstrates configurablitiy and flexibilty to

tweek the KPI in terms of accuracy, speed, and power

efficiency. For different real-world applications, we can

control parameters like, layer-depth, data type precision,

activation function, etc. and have diferrent requirements based

on their specific operational needs. Below are the few

application scenarios, discussing how the model’s parameters

can be adjusted to optimize performance for each case.

Consumer electronics (IoT devices, wearables): In

consumer electronics, particularly in wearable devices and IoT

systems, there is a high demand for real-time processing, low

power consumption, and moderate accuracy. For instance,

1108

fitness trackers or smart home devices require models that can

perform continuous data processing but with a focus on

extending battery life. By configuring the model with reduced

complexity (e.g., fewer layers or lower precision), it can

further optimize power usage for such low-power

environments, making it an excellent choice for portable

consumer electronics.

Automotive industry (autonomous vehicles, driver

assistance): Autonomous driving systems and advanced

driver-assistance systems (ADAS) require real-time decision-

making capabilities with high accuracy and reliability, as any

delays could result in safety risks.

Smart cities (traffic management, public safety): In

smart city applications, such as traffic management and public

safety monitoring, systems must process data from a wide

array of sensors in real-time while being energy-efficient,

especially when deployed in large numbers.

8. CONCLUSION AND FUTURE DIRECTION

The proposed work discussed the implementation of”

neuralnet”, a DNN generator IP core targeting low-cost

configurable FPGA based devices. Implementation results of”

neuralnet” shows better performance, achieving accuracy

close to software implementations with better throughput by

an order of magnitude. Simulation is done using Xilinx Vivado

2018.3 and EDGE Zynq FPGA is used for prototyping the

design. The proposed implemented DNN model with physical

framework will be utilized as sophisticated computing model

for real-time applications. The proposed work environment is

compared in context of similarities with parametric changes,

which represents an optimized solution as computing model in

consumer system era. The proposed implementation has been

analyzed and compared with existing FPGA model in terms of

accuracy and other parameters. The standard data has been

taken for prior validation of the DNN model implemented on

FPGA. The work will be enhanced to implement for portable

systems. Such kind of implemented system can be used in

wearable devices for distinct applications. The optimization in

terms of design, precision and portability of model is further

required for low cost, high speed, easy to handle and accurate

system formation. The modifications in terms of necessary

parameters are future challenges of impact full design for

future perspectives. More complicated and precise models are

required to propose to enhance precision level of measuring

systems. The proposed DNN model will be further tested by

real time dataset. The proper sensing paradigm will be

calibrated with required constraints and benchmarks for the

data collection. The collected data will be tested further and

accuracy will be analyzed with hardware performance. The

particular objectives will be covered in future work.

REFERENCES

[1] Jain, P., Joshi, A.M., Mohanty, S.P. (2019). iGLU: An

intelligent device for accurate noninvasive blood

glucose-level monitoring in smart healthcare. IEEE

Consumer Electronics Magazine, 9(1): 35-42.

https://doi.org/10.1109/MCE.2019.2940855

[2] Joshi, A.M., Jain, P., Mohanty, S.P., Agrawal, N. (2020).

iGLU 2.0: A new wearable for accurate non-invasive

continuous serum glucose measurement in IoMT

framework. IEEE Transactions on Consumer

Electronics, 66(4): 327-335.

https://doi.org/10.1109/TCE.2020.3011966

[3] Sundaravadivel, P., Kougianos, E., Mohanty, S.P.,

Ganapathiraju, M.K. (2017). Everything you wanted to

know about smart health care: Evaluating the different

technologies and components of the internet of things for

better health. IEEE Consumer Electronics Magazine,

7(1): 18-28. https://doi.org/10.1109/MCE.2017.2755378

[4] Li, H., Fan, X., Jiao, L., Cao, W., Zhou, X., Wang, L.

