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Chronic heart failure (CHF) detection remains a critical challenge in healthcare due to its 

complex and multifactorial nature. Heart sound analysis serves an important part in 

identifying cardiovascular disease; however, the availability of balanced datasets for 

training machine learning models remains a challenge due to inherent class imbalances. To 

address this, an inception-based Generative Adversarial Networks (GAN) method is 

proposed to acquire the distribution of heart sound classes and generate synthetic samples 

for underrepresented classes. The model is applied to the unbalanced PhysioNet dataset of 

heart sound signals, and features extracted from real and synthetic data are combined into 

feature vectors, enabling feature fusion, which are passed to various classification models. 

This study attempts to fine-tune pre-trained convolutional neural network models, 

specifically VGG16 and MobileNet for classification of Heart sound signals. The results of 

proposed models are compared with and without GAN model on heart sound signals and 

gets significant improvement with KNN Hyper parameter tuning, Proposed Autoencoder + 

CNN model and Fine-tune MobileNet and VGG16 algorithm. KNN hyperparameter tuning 

refines the model’s decision boundaries for better classification accuracy, while the 

Autoencoder + CNN architecture leverages deep feature learning to extract high-level 

representations, enhancing diagnostic precision. The model outperforms machine learning 

and deep learning models, improving overall recall and F1-score by approximately 8%. 
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1. INTRODUCTION

The heart is a vital organ, and cardiovascular disease is a 

global health concern. The World Health Organization reports 

that heart disorders are the primary reason of death. The globe 

has approximately 17.3 million fatalities every year [1]. The 

shortage of medical experts in developing countries 

exacerbates the situation. Heart computer signals, such as 

electrocardiograms and PCGs, indicate circulatory system 

malfunction. Phonocardiograms (PCGs) can show heart valve 

disease or deformity [2].  

A clinician during cardiac auscultation uses a stethoscope to 

listen for certain sounds to determine the state of the heart. 

Blood pressure, opening, and closure of the heart valves and 

contraction of cardiac muscle create a vibration. The vibration 

travels through the tissues to reach the thorax and is used to 

detect the heart sound. Murmurs indicate that there is a 

problem with the heart. These murmurs have been classified 

as abnormal heart sounds. Murmurs are created as blood flows 

through the heart system in a turbulent manner. Pitch and 

timing of the noises are important parameters to detect a 

problem in the heart. Health practitioners classify heart sounds 

based on a variety of characteristics, the most prevalent of 

which are timing, cadence, length, pitch, and form [3]. Figure 

1 shows normal and abnormal heart sound signals. 

With improved cardiovascular technology, the workload of 

medical professionals has increased consequently, accurate 

detection of heart diseases becomes challenging. The 

approaches that have already been applied in the automatic 

diagnosis of cardiac problems with minimal clinician 

intervention include artificial intelligence and deep learning. 

Such ML methods [4], devoting manual feature extraction and 

selection, have weaknesses in picking up the right features 

from patient data. However, DL-based models are more 

accurate and effective in predicting heart diseases but require 

computationally intensive training with a large dataset [5, 6]. 

Classifiers overfit when trained on low-sample datasets, so 

they fail to attain optimal performance on real-world data [7]. 

Abnormal heart sounds are less frequent in real-world datasets 

because there is a lower incidence of cardiac illnesses within 

the general population. GANs can, therefore, be used to 

address class imbalances. In this regard, the present study is 

aimed at developing a GAN-based model for the generation of 

balanced heart sound data in addressing the case of class 

imbalance. The proposed model creates synthetic samples 

through a process similar to actual recordings but guarantees 

that the normal and abnormal classes will be balanced using 

the adversarial training framework in GANs.  

Transfer learning based pre-trained models such as VGG16 

and MobileNet and fine-tuning [8] these models on the 
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balanced dataset allows their learned representations to adapt 

to the intricacies of heart sound classification. A combination 

of GAN-generated data, application of pre-trained models, and 

fine-tuning enables better generalization capacity for heart 

sound classification models. This will enhance the model on 

unseen samples by enabling it to learn discriminative features 

from a wider representation of the data. 

 

  
 

Figure 1. Normal and abnormal signal 

 

The structure of this paper is as follows: Existing techniques 

and data sources are listed in Section 2. Section 3 is a review 

of the literature on various deep learning and transfer learning 

techniques for classifying heart sounds. Section 4 presents the 

technique as the proposed methodology. It describes Inception 

based GAN architecture and proposed deep learning and 

transfer learning models. In Section 5, the setting of the 

experiment, performance parameters, and findings are 

described together with the experiments. Finally, Section 6 

presents the planned work's conclusion.  

 

 

2. RELATED WORK 

 

Existing methods are used to compare the results with 

proposed methodology. These existing methods are described 

in this section. 

 

2.1 K nearest neighbors 

 

KNN is a very simple instance-based learning algorithm 

with wide application in the area of classification tasks. The 

algorithm classifies any data point based on most of its 'k' 

nearest neighbors from a training dataset [9]. KNN creates 

predictions using the entire training set rather than explicitly 

creating a model, in contrast to many other machine learning 

algorithms.  

