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 With the rapid development of the tourism industry, the surge in visitor volumes has 

imposed higher demands on the management and operation of tourist attractions. Traditional 

manual counting methods and infrastructure-based monitoring systems have become 

insufficient to meet the modern requirements for visitor flow surveillance. Image 

recognition-based techniques for tourist detection and multi-object tracking have emerged 

as intelligent solutions capable of providing real-time dynamic data on visitor distribution 

and movement without interfering with tourists. These methods offer precise decision 

support for scenic area management. However, existing studies frequently suffer from 

limitations such as inadequate detection accuracy and tracking failures, compromising the 

reliability and precision of flow monitoring. Therefore, how to improve the accuracy of 

tourist object detection in complex environments and achieve stable multi-object tracking 

has become an urgent problem to be solved. Addressing these challenges, a tourist detection 

method based on an improved Single Shot MultiBox Detector (SSD) network was proposed, 

integrated with multi-object tracking techniques for comprehensive visitor flow monitoring. 

The enhanced SSD network enables more accurate detection of tourist objects under 

complex environmental conditions, while multi-object tracking ensures stable tracking and 

counting of individual visitors. Through this system, real-time dynamic variations in visitor 

flows can be monitored, providing critical data support for tourist safety management, 

resource allocation optimization, and service quality enhancement. Experimental results 

demonstrate that the proposed method achieves improvements in both accuracy and 

efficiency, highlighting its significant practical value and potential for broader application.  
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1. INTRODUCTION 

 

With the rapid global development of the tourism industry, 

the annual increase in visitor flow has posed significant 

challenges to the management and services of tourist 

attractions [1, 2]. Traditional visitor flow monitoring methods 

[3-5], which primarily rely on manual counting or 

infrastructure-based monitoring systems, have been associated 

with high labor costs and susceptibility to human error, leading 

to deficiencies in both the accuracy and timeliness of the 

collected data. As a result, visitor flow monitoring systems 

based on image recognition technology have gradually 

emerged as a critical tool for intelligent management in 

modern tourist attractions. This technology not only enhances 

monitoring efficiency but also enables the real-time 

acquisition of dynamic information on visitor movement 

without disrupting the tourist experience, thereby facilitating 

scientific decision-making by management authorities. 

The significance of visitor flow monitoring in tourist 

attractions lies in the application of advanced image 

recognition techniques [6, 7], where computer vision and deep 

learning methods are employed to accurately detect and track 

tourist objects [8-10], providing new solutions for visitor flow 

surveillance and management. Such systems have been shown 

to substantially improve the level of intelligent management 

within scenic areas and contribute to visitor flow prediction, 

tourist safety management, and resource allocation 

optimization [11-13]. Through the implementation of these 

systems, real-time insights into visitor distribution and 

movement trajectories can be obtained, enabling the 

optimization of personnel guidance strategies and the layout 

of service facilities, thereby enhancing the overall visitor 

experience and improving operational efficiency. 

Despite recent advancements in the field, existing studies 

on image recognition-based visitor flow monitoring methods 

have exhibited certain limitations. First, many approaches 

have demonstrated low detection accuracy in complex 

environments [14], particularly when detecting tourist objects 

within dense crowds or across varying scales. Second, current 

multi-object tracking techniques have been prone to tracking 

loss or mis-tracking under long-duration and high-density 

conditions [15, 16], thereby compromising the accuracy of 

visitor flow statistics. Furthermore, much of the existing 

research has remained reliant on traditional object detection 

networks [17], failing to fully leverage the advantages offered 

by deep learning algorithms, which has resulted in deficiencies 
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in both detection efficiency and precision. Therefore, the 

enhancement of tourist detection accuracy and the stabilization 

of multi-object tracking performance remain critical 

challenges in the field. 

In response to these challenges, a tourist detection method 

based on an improved SSD network was proposed, integrated 

with multi-object tracking techniques to achieve precise 

monitoring and statistical analysis of visitor flow in tourist 

attractions. Specifically, the research focuses on two primary 

components: first, tourist detection based on the improved 

SSD network, where detection accuracy is significantly 

enhanced under complex environmental conditions; second, 

visitor flow monitoring through multi-object tracking and 

statistical analysis, enabling the efficient tracking of tourists 

and the dynamic recording of visitor distribution changes 

within scenic areas. The principal innovation of this study lies 

in the application of an improved deep learning framework, 

which optimizes existing tourist detection and tracking 

strategies and demonstrates substantial practical value and 

potential for widespread adoption. Through this system, real-

time and accurate monitoring of visitor flow can be achieved, 

providing robust data support for management operations and 

advancing the process of intelligent management in the 

tourism industry. 

2. TOURIST OBJECT DETECTION IN SCENIC AREAS

BASED ON AN IMPROVED SSD NETWORK

In practical applications, tourists in scenic areas are often 

situated within complex background environments, 

characterized by numerous interfering factors such as cluttered 

scenes, variations in lighting, and the presence of buildings 

and vegetation. These conditions significantly affect the 

accuracy of object detection. Furthermore, tourists frequently 

appear at varying scales and densities, particularly in crowded 

regions of scenic areas, where objects tend to be small or 

overlapping. Traditional SSD algorithms have shown limited 

capability in detecting such small-scale objects. Due to the 

fixed convolutional kernel sizes and the inadequate feature 

extraction capabilities of shallow layers in the original SSD 

architecture, considerable challenges have been encountered 

in handling these complex conditions. To enhance detection 

accuracy under the environmental conditions of scenic areas, 

optimizations targeting these limitations of the SSD algorithm 

were proposed, aiming to strengthen feature extraction 

capabilities and improve small-object detection performance, 

thereby increasing the accuracy of tourist detection. 

