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This work focuses on the deep learning model intended to categorise wheat leaf photos 

depending on biotic and abiotic stress situations, namely nitrogen shortage and leaf rust, 

together with healthy leaf images. The main goal was to develop a strong and accurate 

model to improve precision farming methods by means of consistent and timely evaluations 

of crop condition. High-quality photographs were obtained with a Sony IMX363 RGB 

camera from a dataset gathered during the rabi season of 2019-20 from the Indian 

Agricultural Research Institute (IARI). The dataset included healthy leaves, leaves 

impacted by leaf rust, and nitrogen-deficient leaves, therefore guaranteeing a complete 

depiction of stress markers. To improve visibility of stress features, many preprocessing 

methods were used including Otsu-based background segmentation, contrast stretching, and 

Contrast Limited Adaptive Histogram Equalisation (CLAHE). To increase model 

resilience, rotation and scaling were used among data augmentation techniques. With 

hyperparameters painstakingly calibrated to maximise classification accuracy, the model 

architecture combined advanced ideas such residual and squeeze-excite blocks. Training, 

validation, and test sets-70:15:15-made up a balanced dataset split for the model. Accuracy 

measures were used in performance assessment to show a noteworthy capacity to separate 

stressed from healthy leaves. High classification accuracy of CropStressNet was shown, 

therefore enabling accurate identification of the stress conditions in wheat crops. This 

method helps to create more environmentally friendly farming methods in addition to 

provide understanding of crop health monitoring. The results highlight how deeply learning 

methods might be used to solve problems in precision farming. 
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1. INTRODUCTION

For majority of the world's population, wheat is a basic food 

source and among the most grown crops in the planet. Still, 

wheat output is beset with difficulties; illnesses seriously 

compromise food security and yield. Of these diseases, stripe 

rust-caused by the fungus Puccinia striiformis f. sp. tritici, is 

most destructive [1]. If not early on recognised and controlled, 

stripe rust disease can seriously reduce wheat harvests. 

Preventing the quick spread of the illness depends on early 

identification, which also enables quick interventions 

including the use of resistant types or fungicides. Although 

efficient, traditional approaches of spotting stripe rust-field 

inspections and laboratory-based methods-often demand 

specialised knowledge, time, and effort [2], these approaches 

might not always enable real-time observation over large 

agricultural tracts. Early-stage detection is crucial for efficient 

disease control, so development of precise and automated 

detection systems employing cutting-edge technology has 

attracted increasing interest [3]. One such interesting method 

uses artificial intelligence (AI) and, more especially, neural 

networks to early on detect stripe rust in wheat harvests [4]. A 

subset of machine learning and artificial intelligence, neural 

networks have shown amazing performance in many picture 

recognition and classification challenges, so they are a good 

choice for the detection of plant diseases. These networks may 

learn patterns and features from big datasets, therefore 

enabling the identification of minor visual symptoms that 

might not be readily apparent to human observers. Using 

neural networks, scientists hope to build systems that can 

automatically examine wheat plant photos and identify early 

stripe rust infection signals. Early identification could help 

farmers and agricultural professionals to respond right away, 

therefore reducing crop damage and guaranteeing maximum 

harvests [5, 6]. Systems for disease detection in plants have 

been driven even more by recent developments in computer 

vision, a branch of artificial intelligence that lets robots read 

and understand visual data. These systems can record and 

examine the minute features of plant leaves using high-

resolution images, therefore spotting the early start of stripe 

rust depending on distinctive visual symptoms such yellowish 

streaks along the veins of the leaves [7-9]. 

Early identification of stripe rust disease using neural 

networks presents various benefits over more traditional 

techniques. First, by rapidly and effectively processing vast 

amounts of data, neural networks enable constant real-time 

surveillance of wheat fields. In big-scale agricultural 

operations where hand inspections are not feasible, this is 
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especially helpful. Second, these artificial intelligence-based 

systems can be combined with ground-based sensors, satellites, 

or drones to gather photos across large distances, therefore 

offering a whole picture of crop condition [10]. Moreover, 

neural networks can be trained to identify between several 

diseases that might have similar symptoms, therefore lowering 

the possibility of misdiagnosis [11-13]. Implementing focused 

treatments and avoiding pointless treatments that can damage 

the crop or the surroundings depend on this degree of accuracy. 