KNN works with following steps: 

Distance Calculation: To classify a particular data point, the 

KNN algorithm determines how far apart it is from each other 

point in the training set. One standard distance metric that is in 

everyday use is Euclidean, and for two points, 𝑋 = (𝑥 1, 

𝑥2,…..,𝑥n) and 𝑌 = (𝑦1, y2,…..,𝑦n) in n-dimensional space, 

it comes out to be: 

 

𝑑(𝑥, 𝑦) = ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1
  (1) 

 

Finding Nearest Neighbors: After computing the distances, 

KNN finds the 'k' points in the training set that are nearest to 

that data point. Here, 'k' is a user-defined constant and must be 

specified depending on the problem at hand. 

Majority Voting: The data point is assigned by the 

algorithm to the class that its 'k' nearest neighbors share the 

most. If k=1, it simply gets the class of its closest neighbor. 

For larger 'k,' pick the class with the highest frequency among 

neighbors. 

 

2.2 1D convolutional neural network  

 

1DCNNs are versions of CNNs constructed to work with 

one-dimensional sequential input data, time series, audio 

signals, or any data for which the sequence of elements matters. 

Unlike traditional CNNs, which are applied to 2D data, 1D 

CNNs apply convolutional filters along only one dimension to 

extract local patterns across a sequence [10]. The 1D-CNN 

design is such that a few layers are convolutional for feature 

learning from input sequences; some have pooling, with fully 

connected layers after that; these could model temporal 

dependencies and patterns efficiently. 

 

2.3 2D convolutional neural network  

 

2-D CNN was created with the purpose of processing two-

dimensional input, such as pictures. A 2-D CNN convolves 

these portions of the input by sliding filters across both height 

and width to return feature maps that emphasize relevant 

spatial features, such as Saad cropping, shapes, edges, and 

textures. In order to increase the network's computational 

efficiency while preserving as much information as feasible, 

pooling layers shrink these feature maps in the following stage. 

Fully connected layers at the back classify images, detect 

objects, and segment them. 2D CNNs have been a backbone 

for many state-of-the-art computer vision systems on account 

of their skill to pick up hierarchical representation from visual 

data [11]. 

 

2.4 Long short-term memory 

 

LSTM is a specially designed RNN architecture that enables 

information to be forecast or learned over very long sequences 

by solving traditional RNN issues, essentially the vanishing 

gradient problem. This is through the memory cells within 

LSTMs and gating mechanisms: the input gate, the output gate, 

and the forget gate. All these control inflow, outflow, and 

internal flow that passes in every cell. In this line, LSTMs may 

maintain and update their cell state through which they might 

capture long-term dependencies in sequential information [12]. 

Therefore, areas of application for LSTMs include time series 

prediction, natural language processing, speech recognition, 
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and many more such related processes that need understanding 

of the context over a long sequence.  

 

2.5 Auto encoder 

 

A deep neural network called an autoencoder efficiently 

encodes and decodes data via unsupervised feature learning. 

First, the AE compresses the data into a lower dimension’s 

latent space and then restores the data by decompression. The 

first step would be to use this unsupervised deep learning 

approach to learn an auto encoder as a compressed 

representation of input data for the identification of heart 

disease. Next, use this representation to categories or identify 

abnormalities. At the output layer, neural networks known as 

auto-encoders attempt to reassemble their input [13]. 

 

2.6 Data sources 

 

In this work, the publicly available 2016 PhysioNet 

Challenge [14] heart sound dataset is considered. 3,240 heart 

sound recordings, ranging in length from 5 seconds to more 

than 2 minutes, are included in the collection. Both healthy and 

ill people were among the varied persons who made these 

recordings, and they did so in a variety of settings outside of 

clinical settings. Table 1 shows the dataset description of 

PhysioNet Challenge 2016 dataset. 

 

Table 1. Dataset description 

 

Heart Sound Dataset 
Abnormal 

Samples 

Normal 

Samples 

Training-a 292 117 

Training-b 104 386 

Training-c 24 7 

Training-d 28 27 

Training-e 183 1,958 

Training-f 34 80 

Total 665 2,575 

Total (Synthetic Data) Using 

GAN 
2525 2575 

 

 

3. LITERATURE REVIEW 

 

The literature innovatively provides recent and very major 

advances in the detection of heart disease using ML, DL and 

Transfer learning techniques for heart sound and signal 

analysis. 

Machine learning and deep learning algorithms for heart 

disease detection using noisy sound signals from cardiac 

audios and datasets from the PASCAL CHALLENGE employ 

spectrograms, MFCCs, synthetic noise, and feature ensembles 

to visualize signals and categorize heart states [15]. Both 

studies demonstrate accurate diagnosis of heart problems 

based on sound inputs. 

Transfer learning with pre-trained convolutional neural 

networks in resource-constrained settings for automatic PCG 

acoustic classification is investigated, and models trained on 

both audio and image modalities are fine-tuned using 

traditional time-frequency representations as input features 

[16]. The YAMNet-based TL method classifies four different 

types of heart sound data from public databases with 99.83% 

accuracy, 99.59% sensitivity, and 99.90% specificity. A 

strategy for synthesizing realistic PCG and ECG signals using 

LSGAN and Cycle GAN architectures is presented [17], and 

pre-trained CNN models are used to classify normal and 

pathological heartbeats from phonocardiogram data [18]. 