The proposed improvement strategy first involves the 

incorporation of an Inception module. By extracting features 

at multiple scales through parallel pathways, the Inception 

module significantly enhances the model’s adaptability to 

multi-scale objects, particularly benefiting the detection of 

small tourist objects. The optimized Inception module was 

integrated into the SSD network by replacing the Conv4_3 and 

Conv7 convolutional layers, thereby improving the 

representational power of shallow features and expanding the 

receptive field, enabling the model to better handle detection 

tasks in complex backgrounds. Moreover, an exclusive loss 

term, denoted as Lexctude, was introduced into the loss 

function to refine prior box localization. This modification 

results in more precise bounding boxes and accelerates the 

convergence speed of the model. In the dynamic and complex 

environments characteristic of tourist attractions, detection 

models are required to maintain high precision, rapid response 

times, and strong robustness. The aforementioned 

optimizations allow the model to achieve more accurate tourist 

localization while effectively addressing challenges associated 

with background interference and small-object detection. 

2.1 Structural optimization of the SSD network 

In the task of tourist detection within scenic areas, the 

complexity of the environment and the diversity of objects 

require that the network efficiently extract multi-scale features 

and accurately recognize tourist objects. Traditional 

convolutional neural networks (CNNs) have typically 

enhanced feature extraction capabilities by increasing network 

depth. However, in dynamic and complex environments such 

as those found in tourist attractions, excessively deep networks 

are prone to overfitting and result in increased computational 

complexity, along with higher consumption of storage and 

hardware resources. In practical scenarios, tourist objects 

generally exhibit significant variations in scale and density, 

particularly when visitors are sparsely distributed or 

concentrated within crowded regions. These conditions lead to 

considerable differences in object sizes. Therefore, the 

simultaneous processing of multi-scale feature information 

and the enhancement of network adaptability to small and 

varying-scale objects have been identified as key challenges in 

the optimization of object detection models. To address these 

challenges, optimization of the Inception module was 

undertaken to overcome the limitations of traditional 

convolutional networks in multi-scale object detection. 

Figure 1 illustrates the architecture of the traditional 

Inception module. The specific optimization strategy is 

outlined below. First, to address the high computational cost 

associated with the 5×5 convolutional kernels in the Inception 

module, a replacement strategy was adopted, where each 5×5 

convolutional operation was decomposed into two consecutive 

3×3 convolutions. This replacement not only reduces the total 

number of parameters generated during model training but 

also decreases the number of feature maps produced at each 

network layer, thereby effectively shortening computation 

time. For real-time tourist detection scenarios in scenic areas, 

where computational efficiency is critical, such optimization 

significantly improves processing speed, enabling efficient 

real-time detection under constrained hardware resources. 

Furthermore, batch normalization (BN) operations were 

introduced into the optimized Inception module. Specifically, 

BN was applied after each 1×1 and 3×3 convolutional 

operation. Through this approach, feature data across channels 

were normalized within each batch, stabilizing the mean and 

variance and obtaining the learnable hyperparameters. In real-

world applications within scenic areas, where tourists exhibit 

diverse distributions and postures, the use of BN allows the 

network to better accommodate the variability of multi-

dimensional data, resulting in more accurate and stable feature 

extraction. Figure 2 presents the architecture of the improved 

Inception module. 

The improved SSD network model proposed for tourist 

detection in scenic areas enhances detection accuracy by 

optimizing the network structure and strengthening feature 

extraction capabilities. During the encoding stage, input video 

frames of 300×300 resolution was initially processed through 

multiple convolutional operations and feature extraction using 

the Visual Geometry Group (VGG) 16 backbone network. 

Subsequently, the local features were further refined within the 
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optimized Inception module. By incorporating parallel 

convolutions of different kernel sizes, the Inception module 

effectively captures multi-scale features of tourist objects, 

with particularly notable improvements observed in the 

detection of small-sized objects. Different scale features were 

concatenated (Concat operation) and normalized through BN, 

enabling the model to more effectively handle diversified 

backgrounds and tourist objects. This approach not only 

suppresses the influence of irrelevant background pixels but 

also improves adaptability to complex environments. 

Following the fusion and normalization of feature layers, a 

feature layer of size 38×38×512 was generated, forming a 

robust foundation for subsequent object detection tasks. 

During the decoding stage, the network was used to predict 

the location, category, and confidence scores of objects by 

analyzing prior boxes, with the final bounding boxes selected 

through score ranking and Non-Maximum Suppression (NMS) 

algorithms. In the complex environments of tourist attractions, 

where objects are diverse and backgrounds are cluttered, the 

model effectively extracted key object information from multi-

scale feature maps and performed precise regression and 

classification. Through the construction of a multi-scale 

feature pyramid and the integration of regression and 

classification tasks, the improved SSD network achieved more 

accurate recognition and localization of tourist objects. Even 

under conditions characterized by high crowd density and 

complex backgrounds, high detection accuracy was 

maintained. This architecture, by enhancing feature fusion and 

multi-scale feature processing capabilities, enabled the model 

to exhibit greater robustness and precision within the dynamic 

and complex environments typical of scenic areas. 

