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With the continuous advancement of medical imaging technologies, 3D reconstruction and 

quantitative analysis of medical images have become increasingly vital in disease diagnosis, 

treatment planning, and surgical assistance. The integration of deep learning has brought 

new opportunities and challenges to medical image processing. Although current deep 

learning-based 3D reconstruction methods have achieved certain progress, they still face 

significant issues in practical applications, particularly in terms of the accuracy, robustness, 

and overall quality of feature point extraction and matching. Traditional feature extraction 

and matching techniques often struggle with noise, occlusions, and viewpoint variations, 

while existing deep learning methods show limited generalizability and stability when 

applied to multi-modal medical image reconstruction. To address these challenges, this 

study proposes a novel feature extraction and matching approach based on SuperPoint and 

SuperGlue, integrated with Neural Radiance Fields (NeRF) for 3D reconstruction. 

SuperPoint and SuperGlue enable accurate extraction and matching of key points in medical 

images, effectively overcoming limitations of traditional methods. Meanwhile, NeRF 

facilitates high-fidelity modeling and optimization of lighting and textures in 3D scenes, 

significantly enhancing reconstruction quality and accuracy. By combining these 

technologies, the proposed approach substantially improves the precision of 3D 

reconstruction and quantitative analysis of medical images, demonstrating strong potential 

for clinical applications. 
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1. INTRODUCTION

With the rapid development of medical imaging, medical 

images play an increasingly important role in disease 

diagnosis, treatment planning, and surgical assistance [1-7]. 

Especially in the application of computer-aided diagnosis 

(CAD) systems, how to accurately extract key information 

from medical images and perform 3D reconstruction has 

become a research hotspot [8, 9]. 3D reconstruction of medical 

images can not only provide more intuitive information about 

the location and morphology of lesions [10], but also help to 

better understand the spatial structure and functional 

characteristics of the lesion area [11, 12]. In recent years, deep 

learning technology has provided strong support for medical 

image processing [13-15], especially convolutional neural 

networks (CNN), which have achieved remarkable results in 

image classification, segmentation, and reconstruction. 

However, how to further improve the accuracy and 

interpretability of medical images remains a major challenge 

in the current field. 

Relevant studies have shown that 3D reconstruction of 

medical images can provide clinicians with richer pathological 

information and improve the accuracy of disease diagnosis [16, 

17]. At the same time, feature point extraction and matching, 

as key steps in image reconstruction [18], their accuracy 

directly affects the quality of the final reconstruction results. 

Accurate feature point matching can effectively solve 

problems such as scale, rotation, and viewpoint differences 

between images, thereby achieving efficient image 

registration and fusion. With the development of deep learning 

methods, deep learning-based medical image processing 

technology has become increasingly mature [19], especially in 

the field of 3D reconstruction and quantitative analysis of 

medical images [20, 21], and has made significant progress. 

Researchers are constantly exploring new methods and models 

in order to improve the accuracy and efficiency of 3D 

reconstruction, and to help provide more accurate disease 

diagnosis and treatment plans in clinical practice. 

However, existing 3D reconstruction methods for medical 

images still have some defects and shortcomings. Although 

traditional feature point-based matching methods have made 

breakthroughs in accuracy, their robustness in dealing with 

complex medical images is still insufficient and is easily 

affected by noise, occlusion, and image quality [22]. Deep 

learning methods, although showing excellent performance in 

processing large-scale data, still have certain limitations in the 
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process of feature extraction and matching, such as high 

computational complexity and long model training time [23, 

24]. In addition, existing methods often lack sufficient 

generality and accuracy when dealing with multi-modal 

medical images, resulting in unstable reconstruction effects, 

which are difficult to meet the actual needs of clinical 

applications. 

This paper mainly studies two aspects: first, a medical 

image feature point extraction and matching method based on 

SuperPoint and SuperGlue, aiming to improve the accuracy 

and robustness of feature point matching; second, a 3D 

reconstruction method of medical images based on NeRF, 

aiming to improve the effect and accuracy of 3D 

reconstruction. By combining these two technologies, this 

paper proposes a new 3D reconstruction and quantitative 

analysis method for medical images, which can effectively 

improve the accuracy and efficiency of medical image 

processing. The research in this paper has important 

application value, which can not only provide clinicians with 

more accurate diagnostic information, but also provide new 

ideas and methods for research in medical imaging. 