According to the experimental findings, audio-based models 

perform well; the VGGish model has the highest rate of true 

positives and average validation accuracy.  

Convolutional neural networks on spectrograms [19], mel-

spectrograms, and scalograms, achieving 91.25% accuracy on 

the PhysioNet Computing in Cardiology Challenge 2016 

dataset, compared to 81.48% in the previous study. Data 

augmentation strategies can enhance the generalization 

capabilities of deep learning models for sound categorization, 

improving medical diagnostics [20, 21]. This approach 

addresses issues with restricted and imbalanced datasets in 

cardiovascular health research, resulting in more accurate and 

reliable heart disease prediction models. 

A method for creating synthetic data with balanced 

attributes, marking a significant advancement in generative 

modelling [22]. Data augmentation tactics and model fusion 

procedures are used to improve the performance and resilience 

of arrhythmia detection models [23]. Additionally, a different 

transform called the chaogram is proposed to convert heart 

sound signals into coloured images [24]. Heart sounds are 

classified using deep convolutional neural networks while the 

data is converted by transfer learning algorithms. Their model 

had an accuracy as high as 88.06%. The continuous wavelet 

transform is used to create transfer learning models that can 

recognize six types of phonocardiogram recordings. 

Combining an open database with one class of heart sound 

data, including pulmonary hypertension, improves robustness 

in noisy conditions [25]. The system was trained with 

background deformation techniques and tested against ten 

transfer learning networks. 

The study [26] transformed cardiac sound waves into a 

pattern-based spectrogram using PhysioNet 2016 and 

PASCAL 2011 datasets. Transfer Learning models like 

ResNet, DenseNet, MobileNet, Xception, VGG16, and 

InceptionV3 were used to categorize cardiac sounds as normal 

or abnormal. DenseNet outperformed rival models. 

A method for the automatic analysis of heart sounds to 

detect symptoms of left ventricular diastolic dysfunction is 

developed, using a deep convolutional GAN model-based data 

augmentation technique to augment an LVDD-HS database 

for model training [27]. These techniques were compared with 

other methods for the detection of LVDD. Narváez Pedro et al. 

suggested a GAN-based approach for the generation of 

synthetic cardiac sounds, where they try to get accurate 

representations of typical heart sounds by coupling GAN with 

EWT capabilities in signal processing and extraction of 

features.  

Synthetic heart sounds are generated using mathematical 

models to create the S1 and S2 phases of the cardiac cycle; 

however, modelling of systolic and diastolic periods is poor 

and renders them unsuitable to train heart rate classification 

models [28, 29]. Even a simple time-frequency analysis shows 

relevant differences regarding real signals. 

Recent research has focused extensively on utilizing various 

techniques for heart disease detection based on heart sound 

signals. Researcher utilizes MFCCs, and synthetic noise 

alongside feature ensemblers to accurately categorize heart 

states using noisy sound signals and datasets like PASCAL 

and Physionet. Research explore transfer learning with pre-

trained CNNs for automatic phonocardiogram (PCG) 

classification, achieving high accuracies using time-frequency 

representations. Other advancements include the synthesis of 
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realistic PCG and ECG signals through GAN architectures as 

well as data augmentation strategies to enhance model 

generalization in cardiovascular health diagnostics.  

Together, these findings demonstrate important 

advancements in the use of synthetic data methods and deep 

learning models to increase the precision and resilience of 

heart disease diagnosis and prediction systems. Literature 

work focuses on data augmentation techniques used to 

generate synthetic heart sound data that mostly be used to 

generate normal heart sounds. 

The suggested study's primary features are: 

1) Development of Inception based GAN model for 

generating synthetic heart sound signals to address the 

problem of the disparity in class. 

2) To perform feature extraction using MFCC, STFT, 

Chroma and Contrast, followed by feature fusion to derive 

comprehensive heart sound features for further analysis. 

3) To classify artificial heart sound data using a hybrid 

approach that combines an autoencoder and a CNN with 

conventional ML algorithms. 

4) To utilize the fine tune pre-trained VGG16 and MobileNet 

models for classification of balanced heart sound dataset 

and compare the results using various performance 

parameters. 

 

 

4. PROPOSED METHODOLOGY  

 

The proposed architecture aims to expand a GAN-based 

model to address class imbalance in heart sound datasets and 

subsequently apply feature extraction, proposed Dl and 

transfer learning techniques for heart sound classification. 

This GAN framework is trained adversarial to generate 

balanced heart sound data, mitigating class imbalance issues. 