The possibility for scalability of neural networks is another 

important factor in their application for illness diagnosis. From 

mobile devices to cloud-based systems, once a neural network 

model has been trained on a strong dataset of infected and 

healthy plant photos it can be used on many platforms. Small-

scale and large-scale farming operations benefit much from 

this adaptability since it lets farmers and agronomists access 

the technology anywhere [14, 15]. Furthermore, major gains 

in the accuracy and dependability of these detection systems 

result from ongoing developments in neural network 

topologies like convolutional neural networks (CNNs). 

Popular choice for researchers working on agricultural uses, 

CNNs-which are especially well-suited for image-based tasks-

have showed considerable potential in spotting disease trends 

in plants [16-18]. 

Although neural networks show promise for early-stage 

stripe rust detection, some issues still need to be resolved if we 

are to guarantee general acceptance of this approach. The 

necessity for high-quality, annotated datasets of wheat plants 

afflicted with stripe rust at several phases of growth presents 

one of the main difficulties. Establishing such datasets calls 

for cooperation between AI researchers and agricultural 

professionals to properly classify photographs and guarantee 

that the model picks the right attributes linked with the disease 

[19, 20]. Furthermore, influencing the accuracy of image-

based detection systems are environmental elements including 

camera resolution, lighting conditions, and the existence of 

other plants or weeds in the field. Dealing with these 

difficulties calls for greater investigation and the creation of 

more complex algorithms able to change depending on the 

field conditions. a major progress in agricultural technology is 

made with the early-stage identification of stripe rust in wheat 

employing neural networks [21-23]. Using artificial 

intelligence and machine learning will help one create systems 

that can automatically identify diseases at an early stage, hence 

allowing quick and efficient treatments. Although there are 

obstacles to overcome, the possible advantages of applying 

neural networks for disease detection are significant; they 

provide a scalable, accurate, efficient answer to one of the 

most urgent problems in wheat output. The integration of 

artificial intelligence-based detection systems in agriculture 

could be very important in guaranteeing world food security 

and sustainability as research in this field develops changes 

[24-26]. 

 

 

2. LITERATURE REVIEW 

 

Affecting wheat crops, stem rust-caused by the Puccinia 

graminis f. sp. tritici fungus-is a common and destructive 

disease with yield losses ranging from 10% to 50% and, in 

extreme cases from up to 90%. Pathologists' conventional 

visual diagnosis is time-consuming, expensive, and frequently 

unavailable in remote locations. This work proposes an 

automated system based on CIMMYT recommendations for 

identifying and classifying wheat stem rust. The system 

obtained a 92.01% testing accuracy by segmentation using 

adaptive thresholding and feature extraction using a Gabor 

filter. Its exact grading and real-time monitoring help to 

control diseases and change treatment plans, hence lowering 

crop losses [27-29]. 

Globally food security depends on wheat, which also offers 

vital nutrients. This work intends to build an adaptive deep-

learning model for accurate classification and detection of 

wheat diseases so improving wheat crop development and 

disease control. Trained on 8,946 photos and validated on 

2,259 images, the model used digital photographs from sites 

such Kaggle and GitHub. In testing it attained 98.42% 

accuracy and in validation 97.47%. With great accuracy and 

efficiency compared to present approaches, the method 

combines pre-trained convolutional neural networks (CNNs) 

like DenseNet, ResNet, and EfficientNet with the one-fit cycle 

strategy [30, 31]. 

Food security depends on agriculture, particularly 

considering the 0.88% world population increase by 2022. 

With anticipated global crop losses of 14.1%, plant diseases 

endanger food output. Early diagnosis of many diseases and 

precise identification depends on accurate data, although 

sometimes inadequate and unprocessed data causes obstacles. 

Focussing on prevalent bacterial and fungal illnesses, this 

work develops thorough databases for rice, wheat, and maize, 

thereby addressing these difficulties. Eight tuned deep 

learning models were assessed using the datasets. In maize 

illness recognition, Xception and MobileNet shone; in wheat, 

MobileNetV2 and MobileNet; in rice, Xception and Inception 

V3. Furthermore, a fresh CNN model trained from scratch 

showed great accuracy over all datasets, attaining testing 

accuracies of 0.9704, 0.96706, and 0.9609 for maize, rice, and 

wheat, respectively [32, 33]. 