 

 

2. FEATURE POINT EXTRACTION AND MATCHING 

OF MEDICAL IMAGES 

 

Medical images often have complex structures and high 

variability. Differences between different pathological 

features, different scanning angles, and different imaging 

modalities make the tasks of image alignment and fusion very 

complex. In order to achieve accurate 3D reconstruction, it is 

first necessary to extract representative feature points from 

medical images. These feature points can accurately reflect the 

structural information of the images. The extraction and 

matching of feature points help to align and register images 

from different viewpoints, thus providing a solid foundation 

for subsequent 3D modeling and quantitative analysis. 

 

 

 
 

Figure 1. Workflow of feature point extraction and matching for medical images 

 

In order to deal with the complexity and variability that may 

exist in medical images, this paper proposes an efficient and 

accurate feature point extraction and matching scheme based 

on the SuperPoint and SuperGlue models, as shown in Figure 

1. SuperPoint, as an advanced feature point extraction method, 

can automatically identify stable and information-rich key 

feature points from medical images. These feature points play 

a crucial role in the image registration process. SuperPoint 

adopts a CNN architecture and extracts representative 

keypoints from local regions through learned feature maps 

during training. 

In terms of feature point matching, this paper adopts the 

SuperGlue method to optimize and enhance matching 

accuracy. SuperGlue combines global and local contextual 

information and uses a graph neural network (GNN) to achieve 

efficient feature point matching. Different from traditional 

matching methods, SuperGlue can effectively overcome the 

feature point mismatching problem caused by viewpoint 

differences, morphological variations, etc., and shows strong 

robustness, especially when processing multi-modal medical 

images. Through SuperGlue’s matching mechanism, 

corresponding feature points in medical images from different 

viewpoints and imaging modalities can be accurately found, 

which provides accurate image registration information for 3D 

reconstruction. 

Assuming that the matching score between feature point u 

in image X and feature point k in image Y is denoted by Tu,k, 

SuperGlue calculates the score using the matching descriptors 

ou, and the calculation formula is as follows: 

 

, ,X Y

u k u kT o o=   (1) 
 

 

3. NERF 3D RECONSTRUCTION OF MEDICAL 

IMAGES 

 

In the process of NeRF 3D reconstruction of medical images, 

due to the high spatial complexity and detail-rich lesion 

structures typically present in medical images, directly using 

traditional Multilayer Perceptron (MLP) networks for 3D 

reconstruction may not sufficiently capture these complex 

details, especially in the rendering of density and color. In 

order to avoid the pseudo-linear characteristics in MLP 

networks leading to overly smooth and blurred rendering 

results of adjacent sampling points, this paper proposes an 

optimization method based on positional encoding. In the 3D 

reconstruction of medical images, the 3D coordinates of 

observation points and the observation direction are key input 

parameters of the network, and the introduction of positional 

encoding can effectively enhance the sensitivity of the neural 
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network to spatial information. By encoding the input 

coordinates, especially in the densely distributed regions of 

medical images, the encoding strategy can help the network 

distinguish adjacent sampling points, thereby avoiding overly 

similar output values caused by similar input parameters. 

 

3.1 Positional encoding optimization 

 

In the process of 3D reconstruction of medical images, due 

to the complexity and high precision requirements of medical 

images, the traditional NeRF rendering method may have 

certain deficiencies. Especially when dealing with medical 

image data at different scales, near-view images tend to 

produce blurring phenomena, while far-view images may 

appear with aliasing artifacts. This phenomenon is particularly 

evident in medical images that require clear anatomical 

structures and lesion boundaries. In traditional NeRF, a single 

ray is emitted from the camera to the center of a pixel for 

sampling. Although this is suitable for relatively simple 

rendering tasks, in the 3D reconstruction process of medical 

images—especially when considering changes in camera 

viewing angles and their effects on tissue details—this method 

cannot fully capture fine structures and spatial differences in 

the images. Medical images often present complex organ 

shapes and lesions, especially intertwined different tissue 

structures under multiple views, so traditional ray-based 

rendering methods are difficult to effectively handle the 

influence of different viewpoints and view distances on image 

rendering, thus affecting the quality and accuracy of 3D 

reconstruction. The formula of classical NeRF is: 

 

( ) ( ) ( )( ) ( )( ),
d

v

s

s
Z e S s e s z e s f fs=   (2) 

 