 

 
 

Figure 1. Architecture of the traditional Inception module 

 

 
 

Figure 2. Architecture of the improved Inception module 

 

2.2 Optimization of the SSD network loss function 

 
The loss function of the improved SSD network was 

optimized to further enhance detection accuracy and 

robustness. In the original SSD network, the loss function 

primarily consisted of two components: localization and 

confidence errors. Although this structure proved effective 

under most conditions, it exhibited limitations in complex, 

dynamic environments such as those found in tourist 

attractions, where frequent false and missed detections 

occurred. To improve the precision of tourist object 

localization, an additional mutually exclusive loss term (MEX) 

was introduced into the original loss function. The 

incorporation of this loss term effectively reduced the 

occurrence of false positives, particularly in regions 

characterized by high tourist density or complex backgrounds, 

by constraining the network during the prediction process to 

avoid incorrect overlaps and misclassifications. Further 

optimization of the loss function was achieved by reweighting 

the different loss components through a weighted summation 

approach. Given the diversity in scale, posture, and location of 

tourist objects, the traditional loss function often struggled to 

ensure accurate detection across different object types. By 

integrating localization error, confidence error, and the newly 

added mutually exclusive loss into the weighted total loss, the 

model's stability and accuracy in complex environments were 

significantly enhanced. The loss function is expressed as: 
 

( )( ) ( ) EXLOCO Mh,m,aMz,aM
V

M  +







+=

1

 
(1) 

 

The newly introduced loss term MEX was specifically 

designed to increase the distance between the detection boxes 

of tourist objects and the nearby ground truth boxes classified 

as non-tourist objects, thereby optimizing detection 

performance. The detailed calculation procedure is outlined as 

follows: 

(a) A set of processed anchor boxes was obtained, and both 

the designated object set and the exclusion object set were 

constructed. Specifically, the set of all ground truth boxes was 

collected and denoted as {H}. Simultaneously, all prior boxes 

whose Intersection over Union (IoU) with each ground truth 

box Hv exceeds a predefined threshold were collected into a 

set denoted as {O}. For each ground truth box in the set {H}, 
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the prior box from {O} with the highest IoU value was selected. 

After traversing all ground truth boxes, the selected prior 

boxes form a new set {OS}, which is defined as the designated 

object set. Subsequently, all elements of the designated object 

set {OS} were removed from the overall prior box set {O}, 

resulting in an updated prior box set denoted as {O-OS}. 

Following this, for each ground truth box Hv, the prior box 

with the highest IoU value was selected from the updated set 

{O-OS}. After traversal of all ground truth boxes, the selected 

prior boxes form a new set denoted as OHDE, which is referred 

to as the exclusion object set. The designated object set {OS} 

is expressed as: 

 

  ( )OHIOUOS ,argmax=
 (2) 

 

The exclusion object set OHDE is expressed as: 

 

 

( ) OSOHIOUOH

DE −= ,argmax
 

(3) 

 

(b) New IoU values were computed. The overlapped IoU 

values between all prior boxes and the designated object set 

{OS} and the exclusion object set OHDE were calculated to 

form a new loss term. When designated objects correspond to 

tourists in scenic areas, this loss term effectively suppresses 

excessive overlap between prior boxes and non-tourist objects, 

ensuring that prior boxes are more accurately aligned with 

tourist object regions rather than other object categories. This 

process increases the distance between the tourist object boxes 

and the surrounding non-tourist object boxes, thereby 

improving the localization precision of prior boxes and 

optimizing detection outcomes. Through this strategy, the 

improved loss function can better handle object detection tasks 

in the complex backgrounds typical of tourist attractions, 

significantly enhancing detection accuracy for distant or 

small-scale tourist objects, while simultaneously reducing 

false and missed detections. A more accurate foundation is 

thus established for subsequent object tracking and behavior 

analysis. The specific calculation is expressed as: 
 

 ( )
 ( )OAREA

OSOAREA
M

H

DE
EX


=

 

(4) 

 

Finally, to optimize the regularization term within the 

improved loss function, an L2 norm was adopted to prevent 

model overfitting. The L2 norm constrains the 

hyperparameters in the loss function by calculating the square 

root of the sum of the squares of all weights, thus mitigating 

the risk of overfitting due to an excessive number of 

hyperparameters. This optimization strategy is particularly 

important for the complex and dynamic scenarios typical of 

tourist attractions, enhancing the generalization ability and 

stability of the model and ensuring consistently high detection 

performance across varying environments. The specific 

calculation method is defined as: 
 

 22

2

2

1 ... vaaaSQRTa +++=
 

(5) 

 

To avoid the square root operation, the above expression 

was further optimized as: 
 

 22

2

2

121 va...aa/a +++=
 

(6) 

 

Figure 3 illustrates the architecture of the improved SSD 

network model. 

 

 
 

Figure 3. Architecture of the improved SSD network model 

 

 

3. TOURIST TRACKING AND FLOW STATISTICS IN 

SCENIC AREAS 

 

To achieve accurate visitor flow monitoring in scenic areas, 

a multi-object tracking and statistical method for tourists based 

on the Deep Learning-based Simple Online and Realtime 

Tracking (DeepSORT) algorithm was adopted, primarily due 

to its excellent real-time performance and stability in handling 

complex dynamic environments. In tourist attractions 

characterized by dense crowds and complex object behaviors, 

real-time and accurate tracking of tourists is crucial. 

DeepSORT provides more precise solutions for issues such as 

tourist interactions, occlusions, and data association between 

consecutive frames. By incorporating deep learning-based 
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feature representations, DeepSORT significantly enhances the 

model’s ability to distinguish between visually similar objects, 

thereby enabling more accurate identification and 

differentiation of individual tourists, particularly in crowded 

scenarios where object similarity is high. 