A serious disease causing up to 80% crop loss worldwide, 

Asian soybean rust (ASR) must be early and accurate detected 

if we are to minimise financial effect. This paper presents 

DC2Net, a new neural network using deformable and dilated 

convolutions to capture both spatial and spectral 

characteristics from hyperspectral pictures, hence improving 

detection accuracy. Whereas the dilated convolution module 

concentrates on spectral information, DC2Net's deformable 

convolution module captures spatial features unlike those of 

conventional models with fixed convolutional kernels. 

Combining Shapley value with channel attention strategies 

helps to further improve wavelength significance for decision-

making. With a detection accuracy of 96.73%, DC2Net 

exceeded current techniques and allowed early ASR 

identification even before visual symptoms start [34, 35]. 

Main wheat leaf diseases affecting yield and quality are 

stripe rust, leaf rust, and powdery mildew. Good control of 

diseases depends on timely identification. Incorporating the 

Convolutional Block Attention Module (CBAM) to increase 

feature extraction, this work proposes an upgraded YOLOv8 

model for identifying wheat leaf diseases on mobile devices. 

Having a model size of 5.92MB, the enhanced YOLOv8 

attained 95% accuracy, 98.3% recall, and 98.8% mean average 

precision (mAP). It had the lowest memory use and 

demonstrated notable increases in mAP-by 66.76, 48, 13.2, 

and 1.9 percentage points-versally compared to Faster R-CNN, 

YOLOv5, YOLOv7, and original YOLOv8 models. This 

model presents a feasible method for automatic, effective 

identification of wheat leaf diseases. Literature Summary: 

3D CNNs enable automated Fusarium Head Blight (FHB) 
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assessment, addressing the scarcity of automated detection 

methods while contributing to ongoing debates about manual 

versus automated accuracy [36, 37]. Similarly, smart 

microscopy systems automate fungal spore evaluation with 

improved precision across species, though questions remain 

about their reliability in practical applications [38, 39]. In 

wheat disease detection, deep learning models demonstrate 

efficient handling of diverse pathogens, yet their superiority 

over conventional approaches continues to be debated. Mobile 

applications show promise in enhancing stripe rust assessment 

accuracy, particularly in field conditions, although their 

performance relative to expert visual inspection requires 

further validation. Meanwhile, advanced architectures like 

MnasNet-SimAM improve disease identification in complex 

backgrounds, but their practical field applicability warrants 

additional investigation. 

 

 

3. METHODOLOGY 

 

This work used a dataset of wheat crops gathered from the 

IARI field during the rabi season of 2019-2020, using a Sony 

IMX363 RGB camera to get high-quality photos. Images of 

nitrogen deficient wheat leaves with abiotic stress and leaf 

rust-common biotic stress signs visible at the booting stage-

are included in the dataset and Figure 1 shows the proposed 

flowchart.  

Healthy leaf photos were also included as a baseline for 

comparison and constant illumination conditions were kept to 

guarantee accurate analysis. Otsu-based background 

segmentation, scaling images to 135x270 pixels, contrast 

stretching, and Contrast Limited Adaptive Histogram 

Equalisation (CLAHE) to improve stress indicator visibility 

included preprocessing processes. Variability was raised via 

rotation and scaling among other data augmentation methods. 

Class distributions and visual aspects were evaluated by 

exploratory data analysis (EDA), therefore guaranteeing equal 

representation among the stress categories. CropStressNet is a 

deep learning model designed to categorise photos into three: 

nitrogen-deficient, leaf rust-affected, and healthy. With 

categorical cross-entropy as the loss function and Adam 

optimiser for maximum efficiency, the model architecture 

included cutting-edge ideas such residual and squeeze-excite 

blocks. Hyperparameters were painstakingly tweaked to 

maximise classification accuracy. 

 

 
 

Figure 1. Proposed flowchart 

3.1 Data collection 

 

The dataset was gathered from wheat crops in the IARI field 

during the rabi season of 2019-20 using a Sony IMX363 RGB 

camera. The camera was set to a resolution of 4032×3024 

pixels, with ISO set at 100 and a shutter speed of 1/200 

seconds to ensure high-quality, sharp images. Images were 

captured under consistent natural daylight conditions between 

10:00 AM and 2:00 PM to minimize variations in lighting. No 

artificial lighting or flash was used to maintain field 

authenticity. It centres on wheat leaves showing nitrogen 

deficit, abiotic stress, and leaf rust-a common biotic stress-

both of which are evident in leaves at the booting stage of the 

crop. These pressures cause symptoms that greatly change leaf 

colour, texture, and structure, therefore allowing obvious 

variation. Consistent illumination was used to guarantee 

dependability and clarity for analytical needs on images. 