Following data generation, Feature extraction techniques such 

as MFCC, chroma, and spectral contrast are applied to capture 

discriminative characteristics from both real and synthetic 

heart sound data. The extracted features are then utilized as 

input to ML models such as KNN, KNN+ Feature Fusion, 

KNN+ feature Fusion+ hypermeters, DL classification models 

such as 1D CNN,2D CNN, LSTM, hybrid CNN-autoencoder 

and Transfer Learning Models such as VGG16, MobileNet for 

accurate classification of heart sounds across different cardiac 

conditions. By fine-tuning these pre-trained models on the 

balanced heart sounds dataset, the models can adapt their 

learned representations to better capture the unique 

characteristics of heart sounds, thereby enhancing 

classification performance. Figure 2 depicts the suggested 

architecture, and the processes are covered in the section 

following. 

 

4.1 Load dataset and preprocessing 

 

This step involves acquiring a dataset containing PhysioNet 

heart signal recordings. The dataset is labelled with different 

classes of heart signals, such as normal and abnormal then 

Label Encoding is performed. Label encoding is a ML 

approach that converts category input into numerical values. 

During this process, each unique category or label in the 

categorical variable is allocated a distinct integer value. In our 

work the labels are abnormal and normal heart sound signals 

which are converted into 0 and 1 using label encoding. 

Resampling a signal involves changing its sampling rate, 

which is done to prepare data for analysis at a different 

frequency.  

 

4.2 Proposed GAN model  

 

A Step GAN is employed for data balancing by generating 

synthetic heart sound signals to augment underrepresented 

classes. In order to improve the dataset's balance and support 

the development of reliable models for heart sound 

classification, the Generator generates new heart sound signals 

while the Discriminator separates actual from synthetic signals. 

The GAN Model's operation [30] is shown in Figure 3. 

 

 
 

Figure 2. Proposed system architecture 
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Figure 3. Working of GAN model 

 

Below are the steps to generate synthetic data using GAN 

model: 

i) Calculate Label Count (Data Imbalance): Dataset 

analysed to determine the number of .WAV files per class 

(label). Calculated the count of samples for each class to 

identify any data imbalance issues. 

ii) Get Label with Less Number of Class: Identify the class 

(label) with the least number of .WAV files. This is the class 

that needs generation. Figure 4 shows labels and its count. 

 

 
 

Figure 4. Label count 
 

iii) Apply Inception Model to Generate .WAV File. 

Using an Inception-based model for .WAV file generation 

entails creating a GAN architecture that uses an Inception-like 

structure as the generator. Design the generator network 

architecture, which will have an Inception-like topology. 

Inception models often use numerous parallel convolutional 

routes with varying filter sizes.  

Random noise and latent spatial representation are accepted 

by the generator. Create a discriminator network design that 

can differentiate between created and real data. WAV files.  

A CNN architecture created for audio classification serves 

as the discriminator. Train the GAN model with a real-world 

dataset.WAV files. During training, the generator attempts to 

provide realistic results.WAV files that can deceive the 

discriminator while it learns to tell the difference between real 

and created.WAV files.  

Generator: The generator is designed to generate data with 

a specific shape. It starts with a sequential model and adds 

layers sequentially. The first is a dense layer of 12*1000 units 

with a LeakyReLU activation function, no bias. Batch 

normalization is applied just after this layer. Further reshaping 

of the data in this example is into a 3D shape: (1000, 12). The 

next step will be to add three convolutional 1D transpose 

layers, gradually reducing the number of filters from 256 to 

128, then to 64, and finally to 32. Batch Normalisation and 

LeakyReLU activation come after each convolutional layer. 

The last convolutional layer uses tanh as the activation. 

Assertions are included to ensure that the output shapes are per 

dimension. The generator model is then returned. Figure 5 

depicts generator model architecture diagram. 

Discriminator: The discriminator network is crucial in 

adversarial learning, particularly in models like GANs. Its 

principal function is to identify between genuine and 

fabricated samples created by the generator network. The ` 

discriminator` function constructs the complete discriminator 

network. Building it starts with an input layer of a given, 

predetermined shape. In order to minimize the spatial 

dimensions of the resulting tensor, this entails applying 

numerous inception modules sequentially with optional 

residual connections based on the truthy or falsy value of the 

`use_residual` parameter. Following these inception modules, 

global average pooling is applied. Lastly, a dense layer with a 

sigmoid activation function is used for binary classification, 

which determines if a transaction is genuine or fraudulent. 

Majorly, the discriminator network's role is to efficiently learn 

distinguishing characteristics from the input data and provide 

relevant knowledge regarding the same to a generator network 

in adversarial training. Figure 6 depicts desciminator model 

architecture diagram.

 

 
 

Figure 5. Generator model architecture diagram 
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Figure 6. Discriminator model architecture diagram 

 

The model uses independent modules, inception modules 

and residual connections, to enhance its learning capacity 

without losing its stability during training. Filter sizes in 

inception module are described in Table 2 while Summary 

table with filter sizes and parallel path of generator and 

descriminator are shown in Table 3. 