 

3.1 SORT algorithm 

 

The core concept of the SORT algorithm is based on 

Kalman filtering and the Hungarian algorithm, enabling the 

tracking of multiple tourists by predicting and updating object 

positions. Specifically, SORT first employs a Kalman filter to 

predict the current position of each tourist within the scenic 

area and estimate their location in the subsequent frame. The 

Hungarian algorithm is then utilized to match the predicted 

positions with the actual detected tourist locations by 

calculating the IoU between bounding boxes, thereby 

establishing an optimal object association. Through 

continuous iterative updates, the SORT algorithm can track 

each tourist’s movement trajectory in real time, ensuring 

accurate localization in every frame of video imagery. 

In complex environments typical of tourist attractions, 

tourist behavior often exhibits significant variability, with 

frequent occurrences of occlusions and interactions among 

objects. Although the SORT algorithm offers notable 

advantages in terms of real-time performance and 

computational efficiency, challenges such as frequent identity 

switches may arise when tourists experience occlusion or rapid 

position changes. Nevertheless, SORT remains effective in 

managing large-scale tourist data and provides stable support 

for subsequent multi-object tracking processes. By 

continuously updating tourist location information in real time, 

SORT enables efficient tracking across dynamic environments 

within scenic areas, including dense crowd zones and areas 

characterized by rapid visitor movement, thereby facilitating 

the monitoring of visitor flow patterns and dynamic changes 

in crowd density. 

 
3.2 DeepSORT algorithm 

 

The DeepSORT algorithm represents an improvement over 

the original SORT framework by incorporating a re-

identification (ReID) network for feature extraction, thereby 

effectively preserving individualized feature information 

among different tourists. This enhancement significantly 

reduces the frequency of identity switches caused by object 

occlusion or interactions. In scenic areas characterized by high 

visitor mobility and dynamic object behaviors, the 

improvements introduced in DeepSORT are particularly 

critical. By utilizing deep learning-extracted appearance 

features and motion state information, DeepSORT 

substantially improves the accuracy of tourist tracking and 

identity preservation, effectively reducing object loss and 

misassociation incidents. The fundamental process of the 

DeepSORT algorithm is described below. First, the 

Mahalanobis distance is calculated to evaluate the motion state 

of each object, predicting the probable location of the object at 

the next time step. In the dynamic and complex environments 

of scenic areas, tourist motion trajectories are often influenced 

by factors such as rapid walking, sudden changes in direction, 

or temporary stops. The Mahalanobis distance utilizes motion 

information—including velocity and direction—combined 

with the Kalman filter's predicted motion state to estimate the 

object's subsequent position in the next frame. Let the center 

point of a bounding box in image coordinates be denoted by 

(i.n), the aspect ratio be denoted by b, and the height be 

denoted by g. The predicted motion state by the Kalman filter 

is represented by (i,s,b,g), where these eight parameters of 

(i,n,b,g,i,,b,g) describe the ground truth box and the predicted 

box. Assuming that the coordinates of the k-th detection box 

are denoted by fk, and the predicted coordinates by the u-th 

tracker are denoted by bu, with the covariance matrix between 

the detection coordinates and the mean predicted coordinates 

represented by Tu and the Mahalanobis distance between two 

anchor boxes by f(1)(u.k). The degree of motion association is 

computed using the following formula: 

 
( )( ) ( ) ( )uku

T

uk bfTbfkuf −−= −11 ,
 

(7) 

 

Since the Mahalanobis distance calculation is not entirely 

accurate, covariance and standard deviation were introduced 

to mitigate measurement uncertainty. This step was 

implemented by thresholding the Mahalanobis distance 

f(1)(u.k), as shown below. If the calculated Mahalanobis 

distance is less than a specified threshold s
⑴

, the motion states 

of the two anchor boxes are considered successfully associated. 

In the context of tourist attractions, this step assists in 

accurately associating and predicting tourist trajectories even 

during brief occlusions, such as when individuals are 

temporarily blocked by other tourists or structures, thereby 

ensuring the continuity of tracking. 
 

( ) ( ) ( )  = 111 sk,ufy k,u  
(8) 

 

When the camera moves along with the object, the 

effectiveness of Mahalanobis distance may degrade. For 

example, when the camera follows a moving face or tracks an 

object, motion-only association becomes unreliable. In such 

cases, appearance feature association using cosine distance 

must be introduced. DeepSORT addresses this by extracting a 

128-dimensional unit vector for each anchor box through a 

ReID network model. Cosine similarity is then used to 

compare the angle size of the feature vector e at each anchor 

box coordinate fk, requiring the norm of the feature vector to 

be 1, i.e., ||e(u)||=1. In tourist attractions, this process is very 

important for dealing with the variations of tourists in 

viewpoint and illumination. This feature-matching method 

enables the ReID of temporarily occluded tourists across video 

frames, ensuring the continuity and reliability of multi-object 

tracking. Assuming the feature vector extracted from the 

detection box coordinate fk is denoted as ek, and the vector 

library used for storage is denoted as ej, the cosine distance 

between two anchor box coordinates can be calculated as 

follows: 
 

( )( ) ( ) ( ) u

u

j

u

j

T

k ReeeMINkuf −= |1,2

 
(9) 

 

After the cosine distance is computed, the DeepSORT 

algorithm compares it against a predefined threshold s(2). If the 

calculated cosine distance is less than the threshold, the 

appearance features of the two anchor boxes are considered 

successfully associated. Particularly in scenic areas, where 

tourists frequently disappear from the field of view due to 

occlusion by other individuals or objects, the use of cosine 

distance enables the algorithm to re-identify tourists even after 

multiple frames of occlusion through feature matching. The 

967



 

following equation can be used as the indicator: 

 
( ) ( ) ( )  = 222 sk,ufy k,u  

(10) 

 

Subsequently, the matching condition between the current 

detection box and the Kalman filter-predicted object box is 

examined. If the association satisfies the specified threshold, a 

weighted calculation is performed. By integrating the 

weighted sum of two different measurement methods, 

DeepSORT comprehensively evaluates the degree of object 

association. In the context of tourist attractions, the trajectories 

of tourists between video frames may exhibit significant 

variations, and environmental factors may introduce partial 

measurement inaccuracies. Therefore, this weighted 

calculation dynamically adjusts the relative importance of the 

Mahalanobis distance and cosine distance, ensuring that the 

matching degree of objects is accurately assessed under 

varying conditions. 