Accurately distinguishing and identifying stressed leaves 

depends on a baseline, thus this dataset comprises healthy 

wheat leaf images acquired under controlled conditions. From 

chlorosis brought on by nitrogen shortage to rust pustules 

unique to fungal infection, the images in this collection mirror 

several stress expressions. The dataset has been split into 

training, validation, and test sets as well as arranged into 

several folders allowing simple separation between stress and 

health. This system and inclusion of control images provide a 

strong basis for teaching deep learning models to precisely 

identify and classify indicators of biotic and abiotic stress in 

wheat, hence advancing precision agricultural methods. 

 

3.2 Data preprocessing 

 

Preprocessing in this dataset consisted in several phases to 

equip photos for deep learning investigation. Background 

segmentation was first used using Otsu-based masking to 

isolate leaf structures and eliminate undesired background 

features, therefore focusing the attention on stress patterns in 

the leaves. Images were then downsized consistently to 

135×270 pixels to preserve interoperability across deep 

learning models, therefore offering a consistent training input 

size. Then, contrast stretching was applied to improve fine 

detail visibility-especially for stress-induced discolouration or 

texture changes-that are absolutely necessary for nitrogen 

deficiency and leaf rust detection. CLAHE further enhanced 

local contrast by varying brightness in smaller areas without 

increasing noise, hence emphasising stress signs. Custom 

Python routines were also used to apply brightness and 

contrast changes, therefore guaranteeing ideal visual clarity 

for analysis. Random noise was included into the dataset to 

simulate possible real-world settings and diversity the training 

data, hence adding variability and strengthening of the model. 

Emphasising stress-related properties in wheat leaf images 

under consistent lighting and quality, these preprocessing 

techniques together guaranteed the dataset was well-suited for 

accurate and resilient deep learning model performance. 

 
Pseudocode for preprocessing wheat leaf images 

1. LOAD raw images 

2. FOREACH image in dataset: 

a). Apply OTSU_BASED_MASKING to segment the leaf 

from the background. 

- This step removes background elements and isolates leaf 

structure. 

b). RESIZE the segmented image to 135x270 pixels. 

- Ensures consistent input size for deep learning models. 
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c). Apply CONTRAST_STRETCHING to enhance visibility of 

discoloration patterns. 

- Highlights key features related to stress (e.g., nitrogen 

deficiency or rust). 

d). Apply CLAHE for local contrast enhancement. 

- Enhances texture and color without amplifying noise. 

e). ADJUST_BRIGHTNESS_CONTRAST of the image based 

on pre-set brightness and contrast values. 

- This improves overall clarity for deep learning analysis. 

f). OPTIONAL: Add RANDOM_NOISE to introduce 

variability for model robustness. 

- Simulates real-world conditions by adding minor pixel-level 

variations. 

3. STORE preprocessed images in arrays for training, validation, 

and test sets. 

4. RETURN processed dataset for model training and evaluation. 

 

3.3 Exploratory data analysis of wheat yellow rust dataset 

 

Image distribution and features of the dataset were 

evaluated using EDA. Class distribution graphs provide 

information on the image count among nitrogen-deficient, leaf 

rust-affected, and healthy wheat leaves. Analysing these 

distributions guaranteed that every class was represented fairly, 

so enabling balanced model training. Maintaining consistent 

input size for the deep learning models was confirmed by 

image dimension consistency. Visual analysis of sample 

photos from each category revealed clear trends including 

chlorosis in nitrogen-deficient leaves, indicated by yellowing 

resulting from lack of chlorophyll, and the presence of rust 

pustules in sick leaves, suggestive of fungal infection. These 

visual characteristics were meticulously observed since they 

are essential markers for different forms of stress classification 

in the next model building stage. Understanding these picture 

features and class-specific patterns helped us to improve our 

method of feature selection by concentrating on qualities most 

important for stress identification. Building an accurate and 

efficient model for biotic and abiotic stress in wheat leaves 

depends on a deeper knowledge of the dataset, which this 

extensive EDA guaranteed. 