 

Table 2. Filter sizes in inception module (with parallel path) 

 
Path Filter Size Kernel Size 

Conv1D Path 1 32 
kernel_size // 1 = 40 

(default) 

Conv1D Path 2 32 kernel_size // 2 = 20 

Conv1D Path 3 32 kernel_size // 4 = 10 

MaxPool + Conv1D 

Path 
32 

1 (Conv1D after 

MaxPool) 

 

Table 3. Summary table with filter sizes and parallel path 

 
Component Parallel Paths (Count) Filter Sizes 

Generator No 
Conv1DTranspose: 

[128, 64, 32, 12] 

Discriminator 
Yes (4 Parallel 

Branches) 

Conv1D (40, 20, 

10) + Conv1D (1) 

 

4.3 Feature extraction 

 

MFCC, Fast Fourier Transform, Wavelet, and Feature 

Fusion Technique are just a few of the feature extraction 

methods that have been used thus far on the heart signal data. 

By using the MFCC, chroma, and spectral contrast approaches 

to extract these qualities from audio, crucial information about 

the audio's spectral shape, pitch content, and timbral aspects 

can be obtained. These characteristics support the ability of 

deep learning and machine learning classifiers to identify 

patterns and provide predictions using the information 

gathered from the audio signals. MFCC, Chroma, STFT, and 

Spectral Contrast were selected due to their proven 

effectiveness in capturing the essential characteristics of audio 

signals relevant to PCG classification. MFCCs are well-suited 

for modeling the timbral texture of sound and are widely used 

in audio recognition tasks for their ability to mimic human 

auditory perception. Chroma features capture harmonic and 

tonal content, which helps in identifying pitch-related 

anomalies in heart sounds. Spectral Contrast emphasizes the 

difference between spectral peaks and valleys, aiding in the 

detection of subtle variations in signal energy. STFT provides 

a time-frequency representation that preserves both spectral 

and temporal information, essential for analyzing dynamic 

patterns in heart sounds. Compared to wavelet transforms, 

which are effective but more computationally intensive and 

complex to tune, the chosen features offer a balanced trade-off 

between interpretability, computational efficiency, and 

classification performance. MFCC of Normal and abnormal 

signal shown in Figures 7(a) and (b) and Scaled MFCC of 

Normal and Abnormal signal given in Figures 8(a) and (b). 

 

 
(a) 
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(b) 

 

Figure 7. (a) MFCC of normal signal (b) MFCC of abnormal 

signal 
 

 
(a) 

 
(b) 

 

Figure 8. (a) Scaled MFCC of normal signal (b) Scaled 

MFCC of abnormal signal 
 

4.4 Feature reduction 

 

T-SNE,also known as t-distributed stochastic neighbor 

embedding. It is primarily used for reducing the dimensions of 

the data so that it can be visualized. But unlike PCA, which is 

mainly used for feature reduction, it can also, to some extent, 

provide feature selection by mapping high-dimensional space 

data onto lower-dimensional space while preserving its 

integrity. Feature Distribution is depicted in Figure 9. 

 
 

Figure 9. Features distribution 

 

4.5 Algorithms 

 

K-nearest neighbors (KNN) used for heart sound 

classification by first extracting relevant features from heart 

sound recordings, such as frequency-domain characteristics or 

time-domain parameters. These features are utilised to 

represent each instance of a heart sound in a multidimensional 

feature space. Throughout the training phase, KNN retains 

these feature vectors alongside their respective class labels. 

Following steps performed for classification with KNN: KNN 

(MFCC Features), KNN (MFCC Features with TSNE Feature 

Reduction, KNN (MFCC with Spectral Amplitude / FFT 

Features), KNN (Wavelet Based Features), KNN (Feature 

Fusion Technique), KNN (Hyper Parameters Tuning).  

 

4.5.1 KNN with feature fusion+ hyper parameters tuning 

The fusion of features in K-nearest Neighbors involves the 

combination of several feature sets in the model for enhanced 

performance. It provides better representation as it would be 

more prosperous and more comprehensive with information 

about the data. This is done by concatenating in one set the 

abundances from different feature sets, scaling accordingly, 

and optionally applying dimensionality reduction methods. 

These feature sets are then tuned with hyperparameters 

associated with the optimization of some main parameters of 

the KNN algorithm, that is, the number of neighbors. KNN has 

a hyperparameter, k, which represents the number of 

neighbors to consider. Use techniques random search to search 

for the optimal value of k. Evaluate the performance of KNN 

with different values of k using cross-validation. Select the 

value of k that yields the best performance on validation set. 

Combining feature fusion and optimizing KNN 

hyperparameters is done random searches with cross-

validation because of its capability to leverage several data 

aspects while determining the best configuration for a KNN 

model. 

 

4.5.2 Proposed hybrid CNN + autoencoder 

It combines CNNs for feature extraction and autoencoders 

for unsupervised learning. Use a CNN to process raw audio 

data or spectrogram images and extract meaningful features. 

Connect the output of the CNN to an autoencoder architecture 

to learn a compressed representation of the features. 
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A hybrid model combining an autoencoder with a 1D 

convolutional network for a binary classification problem. 

First, an efficient format of the input data was learnt by 

successively applying an autoencoder in an unsupervised pre-

training way. The learnt features are then applied to the 

classification issue by reshaping this learnt representation and 

feeding it into a 1D convolutional network. 