Finally, DeepSORT calculates the final matching degree by 

combining the Mahalanobis distance and cosine distance 

through the weighted calculation. Based on the predefined 

threshold range, a determination is made regarding the 

successful association of two anchor boxes. If the combined 

result z(u,k) falls within the set threshold range for both 

Mahalanobis and cosine distances, the two anchor boxes are 

considered successfully associated. 

 
( )( ) ( ) ( )( )k,ufk,ufz k,u

21 1  −+=
 

(11) 

 

3.3 Training of the ReID model of the DeepSORT network 
 

The proposed tourist multi-object tracking algorithm for 

visitor flow monitoring in scenic areas was designed as 

follows: the optimized SSD network is first applied to enhance 

the speed and accuracy of tourist object detection in scenic 

environments; subsequently, the ReID feature extractor is 

retrained using a tourist ReID dataset tailored for scenic areas 

to improve object data association between consecutive frames, 

ensuring suitability for the tourist tracking and matching 

process during the tracking stage. 

The core objective of introducing the ReID network is to 

enhance the matching accuracy of tourists across different 

video frames or surveillance regions. The training of the ReID 

network must account for the unique behavioral patterns and 

appearance characteristics of tourists within scenic 

environments. For example, tourists often exhibit highly 

diverse clothing styles and engage in behaviors such as 

pausing, gathering, or weaving through crowds. Therefore, 

specialized training of the ReID network targeting tourist 

objects is essential to extract robust features under varying 

environmental conditions. The structural parameters of the 

ReID network differ from those of the original pedestrian 

ReID network used in DeepSORT. In the conventional 

DeepSORT framework, the ReID network is typically based 

on the Faster Region-based Convolutional Neural Network 

(Faster R-CNN) and Residual Network (ResNet) architectures 

for pedestrian ReID training. However, these structures are not 

fully adapted to the diverse and dynamic characteristics of 

tourists in scenic areas. The heterogeneity of tourist 

populations and the complexity of their activity patterns render 

conventional pedestrian-focused approaches insufficient. 

Accordingly, a customized ReID training approach was 

developed, incorporating feature extraction modules 

specifically designed to optimize the ability to identify tourist 

objects. For example, the network structure was adjusted to 

capture the distinctive appearance characteristics of tourists 

within complex environments, enhancing the recognition of 

dynamic tourist behaviors, such as group activities or rapid 

movements commonly observed in scenic areas. Through 

these customized ReID training strategies, effective tourist 

tracking and identification within scenic areas can be achieved, 

thereby significantly improving object matching accuracy 

under high-density conditions and providing high-quality data 

support for visitor flow monitoring and management. 

The overall processing framework of the improved SSD 

algorithm combined with the DeepSORT-based tourist multi-

object detection and tracking method for scenic areas is 

described below. The improved SSD algorithm is first 

employed to process input video frames, performing object 

detection and outputting tourist location information. Through 

structural enhancements, the SSD algorithm achieves 

improved detection precision, enabling more accurate 

identification of tourists under complex background 

conditions while assigning a unique label to each detected 

tourist. Given the high density and dynamic movement 

patterns of tourists in scenic environments, the improved SSD 

algorithm effectively identifies multiple tourists within a 

frame. Additionally, preprocessing steps such as image 

filtering and denoising are applied to enhance video quality, 

providing clearer input data for subsequent tracking operations. 

Subsequently, the DeepSORT algorithm is utilized to predict 

and track the motion states of tourists using a Kalman filter. 

The ReID module is integrated to extract appearance feature 

information for each tourist. By combining motion state 

predictions and appearance features, an association matrix is 

formed. Leveraging this association matrix, the DeepSORT 

algorithm performs precise object tracking across consecutive 

frames, addressing challenges related to occlusion and 

concealment in complex environments. In scenarios 

characterized by dense crowds or rapid tourist movement, the 

Hungarian algorithm is employed to perform matching within 

the association matrix, ensuring that each tourist's trajectory is 

accurately tracked and minimizing the risks of incorrect 

matching or object loss. 

 
3.4 Visitor flow monitoring in scenic areas 

 

Following the completion of tourist multi-object tracking 

and statistical analysis, visitor flow monitoring in scenic areas 

can be further enhanced through intelligent analysis and real-

time data processing to achieve more precise management 

outcomes. After the completion of multi-object tracking and 

statistical aggregation, the core strategy for visitor flow 

monitoring is the establishment of a dynamic, region-based 

real-time monitoring and early warning system. Initially, 

tourist position and trajectory data derived from multi-object 

tracking must be utilized, in combination with the spatial 

attributes of scenic area maps, to partition key monitoring 

zones. Edge computing devices or cloud servers were 

employed to calculate tourist density in each zone in real time. 