Figure 2 shows the dataset's class distribution. The x-axis 

shows several class labels ranging from -0.5 to 3.5; the y-axis 

shows the count of instances for every class. Class 3 stands out 

as having the most frequency-more than 350 cases-which 

suggests a possible dataset imbalance. 

 

 
 

Figure 2. Bar graph of dataset's class distribution 

In Figure 3, four classes of leaf samples-Class 0, Class 1, 

Class 2, Class 3-are shown in the illustration. Every class 

reflects unique leaf traits that are vital for our work on crop 

stress classification. These graphic examples help one to grasp 

the differences related with nitrogen deficit and disease 

influence. 

 

 
 

Figure 3. Four classes of leaf samples 

 

 
 

Figure 4. Distribution graphs of the image dimensions 

 

In Figure 4, two distribution graphs showing the image 

dimensions in the dataset help to depict this. Centred on 135 

pixels, the left plot displays the width distribution with a 

homogeneous count of roughly 1,200 photos at this width. 

With about 1,200 photos, the correct plot shows the height 

distribution-mostly around 270 pixels. Essential for 

homogeneity in image processing and analysis, these 

visualisations show a constant size over the dataset. 

 

3.4 Contrast enhancement of wheat leaf images using 

CLAHE 

 

By selectively increasing contrast, particularly in areas 

afflicted by stress that show faint discolourations, CLAHE was 

used to improve the visibility of important elements in the 

dataset images. Divining an image into small pieces, or tiles, 

CLAHE essentially modulates the intensity values and 

improves local contrast by individually performing histogram 

equalisation to each tile. In this instance, a tile grid size of (8, 

8) was selected to split the photos into reasonable sections to 

emphasise localised changes in texture and colour over the leaf 

surfaces. A 2.0 clip limit was also established to stop noise 

from over-amplifying and therefore masking important 

information. While preserving the natural gradient transitions 

of healthy leaf tissues, CLAHE reduces the contrast in each 

tile, so enhancing stress-related details like the chlorosis in 

nitrogen-deficient leaves or rust pustules in infected leaves. By 

sharpening edges and increasing the visibility of 

discolouration patterns, this preprocessing phase helps the 

model to distinguish between stress-affected and healthy areas, 

hence enabling more accurate feature extraction and 
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classification during model training. By improving relevant 

features without overloading the model with pointless noise, 

the balanced approach of CLAHE therefore best prepares the 

images for deeper investigation. 

 

3.5 Model implementation 

 

CropStressNet is the name given to the deep learning model 

created for nitrogen-deficient, leaf rust-affected, and healthy 

classification of wheat leaves. This name stresses its use in 

precision agriculture and indicates the particular attention of 

the model on stress in crop leaves. 

Three categories- nitrogen-deficient, leaf rust-affected, and 

healthy-were established from wheat leaves using a deep 

learning-based model. Residual blocks, squeeze-excite blocks, 

and self-attention mechanisms are among the sophisticated 

approaches the architecture combines to help it to capture 

minute details from the images. Resizing the model's input 

photos to a uniform dimension of 270×135 270×135 pixels 

helped to enable fit with the deep learning architecture. With 

a 70:15:15 ratio, the dataset was split into training, validation, 

and test sets guaranteeing accurate evaluation. Data 

augmentation using an Image Data Generator applied changes 

like rotation, scaling, and flips to boost variability and 

resilience during training. The loss function for the model 

optimisation was categorical cross-entropy, formally stated as. 

 

𝐿(𝒴, 𝒴̂) = −∑𝒴𝑖log⁡(𝒴̂𝑖)

𝐶

𝑖=1

 (1) 

 

where, 𝒴  is the true distribution and 𝒴̂ is the predicted 

distribution across C classes. The Adam optimiser was chosen 

because of its adaptive learning features, which enable 

dynamic change of the learning rate. This improves the crop 

stress detecting precision of the model. Multiple convolutional 

layers formed part of the architecture, and channel-wise 

feature responses were recalibrated using a squeeze-excite 

method. Under different circumstances, the model's 

performance was assessed using accuracy as the metric, 

therefore guaranteeing its ability to clearly differentiate 

stressed from healthy leaves. We modified hyperparameters 

including dropout rates, learning rates, and filter count to 

maximise performance even more and Table 1 shows 

hyperparameter details apply for improvement of result.  