In this model, there will be a Dropout layer wherein, during 

training, a portion of the input units will be zeroed at every 

update. Likely, the latter prevents overfitting so that the model 

does not become too biased toward particular features from the 

input. 

Output Layer: The predicted probabilities for the binary 

classification challenge are obtained using a fully associated 

Dense layer with softmax activation. CNN-autoencoder model 

architecture shown in Figure 10. 

 

 
 

Figure 10. CNN-autoencoder model architecture 

 

4.5.3 Transfer learning algorithms: 

Pre-trained models VGG16 and MobileNet are applied on 

both balanced and unbalanced heart sound datasets. 

VGG16:  

A deep convolutional neural network model called VGG16 

was created specifically for image classification. The network 

consists of 16 layers of artificial neurones, each of which 

improves prediction accuracy by sequentially interpreting 

image data. 

VGG 16 Network Architecture: The network consists of five 

convolutional blocks followed by a classification block. 

Architecture Diagram of VGG16 shown in Figure 11. 

Each convolutional block contains: 

Step 1: Uses Conv1D layers for 1-dimensional convolution 

suitable for audio data. 

Step 2: Applies ReLU activation for non-linearity. 

Step 3: Uses max pooling for downsampling. 

Step 4: Includes dropout for regularization (preventing 

overfitting). 

The classification block contains: 

Step 1: Flattens the convolutional output into a 1D vector. 

Step 2: Uses fully-connected layers (Dense) with ReLU 

activation for learning higher-level features. 

Step 3: Outputs through a final dense layer with: 

MobileNet: 

Google developed MobileNet, a convolutional neural network 

(CNN) architecture, especially for embedded and mobile 

vision applications. The goal is to develop efficient, 

lightweight models that can be utilised on low-resource 

devices. To reduce the amount of parameters and 

computational complexity without sacrificing performance, 

the architecture places a high priority on the use of depthwise 

separable convolutions. 

MobileNet Network Architecture: 

Step 1: Input Layer: input_layer: This defines the input layer 

that receives the pre-processed WAV file data. 

Step 2: Convolutional Blocks (1-5): 

Each block follows a similar pattern: 

DepthwiseConv1D: Applies a depthwise separable 

convolution to extract features efficiently. 

Conv1D: Applies a pointwise convolution to increase the 

number of filters. 

MaxPooling1D: Preserves significant properties while 

reducing the data's dimensionality. 

Dropout: Randomly drops a percentage of activations to 

prevent overfitting. 

Classification Block: 

Flatten: Transforms the convolutional blocks' multi-

dimensional output into a single dimension so that it may be 

fed into fully connected layers. 

Dense layers (dense1-dense3): These layers, which are fully 

integrated, discover intricate connections between the heart 

sound classes and the retrieved attributes.  

Output: The final output layer with the number of units 

depending on the output_number and activation function 

based on the problem_type. (Softmax for classification, linear 

for regression).Figure 12 depicts the mobilenet architecture 

diagram. 

 

 
 

Figure 11. VGG 16 architecture diagram 
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Figure 12. MobileNet architecture diagram 

 

 

5. EXPERIMENTS AND RESULTS 
 

5.1 Experimental setup 
 

To run the models, setup typically involves utilizing Google 

Colab's resource and Python as technology. A practical and 

robust cloud-based environment for carrying out machine 

learning and deep learning experiments is provided by Google 

Colab. With Python 3.10 as the programming language of 

choice. By selecting the appropriate runtime type, and access 

GPU acceleration, which significantly speeds up the training 

of DL and transfer learning models compared to running on 

CPUs alone. Additionally, Colab provides ample RAM, with 

around 12 GB available in the standard runtime environment 

and up to 25 GB in the high-RAM runtime environment and 

GPU 5GB. 

 

5.2 Performance parameters 

 

The most common measures to calculate the effectiveness 

of a classifier include accuracy, precision, recall, and F1-score. 

 

Precision =
TP

TP + FP
  (2) 

 

Accuracy =
TP + TN

TP + TN + FP + FN
  (3) 

 

𝑅ecall / Sensitivity =
TP

TP + FN
  (4) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)
  (5) 

 

Accuracy and Loss curve: While the loss curve displays the 

trend of the loss function—basically a measure of the 

discrepancy between predictions and actual labels—the 

accuracy curve illustrates the model's learning over time. 

 

5.3 Results 

 

Macro-average is used to aggregate metrics such as 

precision, recall, or the F1 score over many classes of a 

classification task. The macro average computes this metric 

independently for each class and thereafter takes the average. 

All classes are given equal weight in its computation, totally 

disregarding class imbalance, hence providing an equal 

contribution from each class to the total metric. Macro-

averaging is preferred for imbalanced datasets because it treats 

all classes equally, giving equal importance to minority and 

majority classes. In contrast, weighted-averaging gives more 

weight to frequent classes, which can hide poor performance 

on under-represented ones. 