(2016). A high performance FPGA-based accelerator for

large-scale convolutional neural networks. In 2016 26th

International Conference on Field Programmable Logic

and Applications (FPL), Lausanne, pp. 1-9.

https://doi.org/10.1109/FPL.2016.7577308

[5] Rachakonda, L., Bapatla, A.K., Mohanty, S.P.,

Kougianos, E. (2020). SaYoPillow: Blockchain-

integrated privacy-assured IoMT framework for stress

management considering sleeping habits. IEEE

Transactions on Consumer Electronics, 67(1): 20-29.

https://doi.org/10.1109/TCE.2020.3043683

[6] Guo, K., Sui, L., Qiu, J., Yu, J., et al. (2017). Angel-eye:

A complete design flow for mapping CNN onto

embedded FPGA. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 37(1):

35-47. https://doi.org/10.1109/TCAD.2017.2705069

[7] Mohammadi, M., Krishna, A., Nalesh, S., Nandy, S.K.

(2017). A hardware architecture for radial basis function

neural network classifier. IEEE Transactions on Parallel

and Distributed Systems, 29(3): 481-495.

https://doi.org/10.1109/TPDS.2017.2768366

[8] Wang, J., Lin, J., Wang, Z. (2017). Efficient hardware

architectures for deep convolutional neural network.

IEEE Transactions on Circuits and Systems I: Regular

Papers, 65(6): 1941-1953.

https://doi.org/10.1109/TCSI.2017.2767204

[9] Shawahna, A., Sait, S.M., El-Maleh, A. (2018). FPGA-

based accelerators of deep learning networks for learning

and classification: A review. IEEE Access, 7: 7823-7859.

https://doi.org/10.1109/ACCESS.2018.2890150

[10] Lian, X., Liu, Z., Song, Z., Dai, J., Zhou, W., Ji, X.

(2019). High-performance FPGA-based CNN

accelerator with block-floating-point arithmetic. IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 27(8): 1874-1885.

https://doi.org/10.1109/TVLSI.2019.2913958

[11] Nguyen, D.T., Nguyen, T.N., Kim, H., Lee, H.J. (2019).

A high-throughput and power-efficient FPGA

implementation of YOLO CNN for object detection.

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 27(8): 1861-1873.

https://doi.org/10.1109/TVLSI.2019.2905242

[12] Gilan, A.A., Emad, M., Alizadeh, B. (2019). FPGA-

based implementation of a real-time object recognition

system using convolutional neural network. IEEE

Transactions on Circuits and Systems II: Express Briefs,

67(4): 755-759.

https://doi.org/10.1109/TCSII.2019.2922372

[13] Abd El-Maksoud, A.J., Ebbed, M., Khalil, A.H.,

Mostafa, H. (2021). Power efficient design of high-

performance convolutional neural networks hardware

accelerator on FPGA: A case study with GoogLeNet.

IEEE Access, 9: 151897-151911.

https://doi.org/10.1109/ACCESS.2021.3126838

1109

[14] Zhang, Z., Mahmud, M.P., Kouzani, A.Z. (2022). Fitnn:

A low-resource fpga-based cnn accelerator for drones.

IEEE Internet of Things Journal, 9(21): 21357-21369.

https://doi.org/10.1109/JIOT.2022.3179016

[15] AMD. (2021). Block-by-Block Configurable Fast

Fourier Transform Implementation on AI Engine

(XAPP1356). https://docs.amd.com/r/en-US/xapp1356-

fft-ai-engine.

[16] OpenVINO. (2024). Accelerate Generative AI.

https://docs.openvino.ai/2025/_static/download/GenAI_

Quick_Start_Guide.pdf.

[17] Jaiswal, M.K., So, H.K.H. (2019). PACoGen: A

hardware posit arithmetic core generator. IEEE Access,

7: 74586-74601.

https://doi.org/10.1109/ACCESS.2019.2920936

[18] Hettiarachchi, D.L.N., Davuluru, V.S.P., Balster, E.J.

(2020). Integer vs.floating-point processing on modern

FPGA technology. In 2020 10th Annual Computing and

Communication Workshop and Conference (CCWC),

Las Vegas, NV, USA, pp. 0606-0612.

https://doi.org/10.1109/CCWC47524.2020.9031118

1110