 
Pseudocode for cropstressnet model implementation 

1. Import Required Libraries 

Import necessary libraries: 

- TensorFlow/Keras for deep learning 

- NumPy for numerical operations 

- OpenCV for image processing 

- Matplotlib for visualization (optional) 

2. Data Preparation 

Load dataset: 

- Load images and labels for nitrogen-deficient, leaf rust-

affected, and healthy leaves 

- Split dataset into training, validation, and test sets (70:15:15) 

3. Image Preprocessing 

Function preprocess_images(images): 

For each image in images: 

- Apply Otsu-based masking to isolate leaf areas 

- Resize image to (135, 270) pixels 

- Apply contrast stretching 

- Apply CLAHE with tile grid size (8, 8) and clip limit of 2.0 

Return preprocessed images 

4. Data Augmentation 

Define ImageDataGenerator: 

- Set parameters for augmentation (rotation, width shift, height 

shift, horizontal flip) 

5. Define Model Architecture 

Function build_classification_model(input_shape, num_classes): 

Create input layer 

Add depthwise separable convolution block 

Add max pooling layer 

Add residual block 

Add squeeze-and-excite block 

Add convolution and pooling layers as needed 

Add self-attention block 

Flatten output 

Add fully connected layer with ReLU activation 

Add output layer with softmax activation for multi-class 

classification 

Return model 

6. Compile Model 

Set model parameters: 

- optimizer: Adam 

- loss function: categorical cross-entropy 

- metrics: accuracy 

Compile the model 

7. Train Model 

Fit model on training data: 

- Use preprocessed images and labels 

- Set validation data for performance monitoring 

- Define number of epochs and batch size 

8. Evaluate Model 

Evaluate model on test set: 

- Calculate accuracy and loss 

- Optionally visualize results (confusion matrix, ROC curve) 

9. Save Model 

Save the trained model for future use 

10. Predict on New Data 

Function predict(image): 

- Preprocess the image 

- Use the trained model to predict class 

- Return predicted class label 

 

Table 1. Hyperparameter details 

 
Hyperparameter Value 

Input Shape (270, 135, 3) 

Number of Classes 3 

Learning Rate 0.001 

Batch Size 32 

Epochs 50 

Optimizer Adam 

Loss Function Categorical Cross-Entropy 

Data Augmentation 
Rotation, Width Shift, Height 

Shift, Horizontal Flip 

Squeeze-Excite Ratio 16 

Number of Heads 4 

Key Dimension 64 

Clip Limit (CLAHE) 2.0 

Tile Grid Size (CLAHE) (8, 8) 

Dropout Rate 0.5 

 

The Adam optimizer can be summarized by the following 

parameter update equation: 

 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑚̂𝑡

√𝑣̂𝑡+∈
 (2) 

 

where, 

𝜃𝑡: Updated parameters at time (t) 

𝜃𝑡−1: Previous parameters 
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α: Learning rate 

𝑚̂𝑡: Bias-corrected first moment estimate 

𝑣̂𝑡: Bias-corrected second moment estimate 

∈: A small constant to prevent division by zero 

Guiding model optimisation for multi-class classification 

tasks, categorical cross-entropy quantifies the difference 

between actual and expected class distributions. 

 

 

4. RESULT AND DISCUSSION 

 

Accuracy 

Accuracy evaluates the model's fraction of accurate 

forecasts. Higher accuracy percentages show that the model 

shows dependability in real-world applications by efficiently 

generalising and performing on the validation set. 

 

Accuracy=(TP+TN)/(TP+FP+TN+FN) (3) 

 

Recall 

Calculated as the ratio of accurate and false negative 

forecasts, model recall gauges the capacity to recognise all 

pertinent class occurrences. Emphasising the model's 

sensitivity to identify all genuine positives, it is especially 

important in situations when omitting positive examples 

increases a risk more than producing false positives. 

 

Recall=TP/(TP+FN) (4) 

 

Precision 

Calculated as the percentage of precisely anticipated 

positive cases among both false positives and right predictions, 

model precision gauges its capacity to produce accurate 

positive predictions. When the cost of false positives is 

considerable, this statistic is essential since it emphasises the 

accuracy of the model in preventing erroneous positive 

predictions. 