In the proposed work, a GAN-based Inception model is used 

to generate balanced heart sound data to overcome the class 

imbalance issue in the PhysioNet dataset. Considering all the 

training folders for the PhysioNet dataset, 2575 samples 

represent normal heart sound signals, and 665 samples 

represent abnormal heart sound signals. To balance the 

representation of both classes, an Inception-based GAN was 

used to increase the samples of abnormal heart sounds. Table 

4 shows Hyperparameters used in Inception based GAN model. 

In a generator, gradients are crucial for learning. The standard 

ReLU activation can lead to the dying ReLU problem, where 

neurons output zero for all inputs and stop learning. 

LeakyReLU, on the other hand, allows a small, non-zero 

gradient when the unit is not active (typically 0.01 * x), 

helping the generator keep learning even when activations are 

negative. 

In parameters tuning the batch size (32) is selected to 
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balance training speed, memory efficiency, and gradient 

stability. 

The generator network generates 1,910 fresh samples of 

aberrant heart sounds once the discriminator and generator 

networks have been trained for 800 epochs. Then, the 

generated abnormal heart sound signals will be combined with 

original abnormal heart sound signals, which will provide a 

balanced representation of both normal and abnormal heart 

sounds. Out of all the recordings, 80% of the samples pass 

training, and 20% pass testing. Both balanced and unbalanced 

heart sounds are used for classification. Analysis was done on 

existing models for predicting heart failure based on heart 

sound data. 

 

Table 4. Hypermarameters of inception based GAN model 

 

Parameters 
Generator 

Parameter Values 

Discriminator 

Parameter Values 

Loss Function 
Binary-Cross 

Entropy 

Mean Absolute Error 

(MAE) 

Activation 

Function 
LeakyRelu, Tanh Relu, Sigmoid 

Batch size 32 32 

Kernel size 5 1,2,3 

Filter size 16,32,64 32,128 

Learning Rate 0.0004 0.001 

Number of 

Epoch 
800  

 

The generator and discriminator network are trained for 800 

epochs, after which the Generator Network produces 1,910 

new samples of abnormal heart sounds. Figure 13 shows 

Sample generated of synthetic heart sound signal using GAN 

Model. Then, the generated abnormal heart sound signals will 

be combined with original abnormal heart sound signals, 

which will provide a balanced representation of both normal 

and abnormal heart sounds. From total recordings 80% 

samples are passed for training and 20% passed for testing. 

Classification of heart sounds is done on both balanced and 

unbalance heart sounds. Existing models for Heart Failure 

Prediction using Heart Sound data were analysed. Various 

techniques such as feature extraction, feature selection, feature 

fusion, and hyperparameter tuning were applied to the KNN 

algorithm. 

It shows that KNN ((Feature Fusion+ Hyper Parameters 

Tuning) outperforms better than KNN(MFCC), KNN (MFCC 

Features with TSNE Feature Reduction), KNN (MFCC with 

Spectral Amplitude / FFT Features), KNN (Feature Fusion 

Technique). Deep learning algorithms including 1D-CNN, 

2D-CNN, LSTM and proposed hybrid CNN+Auto Encoder, 

and transfer learning algorithms such as MobileNet and 

VGG16 were also utilised.  

The results shows that the Proposed Hybrid CNN + Auto 

Encoder achieves an accuracy of 97%, whereas MobileNet 

achieves 93% accuracy and VGG16 achieves 91% accuracy.  

The proposed hybrid CNN + Autoencoder model 

demonstrates superior performance compared to existing 

models, specifically 1D-CNN, 2D-CNN, and LSTM. 

Performance is calculated on different algorithms using 

various performance measures such as accuracy, precision, 

recall, and F1-score. Table 5 shows the comparison with and 

without GAN Model. It shows that F1 score is comparatively 

good in GAN model that balances both precision and recall, 

making it useful in dealing with imbalanced datasets. 

Figure 14 shows the accuracy and macro F1-score graph of 

different algorithms without GAN Model. Figure 15 shows 

performance comparison with GAN model. It has been shown 

that in addition to accuracy, the macro F1 score also yields 

favourable outcomes for all machine learning, deep learning, 

and transfer learning algorithms. The F1 score is a measure 

that combines precision and memory by taking their harmonic 

mean. Maximising the F1 score means maximising both 

precision and recall at the same time. Figure 16. gives the F1 

score comparison of algorithms with and without GAN model. 

It is observed that F1 score is increased by minimum 5% to a 

maximum 15% using GAN model. F1-score with GAN model 

getting Improved performance with KNN Hyper parameter 

tuning, and Proposed Autoencoder + CNN, Fine-tune 

MobileNet and VGG16 algorithm. 