The corresponding positional encoding formula is: 
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Mip-NeRF introduces the concept of cone rendering, which 

can more accurately simulate viewpoint changes and image 

depth information in actual shooting scenes. In practical 

implementation, the input of Mip-NeRF includes not only a 

3D Gaussian function, but also corresponding positional 

information encoding. This helps to approximately represent 

the cone region required for integration, thereby enabling more 

accurate rendering of each pixel in medical images. Suppose 

the cone is located at the image plane (p + f), 1ˆ is the indicator 

function, with radius ė, and a frustum is sampled between two 

positions s₀ and s₁, the set of all points a within it is given by 

the following formula: 
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 (4) 

 

In order to encode all points within the frustum, Mip-NeRF 

uses multivariate Gaussian functions to approximate the 

density and color values of these points. Since the points 

within the frustum have a certain spatial distribution, and this 

distribution is symmetrical around the cone, it can be modeled 

using Gaussian functions. Specifically, Mip-NeRF obtains the 

mean and covariance of each frustum by computing the mean 

and variance along the ray direction, as well as the variance 

perpendicular to the ray direction. These parameters can 

accurately describe the density changes and spatial structures 

of tissues or lesion areas in medical images. For example, in 

the reconstruction process of lung CT images, such Gaussian-

based modeling can accurately express the density differences 

between lung tissue and lesions, thereby ensuring the clear 

presentation of lung details under different viewpoints. This 

optimization method helps to improve rendering accuracy, 

avoiding blurring problems caused by single-ray sampling in 

traditional methods, while maintaining the structural details 

and boundary clarity in images. To obtain the multivariate 

Gaussian function, it is first necessary to calculate the mean 

and covariance of the set D (a, p, ė, s0, s1). Such a Gaussian 

distribution is completely determined by the starting point p, 

the vector f representing ray direction and distance, the mean 

along the ray direction, the variance along the ray direction, 

and the variance perpendicular to the ray direction. Let the 

midpoint sω=(s₀+s₁)/2 and the half-width value sσ=(s1−s2)/2, 

the formulas for computing the mean along the ray, the 

variance along the ray direction, and the variance 

perpendicular to the ray direction are as follows: 
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(5) 

 

Assuming U is a unit vector along the f direction, the 

coordinate frame is transformed into the world coordinate 

system, then: 
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Next, encoding is performed based on ω and Π to facilitate 

the subsequent encoding of the Gaussian distribution. 

According to Eq. (3), the PE encoding matrix O and encoding 

formula ε(a) are obtained. 
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Finally, the positional encoding on the multivariate 

Gaussian is computed. Based on the Gaussian formula of sine 

and cosine functions shown in Eq. (8) and the mean and 

variance encoding formula in Eq. (9), a closed-form solution 

can be further derived: 
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Assuming the element-wise product of the two matrices is 

denoted by p, and the diagonal matrix of the covariance matrix 

is denoted by DI (Πε), the final positional encoding is obtained 

as: 
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3.2 Input encoding optimization 

 

 
 

Figure 2. Positional encoding optimization and input 

encoding optimization process 
 

Unlike traditional image generation tasks, 3D 

reconstruction of medical images requires special attention to 

eliminating inter-patient individual differences, and focusing 

on learning and reconstructing the spatial structure of the same 

type of tissues or lesion areas. Therefore, this paper introduces 

the idea of GLO, which realizes input encoding optimization 

by pairing medical images with a set of random vectors. In this 

method, each image in the medical image dataset is mapped to 

a corresponding random vector, thereby capturing individual 

differences among different images. For each specific medical 

image, this set of random vectors can represent the unique 

individual differences in the image, including minor variations 

in anatomical structures or personalized features of lesions. By 

using these random vectors as inputs, the network can better 

identify and process individual differences in medical images, 

and then focus on learning and reconstructing a unified 3D 

anatomical model. 

During the 3D reconstruction of medical images, the 

encoding optimization step based on the GLO idea first 

initializes a set of f-dimensional random vectors C = {c1, c2, ..., 

cv} for the medical image dataset {a1, a2, ..., av}, and pairs each 

image with its corresponding random vector to obtain a new 

dataset {(c1, a1), (c2, a2), ..., (cv, av)}. These vectors are input 

into a trained neural network, which learns to map these 

random vectors to the salient features in the images, thereby 

capturing the differences between images. This is especially 

important for 3D reconstruction of medical images, because 

images of different patients or the same patient at different 

times may have subtle differences, affecting disease diagnosis 

and progression assessment. Through this optimization, the 

model can focus on the shared structural features in the images 

rather than individual differences, thus enhancing the model's 

understanding and generation capability of anatomical 

structures during the reconstruction process. Figure 2 shows 

the adopted positional encoding optimization and input 

encoding optimization process. 