 

Precision=TP/(TP+FP) (5) 

 

F1 Score 

Especially in situations of imbalanced positive and negative 

examples, F1 score-derived from the harmonic mean of recall 

and accuracy-offers a fair assessment of model performance. 

F1 score is appropriate for situations with varying class 

distributions since it offers a more strong and objective 

evaluation by combining precision and recall. 

 

F-score=2/(1/precision+1/recall) (6) 

 

Loss 

In training, loss measures the variation between expected 

and actual targets. A smaller loss number shows that the model 

is learning from the training data efficiently and is thereby 

improving and producing more accurate predictions over time 

 

𝐿𝑜𝑠𝑠 = −
1

𝑚
∑𝒴𝑖. log⁡(𝒴𝑖)

𝑚

𝑖=1

 (7) 

 

Table 2 presents the performance assessment of the 

proposed model, CropStressNet, stressing its capacity in 

precisely forecasting crop stress. With an accuracy of 0.9214, 

the model shows good performance by accurately categorising 

over 92% of the cases. With a precision score of 0.9250, 

CropStressNet forecasts crop stress with dependability, hence 

reducing false positives. With a recall score of 0.9214, the crop 

stress may be precisely identified, so guaranteeing few false 

negatives. With an F1-score of 0.9215, accuracy and recall are 

balanced, so indicating general strength. Furthermore, the 

minimal loss of 0.17 points to a well-trained model producing 

consistent forecasts. Performance graph in Figure 5 shows 

evaluation of proposed model. 

 

 
 

Figure 5. Performance graph 

 

Table 2. Performance evaluation proposed model 

CropStressNet 

 
Model Accuracy Precision Recall F1-Score Loss 

CropStressNet 0.9214 0.9250 0.9214 0.9215 0.17 

 

Beyond statistical performance, the model has significant 

practical implications for precision agriculture. Early and 

accurate detection of stress symptoms-such as nitrogen 

deficiency or fungal infections like leaf rust-enables farmers 

to take timely corrective actions. For instance, precise 

detection of biotic stress at early stages can lead to targeted 

fungicide applications, potentially reducing fungicide use by 

up to 30-40%, as shown in related agronomic studies. This not 

only cuts input costs but also supports environmentally 

sustainable farming by avoiding over-application of chemicals. 

Hence, CropStressNet contributes directly to more efficient, 

cost-effective, and eco-friendly crop management strategies. 

Table 3 offers a comparison of the suggested CropStressNet 

model with current models, namely with reference to Deep 

Residual Neural Network (ResNet) and Convolutional Neural 

Networks (CNN). CropStressNet's performance is assessed 

using accuracy, therefore indicating a notable improvement in 

predicting powers in the field of crop stress evaluation. With 

an accuracy of 90%, the Deep Residual Neural Network 

(ResNet) proves to be really useful in many different fields. 

With an amazing accuracy of 92.14%, the suggested 

CropStressNet does, however, surpass this approach. This 

development shows a clear increase in the model's capacity to 

accurately identify cases of crop stress, hence increasing its 

dependability for agricultural surveillance. By comparison, the 

conventional CNNs have a less accuracy of 84.1%. This 

disparity highlights the need of more specialised architectures 

like CropStressNet by stressing the limits of CNNs in 

managing the complexity related with crop stress detection. 

The higher accuracy of the suggested model suggests that, 

probably because of its architectural innovations and training 

approaches, it is more suited to capture complex patterns in the 

data. Overall, the improved performance of CropStressNet 
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shows a significant contribution to the field and promises 

better decision-making possibilities for farmers and 

agricultural stakeholders in properly managing crop health. 

To evaluate the performance of CropStressNet in 

distinguishing among healthy, rust-infected, and nitrogen-

deficient wheat leaves, we generated a confusion matrix that 

visualizes the model’s classification accuracy across all three 

classes. This matrix provides insight into both correct 

predictions and common misclassifications, enabling a deeper 

understanding of model behavior. Figure 6 shows comparative 

analysis between ResNet, CNN and proposed model and 

Figure 7 shows accuracy and loss graph of proposed model. 