For instance, coordinate information from tracking data was 

matched with geofencing technology to compute the 

instantaneous number of individuals within each sub-region, 

and a tiered warning mechanism was activated by setting 

dynamic thresholds. Simultaneously, trajectory features such 

as movement direction and speed were analyzed to predict 

changes in visitor distribution trends over the next 5 to 15 
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minutes. Dynamic information displays or scenic area mobile 

applications were utilized to disseminate guidance information, 

facilitating a transition from passive statistics to proactive 

intervention. Based on the analysis of visitor distribution 

within the scenic area, critical information such as congestion 

levels and dwell times across different zones can be accurately 

captured. This enables real-time monitoring of crowd density 

by scenic area managers, who can take timely measures to 

guide tourists and mitigate safety risks or declines in service 

quality caused by overcrowding. Through the use of real-time 

monitoring data, dynamic scheduling of visitor flow across 

different time periods and attractions can be implemented, 

leading to smoother tourist experiences and minimizing 

congestion during peak periods. Figure 4 presents the process 

flow for visitor flow monitoring in scenic areas. 

In combination with tourist multi-object tracking and 

statistical data, more refined flow prediction and management 

can also be realized within scenic areas. Through long-term 

accumulation and analysis of tracking data, predictive models 

for visitor flow can be established by incorporating factors 

such as weather conditions, holidays, and special events. 

These models can provide scientific support for planning and 

early warning mechanisms within scenic areas. For instance, 

forecasts regarding the number of visitors in specific time 

periods or regions can enable early adjustments to personnel 

deployment and transportation arrangements, thereby 

mitigating the pressure associated with peak visitor flows. 

Moreover, by leveraging artificial intelligence and machine 

learning technologies, scenic areas can optimize tourist route 

recommendation systems, dynamically adjusting tour paths 

based on real-time data to prevent crowding at particular 

attractions and improve overall operational efficiency. 

Through the implementation of these strategies, scenic areas 

are enabled to manage visitor flow with greater precision and 

efficiency, enhancing both the safety and satisfaction of 

tourists. 

 

 
 

Figure 4. Visitor flow monitoring process in scenic areas 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In the experimental evaluation, a comparative analysis was 

conducted between the original SSD algorithm and the 

improved SSD algorithm in terms of object detection 

performance, with particular focus on the variation of loss 

values during the training process. As shown in Figure 5, a 

distinct difference can be observed between the two 

approaches. In the case of the original SSD algorithm, 

stabilization of the loss value occurred only after 

approximately 125 iterations, with an overall slower rate of 

decrease. This behavior indicates that the original algorithm 

exhibited a slower convergence speed when exposed to 

complex environments, potentially resulting in prolonged 

training times and increased consumption of computational 

resources. By contrast, the improved SSD algorithm 

demonstrated significantly enhanced performance during 

training. Specifically, within the first 25 iterations, the loss 

value rapidly decreased to approximately 2.0, and stabilization 

was achieved by around the 90th iteration. This phenomenon 

suggests that the improved algorithm possesses a stronger 

adaptation capability to complex scenes, enabling faster 

convergence and substantially reducing training time, while 

also lowering hardware resource demands. Based on the 

experimental findings, it can be concluded that the improved 

SSD algorithm, through structural optimization or adjustments 

in the training strategy, achieves more efficient object 

detection performance, particularly within complex tourist 
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scenic area environments. The rapid decline of the loss value 

signifies that the improved algorithm is capable of completing  

effective learning within a shorter period, thereby enhancing 

system real-time performance and processing efficiency. This 

outcome is critically important for visitor flow monitoring 

systems in scenic areas, where real-time responsiveness and 

resource utilization efficiency constitute key operational 

factors. By reducing training time and accelerating model 

convergence, the improved algorithm not only enhances 

detection accuracy but also provides more reliable data 

support for multi-object tracking and visitor flow monitoring, 

thereby contributing to the realization of efficient and precise 

scenic area management and tourist traffic control. 

 

 
(a) Before improvement 

 
(b) After improvement 

 

Figure 5. Loss curves of the SSD algorithm before and after 

improvement 

 

As shown in the experimental results presented in Table 1, 

the performance of different models in tourist object detection 

within scenic areas varies significantly. Faster R-CNN 

achieved a mean Average Precision (mAP) of 71.5% and a 

frame rate of 17 frames per second (FPS), demonstrating 

relatively high detection accuracy but limited real-time 

performance. The original SSD model obtained a comparable 

mAP of 71.6% while achieving a higher frame rate of 24 FPS, 

indicating an improvement in processing speed. You Only 

Look Once version 3 (YOLOv3) achieved a slightly higher 

mAP of 72.8% and a frame rate of 26 FPS, demonstrating a 

favorable balance between detection accuracy and real-time 

performance. The improved SSD model exhibited the best 

detection accuracy among all models, achieving an mAP of 

73.9%. Although its frame rate was 22 FPS, slightly lower than 

that of YOLOv3, it still demonstrated relatively high 

processing speed along with superior accuracy, thereby 

validating the performance enhancements achieved through 

model improvement. Based on the experimental results, it can 

be concluded that the improved SSD algorithm outperforms 

other models in terms of detection accuracy, achieving the 

highest mAP value of 73.9%, while maintaining a competitive 

processing speed of 22 FPS. This finding suggests that 

although the improved SSD model is marginally less real-time 

compared to YOLOv3 (26 FPS), its superior accuracy makes 

it better suited for visitor flow monitoring systems in scenic 

areas, where high detection precision is critical. Furthermore, 

compared to traditional models such as Faster R-CNN and the 

original SSD, the improved SSD model not only enhances 

detection accuracy but also reduces training and inference 

times, demonstrating more efficient resource utilization. These 

advantages enable the improved SSD model to effectively 

support real-time monitoring and management requirements 

within scenic areas. 