 

3.3 NeRF Network construction based on encoding 

optimization 

 

Lighting, exposure, and other external factors in medical 

images may affect the color performance of the image but do 

not affect the tissue density and anatomical structure in the 

image. Therefore, this paper draws on the GLO idea and 

assigns a 48-dimensional random vector to each medical 

image as an appearance embedding code, which is specially 

used to encode the impact of lighting and external condition 

changes on image color. Specifically, for each medical image, 

this appearance embedding code only acts on the color output 

part of the image to ensure that during the 3D reconstruction 

of the NeRF, the color part can more accurately reflect the 

influence of external environmental changes without 

interfering with the modeling of density and structure. Then, 

the original form of Eq. (2) can be transformed into: 

 

( ) ( ) ( )( ) ( )( ), , ,
d

v

s

u
s

Z e u S s e s z e s f c fs=   (11) 

 

In terms of implementation steps, for each ray sampling in 

the medical image dataset, the network inputs the 

corresponding appearance embedding code for each ray. In 

this way, the network can distinguish the external condition 

differences of each image from its internal density and 

structural information, thereby focusing on learning and 

reconstructing medical structural features such as organs and 

lesions in the image. For each medical image, the appearance 

embedding code is combined with the ray data to transmit the 

influence of external conditions such as lighting and exposure, 

without interfering with the NeRF network's modeling of 

density and anatomical structures. This separation of color and 

density can effectively reduce the interference of external 

factors on the 3D reconstruction results and improve the 

robustness and accuracy of the network in diverse medical 
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image environments. Ultimately, this encoding-optimized 

NeRF network can accurately capture the 3D anatomical 

structures and lesion areas in images under various shooting 

conditions, achieving high-quality 3D reconstruction of 

medical images and supporting more accurate clinical 

diagnosis and treatment planning. Figure 3 shows the overall 

training process of the model. 

 

 
 

Figure 3. Overall training process of the model 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The experimental results shown in Figure 4 demonstrate 

that the SuperPoint algorithm has significant advantages in 

medical image feature point extraction, especially when facing 

complex and diverse medical images. This algorithm can not 

only identify common geometric structure features but also 

effectively extract feature points on smooth surfaces. 

Compared with traditional geometric feature extraction 

methods, SuperPoint can better handle low-texture regions, 

showing strong dispersion and robustness. Its excellent 

performance on smooth surfaces, especially in medical 

imaging applications, indicates that it can deal with more types 

of tissue and organ surfaces, avoiding the precision 

degradation caused by the neglect of these regions in 

traditional methods. Therefore, the SuperPoint algorithm 

provides strong support for improving the accuracy and 

reliability of medical image feature point matching. 

 

 
 

Figure 4. Example of feature extraction results from medical images 

 

Table 1. Feature extraction, matching, and reconstruction results of the proposed model 

 
 SuperPoint+SuperGlue SIFT SURF ORB 

Image 1 

Keyframe Count 43 

Avg. Match Num. 236.24 146.36 138.65 168.95 

Reconstructed Point Cloud Count 9178 9125 9136 8124 

Image 2 

Keyframe Count 42 

Avg. Match Num. 245.36 215.36 178.26 168.62 

Reconstructed Point Cloud Count 12548 9158 6893 5326 

Image 3 

Keyframe Count 53 

Avg. Match Num. 425.36 412.56 213.56 128.63 

Reconstructed Point Cloud Count 12635 11256 11356 8124 

 

829



As can be seen from Table 1, the feature extraction and 

matching method based on SuperPoint and SuperGlue 

performs better than traditional methods across different 

images. Specifically, for images 1, 2, and 3, the number of 

keyframes using SuperPoint and SuperGlue are 43, 42, and 53 

respectively, all showing relatively high stability. In terms of 

the number of matches, the average match numbers of the 

SuperPoint+SuperGlue combination in images 1, 2, and 3 are 

236.24, 245.36, and 425.36, respectively. Compared with 

SIFT (146.36, 215.36, 412.56), SURF (138.65, 178.26, 

213.56), and ORB (168.95, 168.62, 128.63), the match number 

is significantly higher, indicating that the 

SuperPoint+SuperGlue combination can identify and match 

more feature points during feature extraction and matching, 

especially in complex scenes, offering better accuracy and 

robustness. In terms of reconstructed point cloud count, the 

SuperPoint+SuperGlue method also shows superior results 

across all images, particularly in image 1 and image 2, where 

the point cloud counts (9178, 12548) are higher than those of 

traditional methods, suggesting that this method can generate 

richer and more detailed reconstruction results in the 3D 

reconstruction process. 