 

Table 3. Comparative analysis between existing model and 

proposed model 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Precision 

(%) 
Ref 

Deep Residual 

Neural Network 

(ResNet) 

90.00 88.50 89.20 [40] 

Convolutional 

Neural Networks 

(CNNs) 

84.10 82.30 83.00 [41] 

Proposed 

CropStressNet 
92.14 91.50 92.14 - 

 

 
 

Figure 6. Comparative analysis graph 

 

 
 

Figure 7. Accuracy and loss graph of proposed model 

 

From the matrix, it is evident that: 

• Healthy leaves were accurately identified in most 

cases, with minimal confusion with stressed classes. 

• Rust-infected leaves showed a slightly higher 

misclassification rate, with some being labeled as nitrogen-

deficient-likely due to overlapping visual symptoms like 

discoloration. 

• Nitrogen-deficient leaves were also occasionally 

misclassified as rust-affected, but the overall detection 

remains strong. 

The inclusion of the confusion matrix reinforces the 

reliability of CropStressNet while also highlighting areas for 

potential improvement, such as enhancing feature 

differentiation between biotic and abiotic stress symptoms. 

Figure 8 shows the confusion matrix of proposed model. 

And Table 4 shows confusion matrix of CropStressNet 

between actual and predicted. Three images of a leaf are 

presented in Figure 9: the original photograph, a contrast-

enhanced version, and a noise-added variant. Whereas the 

noisy image contains random pixel fluctuations, the contrast-

enhanced image offers greater detail visibility. 

 

 
 

Figure 8. Confusion matrix of proposed models 

 

Table 4. Confusion matrix of CropStressNet 

 

 
Predicted: 

Healthy 

Predicted: 

Rust 

Predicted: 

Nitrogen 

Deficient 

Actual: Healthy 186 8 6 

Actual: Rust 5 178 17 

Actual: Nitrogen 

Deficient 
4 10 183 

 

 
 

Figure 9. An original picture, a contrast-enhanced variant, 

and one with additional noise 

 

The picture displays three leaf photos together with 

matching pixel intensity histograms. Whereas the contrast-

enhanced image has a smaller range with more concentrated 

peaks, the original image contains a wide range of pixel 

intensities. The noisy image boasts a more homogeneous 

spectrum of pixel intensities. The histograms show how the 

methods of image processing influence the pixel value 

distribution. 
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Figure 10. Three leaf photos together with matching pixel 

intensity histograms 

 

 
 

Figure 11. Distribution of labels 

 

 
 

Figure 12. Sample images 

 

Figures 10 presents a group of leaf pictures together with 

matching labels. Figure 11's histogram shows label 

distribution; most labels lie between 0 and 1. Five sample 

photos from the dataset are shown in Figure 12 under each 0. 

label. Though their exact significance is unknown without 

more information, the names most likely indicate several leaf 

types or situations. 

 

 

5. CONCLUSION 

 

In conclusion, this work presents a robust and scalable 

solution for detecting and classifying multiple stress indicators 

in wheat crops, particularly nitrogen deficiency and leaf rust. 

A key innovation of this study lies in the integration of 

CLAHE during preprocessing, which enhanced the visibility 

of subtle stress-related features in leaf imagery. In addition, 

Otsu-based background segmentation and contrast stretching 

contributed to cleaner, high-quality inputs that improved 

model learning. The use of Squeeze-and-Excitation (SE) 

blocks within the CropStressNet architecture enabled adaptive 

feature recalibration, allowing the model to focus on critical 

stress-specific patterns. These architectural enhancements, 

combined with residual connections, provided deeper feature 

extraction and superior classification performance. 

The model achieved impressive accuracy, precision, and 

recall, supported by a balanced dataset derived through 

thorough EDA. Hyperparameter optimization further boosted 

model generalization. Importantly, the lightweight and 

modular design of CropStressNet promotes field-ready 

scalability, making it suitable for deployment in resource-

constrained agricultural environments. This empowers 

farmers and agronomists with a dependable tool for real-time 

crop monitoring and timely intervention, ultimately reducing 

yield losses and unnecessary chemical use. 

By integrating advanced deep learning techniques with 

practical agricultural needs, this study lays a strong foundation 

for broader applications in precision farming and contributes 

to long-term goals of sustainable agriculture and food security. 
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