 

Table 1. Tourist object detection performance of different 

models in scenic areas 

 
Algorithm Model mAP (%) FPS 

Faster R-CNN 71.5 17 

Original SSD 71.6 24 

YOLOv3 72.8 26 

Improved SSD 73.9 22 

 

Figure 6 presents the detection results of tourist objects 

within scenic areas. As observed in Figure 6, the detection 

method based on the improved SSD network accurately 

identifies tourist objects in various complex scenes within the 

scenic area. On the left side, in a scene featuring scenic 

buildings and mountainous backgrounds, and on the right side, 

at the entrance of the scenic area partially obscured by trees, 

tourists are clearly enclosed within red bounding boxes. This 

demonstrates the enhanced detection precision of the 

improved network under complex environmental conditions, 

aligning with the research objectives outlined in this study. 

Even in the presence of background interference factors such 

as mountains and dense vegetation, tourist objects can still be 

effectively captured, thereby verifying the high reliability of 

the proposed detection method in practical scenic area 

scenarios. 

 

 
 

Figure 6. Tourist object detection results in scenic areas 

 

A significant difference in statistical accuracy between 
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scenarios without and with DeepSORT-based tracking can be 

observed based on the experimental data presented in Tables 2 

and 3. In Table 2, when DeepSORT was not employed, the 

detection errors were as follows: 5.35% for Video 1, 1.67% for 

Video 2, 2.38% for Video 3, 3.52% for Video 4, and 6.81% 

for Video 5. These results indicate that although the improved 

SSD algorithm enhanced detection accuracy, the absence of an 

effective multi-object tracking method resulted in relatively 

larger errors, particularly for Video 5, where the error reached 

as high as 6.81%. In contrast, after the application of 

DeepSORT, the errors shown in Table 3 were significantly 

reduced: 1.19% for Video 1, 1.11% for Video 2, 0% for Video 

3, 2.35% for Video 4, and 2.27% for Video 5. After using 

DeepSORT for multi-object tracking, the consistency between 

the detection results and the actual number of tourists 

significantly improved. Notably, in Video 3, the detected 

number of tourists exactly matched the actual number, 

yielding an error rate of 0%. Based on the experimental results, 

it can be concluded that the DeepSORT multi-object tracking 

technique significantly improves the accuracy of tourist flow 

statistics in scenic areas. By employing DeepSORT, the 

system is capable of more accurately tracking the motion 

trajectories of individual tourists, thereby reducing instances 

of redundant counting and missed detections, which 

collectively contribute to a substantial reduction in overall 

statistical error. 

 

Table 2. Tourist flow statistics in scenic areas without using 

DeepSORT 

 
Test 

Video 

Actual Number 

of Tourists 

Detected Number 

of Tourists 

Error 

(%) 

Video 1 168 159 5.35 

Video 2 179 176 1.67 

Video 3 42 41 2.38 

Video 4 85 82 3.52 

Video 5 44 41 6.81 

 

Table 3. Tourist flow statistics in scenic areas using 

DeepSORT 

 
Test 

Video 

Actual Number 

of Tourists 

Detected Number 

of Tourists 

Error 

(%) 

Video 1 168 166 1.19 

Video 2 179 181 1.11 

Video 3 42 42 0 

Video 4 85 87 2.35 

Video 5 44 43 2.27 

 

As indicated by the data presented in Table 4, notable 

differences exist between the proposed method and YOLOv3 

in terms of video tourist flow statistical processing speed. For 

the video from Scenic Area 1 (1.1 seconds, 24 FPS), the 

proposed method required a total processing time of 159.265 

seconds, with a per-frame processing time of 0.068 seconds, 

achieving 14 FPS. In comparison, YOLOv3 required a total 

processing time of 215.236 seconds, a per-frame processing 

time of 0.082 seconds, and achieved 11 FPS. For the video 

from Scenic Area 2 (514 seconds, 24 FPS), the proposed 

method achieved a total processing time of 717.235 seconds, 

a per-frame time of 0.055 seconds, and 17 FPS, whereas 

YOLOv3 recorded a total processing time of 812.325 seconds, 

a per-frame time of 0.062 seconds, and 15 FPS. For another 

video from Scenic Area 1 (61 seconds, 31 FPS), the proposed 

method yielded a total processing time of 128.325 seconds, a 

per-frame time of 0.072 seconds, and 13 FPS. YOLOv3 

achieved a total processing time of 159.235 seconds, a per-

frame time of 0.087 seconds, and 12 FPS. For the final video 

from Scenic Area 1 (479 seconds, 51 FPS), the proposed 

method required a total processing time of 1124.235 seconds, 

a per-frame time of 0.051 seconds, and 18 FPS, while 

YOLOv3 required 1268.235 seconds, a per-frame time of 

0.054 seconds, and 17 FPS. Based on the experimental results, 

it can be concluded that the proposed method demonstrates 

higher processing efficiency compared to YOLOv3 in most 

scenarios, particularly regarding video processing time and 

FPS. In the processing of videos from Scenic Areas 1 and 2, 

the proposed method consistently achieved shorter per-frame 

processing times and higher frame rates relative to YOLOv3. 