 

Table 2. Evaluation results of reconstructed images 

 

 SupePoint+SupeGlue SIFT SURF ORB 

Image 1 

SSIM 0.685 0.678 0.678 0.652 

PSNR 23.26 23.624 23.262 23.215 

LPIPS 0.348 0.356 0.345 0.378 

Image 2 

SSIM 0.652 0.648 0.612 0.489 

PSNR 21.236 21.365 21.362 18.236 

LPIPS 0.335 0.389 0.489 0.552 

Image 3 

SSIM 0.715 0.684 0.623 0.562 

PSNR 21.365 22.362 22.321 21.325 

LPIPS 0.156 0.187 0.226 0.245 

 

  
1) PSNR 2) SSIM 

 
3) MSSIM 

 

Figure 5. Influence of the number of input images on reconstruction performance 
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According to the experimental results in Table 2, the feature 

point extraction and matching method based on SuperPoint 

and SuperGlue performs excellently in image reconstruction 

quality evaluation indicators. Specifically, in terms of 

Structural Similarity Index (SSIM), the values of the 

SuperPoint+SuperGlue combination in images 1, 2, and 3 are 

0.685, 0.652, and 0.715, respectively, all superior to SIFT, 

SURF, and ORB. Particularly in image 3, the SSIM value of 

SuperPoint+SuperGlue is significantly higher than other 

methods, indicating that this method can better preserve the 

structure and details of the image. Regarding Peak Signal-to-

Noise Ratio (PSNR), SuperPoint+SuperGlue also shows good 

performance across all images, especially in image 1 and 

image 2, where the PSNR values are 23.26 and 21.236, slightly 

lower than SIFT but higher than other methods. In addition, 

the Learned Perceptual Image Patch Similarity (LPIPS) results 

show that the SuperPoint+SuperGlue combination also 

performs better than other methods across all images. 

Especially in image 3, the LPIPS value is the lowest (0.156), 

indicating that this method can maintain a smaller perceptual 

difference during the reconstruction process, thereby 

providing a reconstruction effect closer to the real image. 

According to the experimental results shown in Figure 5, 

with the increase of the number of input images, the method 

proposed in this paper (i.e., the combination of 

SuperPoint+SuperGlue and NeRF) demonstrates significant 

improvements in all metrics, including PSNR, SSIM, and 

Mean SSIM (MSSIM). In terms of PSNR, as the number of 

input images increases from 40 to 100, the PSNR value of the 

proposed method gradually increases from 23 to 29.6, 

indicating that more input images help to improve the signal-

to-noise ratio of the reconstructed image. In contrast, although 

the PSNR value of the traditional NeRF method also increases, 

its growth rate is slightly lower, rising from 22.8 to 28.32. 

Similarly, SSIM and MSSIM results show the same trend. For 

SSIM, the proposed method increases from 0.9 to 0.965, which 

is obviously higher than that of the traditional NeRF method 

(from 0.885 to 0.944). In terms of MSSIM, the proposed 

method increases from 0.784 to 0.892, while traditional NeRF 

increases from 0.766 to 0.838. These data indicate that with 

the increase of input image quantity, the improved method 

proposed in this paper can better capture and reconstruct image 

details, especially in the case of multiple image combinations, 

where the improvement in reconstruction performance is more 

significant. 
 

 
 

Figure 6. Influence of different network layers on PSNR and 

running time 

According to the experimental results shown in Figure 6, 

with the increase in the number of network layers, both PSNR 

and running time show some changes. In terms of PSNR, when 

the number of network layers increases from 1 to 3, the PSNR 

value slightly increases from 28.8 to 29, indicating that 

increasing the number of network layers helps to further 

improve the signal-to-noise ratio of the 3D reconstructed 

images. However, the improvement of PSNR brought by 

increasing the number of layers is relatively small, suggesting 

that under the given experimental conditions, the effect of 

increasing network layers on PSNR has a certain marginal 

effect. In terms of running time, with the increase in network 

layers, the running time increases from 1.9 seconds to 2.2 

seconds, showing that the computational complexity and the 

time required increase as the number of network layers 

increases. Specifically, from 1 layer to 2 layers, the running 

time increases by 0.1 seconds, while from 2 layers to 3 layers, 

it increases by 0.2 seconds, reflecting that increasing the 

number of network layers will increase the computational 

burden to a certain extent. 
 