 

Table 5. Comparison of different classifiers performance measures with and without GAN model 

 
Algorithms Accuracy Precision Recall F1-Score 

  Without GAN Model (Macro Avg in %) 

KNN (MFCC Features) 84 78 68 71 

KNN (MFCC Features with TSNE Feature Reduction) 87 80 75 77 

KNN (MFCC with Spectral Amplitude / FFT Features) 81 71 69 70 

KNN (Proposed Feature Fusion Technique) 86 75 74 74 

KNN (Feature Fusion+ Hyper Parameters Tuning) 90 86 82 84 

1D CNN 85 81 70 73 

2D CNN 87 85 65 69 

LSTM 87 81 75 78 

Proposed Hybrid CNN + Auto Encoder 88 84 79 81 

MobileNet 89 86 81 83 

VGG16 88 81 80 81 

 With GAN Model (Macro Avg in %) 

KNN (MFCC Features) 89 91 89 89 

KNN (MFCC Features with TSNE Feature Reduction) 89 91 89 89 

KNN (MFCC with Spectral Amplitude / FFT Features) 64 79 66 60 

KNN (Proposed Feature Fusion Technique) 87 88 86 86 

KNN (Hyper Parameters Tuning) 90 90 89 90 

1D CNN 89 89 89 89 

2D CNN  87  85 84 81  

LSTM 87 87 87 87 

Proposed Hybrid CNN + Auto encoder 97 96 96 96 

MobileNet 93 93 93 93 

VGG16 91 91 90 90 
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Figure 13. Original heart sound signal and generated heart sound signal 

 

 
 

Figure 14. Performance comparison graph without GAN model 

 

 
 

Figure 15. Performance comparison graph with GAN model 
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Figure 16. F1 score comparison graph of algorithms with and without GAN model 

 

 
                                           (a)                                                                                                    (b) 

 

Figure 17. Confusion matrix a) MobileNet b) Hybrid CNN + Autoencoder 

 

 
 

Figure 18. Hybrid CNN + Autoencoder accuracy and loss curve 

 

The confusion matrix of the MobileNet and Proposed 

Hybrid CNN+Autoencoder model is depicted in Figure 17 and 

Accuracy and Loss Curve of the MobileNet and Proposed 

Hybrid CNN+Autoencoder is depicted in Figure 18. The 

classification results show better improvement using these 

algorithms. Total 1030 recordings are considered for testing 

purpose after data balancing. The MobileNet accurately 

recognized 458 out of 496 abnormal samples and 495 out of 
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534 normal samples. The Hybrid CNN+Autoencoder 

accurately recognized 470 out of 496 abnormal samples and 

524 out of 534 normal samples. The misclassification of 38 

abnormal samples by MobileNet is primarily due to 

imperfections and distribution gaps in the GAN-generated 

synthetic data. Despite appearing realistic, synthetic 

abnormalities might introduce subtle inconsistencies and 

feature overlaps, challenging MobileNet’s limited feature 

extraction capacity. Consequently, these factors significantly 

impact the model’s ability to accurately distinguish abnormal 

classes. Figure 19 shows the Mobilenet accuracy and loss 

curve. 

 

 
 

Figure 19. Mobilenet accuracy and loss curve 

 

Result Findings 

• It has been discovered that the F1 score can be raised 

by at least 5% and up to 15% by utilising the GAN 

model. The F1-score of the GAN model has been 

enhanced by performing hyperparameter tweaking with 

KNN and implementing the proposed Autoencoder + 

CNN. Additionally, the performance has been further 

improved by fine-tuning the MobileNet and VGG16 

algorithms. 

• The high F1-score demonstrates the model’s ability to 

balance precision and recall on imbalanced data. 

• Proposed Hybrid CNN + Auto Encoder gives an 

accuracy of 97%, and with Transfer Learning 

algorithms, the higher accuracy achieved is with 

MobileNet at 93% and VGG16 at 90%. By comparative 

analysis, the proposed Hybrid CNN + Auto Encoder 

and MobileNet gives the best accuracy. 

6. CONCLUSION 

 

This paper proposes an approach to tackle the problem of 

the imbalanced dataset in the classification of CHF using an 

inception-based GAN model. Since collecting many samples 

of a specific type of abnormality is strongly felt challenging, a 

GAN-based model was created that generates abnormal heart 

sounds. An Inception-based GAN model is used here because 

of the powerful feature extraction capabilities of the Inception 

architecture, leading to higher quality and more realistic 

synthetic heart sound signals compared to traditional GANs. 

Further, techniques such as feature extraction using MFCCs, 

chroma, and spectral contrast used on both unbalanced and 

balanced heart sound data to extract discriminative features.  

Moreover, the proposed Hybrid CNN + Autoencoder model 

showed the best performance in all the main evaluation metrics, 

as it could reach 98% accuracy and 97% F1 score with the rank 

of GAN-augmented dataset. Also, fine-tuned transfer learning 

models like MobileNet and VGG16 gave the extra kick in 

performance. This integrated methodology both increased 

accuracy and increased macro-averaged recall and F1-score up 

to 5% to 15% when detecting both normal and abnormal heart 

sounds. It is shown at an overall level, however, that 

performing synthetic data generation in conjunction with deep 

feature fusion and hybrid deep learning architectures 

represents a viable framework to further automated CHF 

detection. These findings pose support for the use of GANs 

and autoencoder driven approach to improve the existing 

Cardiovascular diagnostic using intelligent, data driven 

solutions. Attention Mechanisms can be incorporated into the 

Autoencoder Framework for the feature learning as a further 

work. Also, real time deployment on wearable device enables 

it to support continuous monitoring of heart sound which 

facilitates early detection of CHF. 
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