Although YOLOv3 exhibited relatively high processing speed 

in certain scenarios, especially for longer video durations, the 

overall results indicate that the proposed method is capable of 

completing equivalent video processing tasks in a shorter 

period while maintaining a higher FPS. This demonstrates a 

more optimized processing speed. These findings suggest that, 

although the total processing time of the proposed method may 

be slightly longer in specific instances, its advantages in 

resource utilization efficiency and processing speed confer 

stronger real-time performance and practical applicability for 

visitor flow monitoring in scenic areas. In particular, the 

ability to handle video streams requiring higher frame rates 

more effectively satisfies real-world operational demands. 

In the conducted experiments, although both the improved 

SSD-based method and the YOLOv3-based method 

demonstrated effectiveness in tourist flow counting within 

scenic areas, neither was able to achieve real-time processing 

performance, particularly in terms of video processing speed. 

As shown in Figure 7, the red and orange lines represent the 

statistical processing speeds based on YOLOv3 and the 

proposed method, respectively, while the green line represents 

the original video's FPS. A considerable gap between the 

statistical processing speeds and the original FPS is evident 

across different videos. Particularly for the video from Scenic 

Area 4, the processing speed achieved only approximately 

one-third of the original frame rate, whereas for the other three 

videos, processing speeds reached roughly half of the original 

frame rate. These results indicate that although the proposed 

method outperformed YOLOv3 slightly in some scenarios, 

both methods failed to achieve real-time counting capabilities, 

leading to a deficiency in real-time tourist flow monitoring 

under certain conditions. Potential contributing factors include 

limitations imposed by the experimental environment as well 

as possible improvements yet to be realized in model training 

precision. Despite the inability to achieve complete real-time 

performance, it must be emphasized that counting accuracy 

remains a critical requirement for tourist flow monitoring in 

scenic areas. Therefore, the proposed method retains 

significant research value. Under conditions where strict real-

time requirements are not imposed, the proposed method 

offers superior applicability during the detection phase, as it 

enables more accurate tourist counting. Particularly in 

complex scenic environments, the ability to provide accurate 

flow statistics outweighs the need for strict real-time 

performance. Consequently, although further optimization 

may be necessary to enhance processing speed, the proposed 

method remains a more reliable choice for practical tourist 

flow monitoring applications. 
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Table 4. Statistical processing speed of tourist flow in videos for different algorithms 

 
Video Information Scenic Area 1 Scenic Area 2 Scenic Area 1 Scenic Area 1 

Video duration (s) 1.1 514 61 479 

Video FPS 24 24 31 51 

Total frames 1485 11256 1789 23512 

Total tracking time (s) using the proposed method 159.265 717.235 128.325 1124.235 

Processing time per frame (s) using the proposed method 0.068 0.055 0.072 0.051 

FPS using the proposed method 14 17 13 18 

Total tracking time (s) using YOLOv3 215.236 812.325 159.235 1268.235 

Processing time per frame (s) using YOLOv3 0.082 0.062 0.087 0.054 

FPS using YOLOv3 11 15 12 17 

 

 
 

Figure 7. Tourist flow statistical processing speed for 

different algorithms in scenic area videos 

 

 

5. CONCLUSION 

 

A tourist flow monitoring and management system based on 

image recognition technology was proposed, with the primary 

objective of achieving accurate detection and statistical 

monitoring of tourists within scenic areas through an improved 

SSD network combined with multi-object tracking techniques. 

The research comprised two major components: first, tourist 

object detection based on the improved SSD network, which 

optimized conventional detection methods to better address 

the dynamic variations of tourists in complex environments; 

second, the integration of multi-object tracking technology to 

enable real-time tracking of tourists and dynamic monitoring 

of tourist flow within scenic areas. The improved SSD 

network enhanced detection precision, maintaining high 

accuracy even under conditions of dense tourist presence and 

complex backgrounds, while the multi-object tracking module 

ensured efficient tracking and statistical counting of tourist 

flow. 

From an overall perspective, the system proposed in this 

study demonstrates substantial practical application value. 

Accurate monitoring of tourist flow is enabled, assisting scenic 

area management in enhancing visitor safety measures, 

optimizing resource allocation, and improving operational 

efficiency. Furthermore, by integrating image recognition and 

tracking technologies, a novel and forward-looking solution is 

provided for the application of computer vision techniques in 

scenic area management. The findings also highlight the 

broader applicability of the proposed technology in other 

public environments such as shopping malls and 

transportation hubs, indicating significant potential for 

widespread adoption. 

However, despite the encouraging research outcomes, 

certain limitations of the system remain. First, although the 

improved SSD network significantly enhances detection 

precision, instances of incomplete or incorrect detection may 

still occur under extreme conditions, particularly in highly 

congested environments or against complex backgrounds. 

Second, the employed multi-object tracking technology 

demands considerable computational resources, especially in 

scenarios involving high tourist density, resulting in 

substantial computational overhead. Further optimization of 

the algorithms is therefore required to reduce computational 

demands. Additionally, the implementation of the system 

raises critical concerns regarding data privacy and security. 

Ensuring the protection of tourists' personal information 

remains one of the major challenges that must be addressed in 

future work. To overcome these limitations, future research 

could focus on further optimizing object detection and 

tracking algorithms to enhance system robustness and 

efficiency in high-density tourist scenarios. In particular, 

emerging technologies in deep learning, such as Transformer 

architectures and self-supervised learning, may provide 

promising avenues for advancing existing algorithms. 

Moreover, with continuous technological progress, future 

systems could be expanded to broader applications, including 

large commercial complexes, sporting events, and 

transportation hubs. Regarding data privacy protection, 

research efforts should emphasize the development of 

mechanisms that balance the efficient operation of the system 

with the safeguarding of personal information. Techniques 

such as encryption methods and differential privacy 

approaches are recommended to ensure the security and 

confidentiality of tourist data. 
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