 
 

Figure 7. Influence of the number of input images on MAE 

of image reconstruction 
 

 
 

Figure 8. Influence of the number of input images on 

NRMSE of image reconstruction 
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According to the results in Figure 7, with the increase of 

input image quantity, the maximum value, quartile, median, 

and minimum value of PSNR all show changing trends. As the 

number of input images increases from 40 to 100, the overall 

PSNR performance gradually improves, and the distribution 

range of PSNR becomes more concentrated. Specifically, 

when the number of images is relatively small (e.g., 40 or 50), 

the PSNR values show large fluctuations (e.g., maximum 

value up to 5.7, quartiles between 5.2 and 5.3), while with 

more input images (e.g., 80 or 100), the maximum value and 

quartiles become more stable and exhibit smaller fluctuations 

(maximum value around 6.1, quartiles between 5.2 and 5.4). 

In addition, the minimum value also decreases with the 

increase of input image quantity, indicating that more input 

images can effectively improve the worst-case quality of the 

reconstructed image. 

According to the experimental results shown in Figure 8, 

with the increase of input image quantity, the Normalized 

RMSE (NRMSE) values of the reconstructed images show 

different changing trends. When the number of input images 

is relatively small (e.g., 40 or 50), the NRMSE values are 

relatively high, and large fluctuations are observed in the 

maximum, quartile, median, and minimum values. For 

instance, under the condition of 40 input images, the maximum 

value is 5.6, the quartile is 5.4, the median is 5.2, and the 

minimum value is 4.9. However, as the number of input 

images increases (e.g., from 70 to 100), the fluctuation range 

of NRMSE gradually decreases, and the values show a 

decreasing trend. For example, when there are 100 input 

images, the maximum value drops to 4.3, the quartile 

decreases to 4.7, the median drops to 4.2, and the minimum 

value is 3.2. This indicates that with the increase of input 

images, the reconstruction error gradually decreases, and the 

quality becomes more stable and accurate. 

 

 

5. CONCLUSION 

 

This paper mainly focused on the integration and innovation 

of two key technologies: first, the medical image feature point 

extraction and matching method based on SuperPoint and 

SuperGlue; second, the medical image 3D reconstruction 

method based on NeRF. By combining these two technologies, 

this paper proposed a new method for 3D reconstruction and 

quantitative analysis of medical images, aiming to improve the 

accuracy and efficiency of medical image 3D reconstruction. 

In terms of feature point extraction and matching, the 

advantages of SuperPoint and SuperGlue technologies can 

effectively improve the accuracy and robustness of feature 

point matching, which is crucial for the accurate analysis of 

medical images. At the same time, using NeRF technology for 

3D reconstruction can more realistically and meticulously 

reconstruct the 3D structures in medical images, significantly 

improving the quality of image reconstruction. Through the 

analysis of experimental results, the proposed method in this 

paper showed excellent performance in multiple evaluation 

indicators, especially in image quality evaluation indicators 

such as PSNR, SSIM, and MSSIM, demonstrating that as the 

number of input images increases, the quality of image 

reconstruction gradually improves. In addition, through the 

analysis of different network layers, the number of input 

images, and NRMSE, this paper further proved the importance 

of increasing the number of input images to improve the 

accuracy of 3D reconstruction, indicating that more input data 

can enhance the stability and detail restoration of the 

reconstructed images. These results validated the potential of 

the proposed method in improving the accuracy and efficiency 

of 3D reconstruction of medical images and provide a new 

technical path for medical image analysis and clinical 

application. 

However, this paper also has certain limitations. First, 

although increasing the number of input images can improve 

image quality, the consumption of computing resources and 

the increase in running time need to be further optimized. In 

addition, the application of the proposed method is mainly 

concentrated in the field of medical images, and its 

applicability and universality in other fields still need to be 

further verified. Secondly, although the SuperPoint and 

SuperGlue methods perform well in feature extraction and 

matching, there is still room for improvement in processing 

images with high noise or low quality. Future research 

directions can be carried out from the following aspects: first, 

the structure of the neural network can be further optimized to 

improve the computational efficiency of the algorithm and 

reduce the time required for large-scale data processing; 

second, more feature extraction and matching methods can be 

explored to enhance the adaptability and robustness of the 

method in different types of medical images; finally, other 

deep learning technologies (such as generative adversarial 

networks, CNN, etc.) can be considered to combine with the 

method proposed in this paper to further improve the quality 

and accuracy of 3D reconstruction and expand its application 

in other fields. 
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