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The ability to predict MRR due to its significance in machining operations cannot be 
underestimated. Most computer numerical control cutting tools do not withstand high 
MRR during operation because they cause high heat generation and friction. This leads 
to high vibrations by chip discontinuity with material adhesion. The high vibration 
increases the cutting tool wear rate and leads to the cutting tool's substitution. Therefore, 
this study focuses on the comparative study of the prediction performance of ANFIS-
PSO and ANFIS-GA of MRR via machining of Al-8112 alloy. The machining operation 
was carried out under the TiO2 nano-vegetable oil, and the data was collected via 5 
machining parameters at 5 levels with 50 experimental runs. The ANFIS-PSO and 
ANFIS-GA techniques were employed to develop a model for predicting the MRR data 
generated during the machining operation of AL-8112 Alloy. The data were trained and 
tested. The expected result shows that the ANFIS-PSO training prediction rate of the 
MRR is 82% compared with the ANFIS GA training with 88%. When compared, the 
ANFIS-PSO Testing prediction rate is 80% and 81.5% for the ANFIS-GA Testing 
process. Therefore, the study could conclude that the MRR ANFIS-GA performed better 
with high accuracy. Moreover, this study will assist machinists and manufacturers in 
navigating their machining parameters for optimal processing and manufacturing 
innovation. 
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1. INTRODUCTION

Precision in metal machining is crucial for prototypes and
final products. When a part is accurate, no mistakes could 
affect its mechanical operation, and it will look and feel 
exactly like the one created [1]. When machining, the rate at 
which material is removed must be measured with extreme 
precision. Soft computing techniques need to be implemented 
to model and anticipate the performances of the machining 
process with high accuracy and prediction analyses. MRR 
prediction is one of the concrete ways manufacturers can 
control the quality of the production of mechanical 
components for engineering applications [2]. Okokpujie and 
Tartibu [3] used a QRCC and an ANN to do a numerical 
analysis of the performance of a TiO2-copra-oil-nano-
lubricant with the machining parameters of MRR during the 
end-milling machining operation. The MRR reaction under 
AA8112 alloy end-milling was investigated, and about five 
machining parameters were considered control factors: spindle 
speed, feed rate, length-of-cut, cutting depth, and helix angle. 
A model is created for the MRR to forecast the performance 
of the nano-lubricants by gently raising the MRR and adjusting 

the machining parameters based on the measured experimental 
result from the end-milling machining operation. The findings 
indicate that raising the spindle speed decreased SR, which 
marginally raised the MRR during machining. A high MRR is 
better for an easy manufacturing process [4]. However, 
because of the machining parameter that caused the cutting 
tool and workpiece to come into contact, the end-milling 
operation produces heat and friction. This surplus heat results 
from high cutting force (CF), poor MRR, and high surface 
roughness (SR). Verify to identify the machining parameters 
and the material adhesion by using nano-lubricant having 
multi-walled carbon nanotube-based on copra oil to perform 
experimental examination with multi-objective optimisation 
of the machining parameters in end-milling of AL8112 alloy. 
The two-step method prepared the nano-lubricant, while the 
minimum quantity lubrication (MQL) method with five 
machining factors was applied to apply nano-lubricants [5].  

Okokpujie and Tartibu [6] studied the MRR for improved 
machining of aluminium 8112 alloys. This research aims to 
compare the outcomes of interactions of cutting variables on 
copra oil-based, TiO2- and MWCNT-based nanolubricants. 
The interaction between five machining parameters in three 
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lubrication scenarios on MRR was performed using a 
quadratic rotatable central composite design (QRCCD). 
Compared to the machining setting with MWCNTs and copra-
oil-lubrication, the TiO2 nano-lubricant improves the MRR. In 
conclusion, machine components for high entropy 
applications for sustainable production systems should be 
made using environmentally friendly nano-additive lubricants. 
In their comparative study, Azman et al. [7] showed a 12.3% 
decline in wear scar diameter and a 24.9% drop in coefficient 
of friction. The results also demonstrated that the MoS2 
nanolubricant performed the best in anti-wear and friction 
reduction. The graphite and hBN nanolubricants came next. 
The tested balls' worn surfaces were examined using 
microscopic and spectroscopic techniques to comprehend the 
lubricating mechanisms completely. Consequently, it was 
demonstrated that the structural alterations by sliding impacted 
the development of protective tribofilm. It has been proven 
that using nano-lubricants in machining enhances the MRR 
[8]. However, there is a need to implement the Heuristic and 
metaheuristic techniques in the prediction analysis of materials 
removal rate (MRR). 

An expert may identify a fading inference system, or ANFIS 
uses output/input datasets to build a fading inference system 
whose membership functions are adjusted using a learning 
method. One of the most widely used random swarm 
optimisation methods is the PSO algorithm, which was 
inspired by the behaviour of swarm animals like fish and birds 
[9]. Finding the parameters that maximise or decrease the 
objective function under consideration is often the main task 
of the PSO method. An innovative hybrid approach was 
created during the prediction phase, integrating particle swarm 
optimisation (ANFIS–PSO) with an adaptive-network-based 
fuzzy inference system to forecast safe machining algorithms 
and produce practical answers for search and optimisation 
problems [10]. Using natural selection and genetics concepts 
parameters, regulate machining around several end milling 
operations. According to the findings, the suggested method's 
accuracy has considerably improved compared to alternative 
strategies. Additionally, using the data at hand, the efficacy of 
the suggested method was verified. The genetic algorithm is a 
computational search method for locating accurate or close 
solutions to search and optimisation issues [11]. GA is an 
approach to programming that uses biological evolution as a 
model to solve problems. The genetic algorithm (GA) 
produces practical answers for search and optimisation 
problems using natural selection and genetics concepts. A 
population of numerous individuals is developed in a GA to a 
state that maximises the "fitness" of the population according 
to predetermined selection principles. Oni-Adimabua et al. 
[12] employed ANFIS-based modelling to predict the
accuracy of the MRR and surface roughness. The prediction
results show that the ANFIS model was viable for predicting
the MRR. However, the study did not consider the hybrid
ANFIS-PSO and ANFIS-GA methods. Al-Ghamdi and Taylan 
[13] compared the prediction capabilities of the modelling
approaches ANFIS and Polynomial on MRR. Two numerical
parameters—current and pulse on time—and the electrode
material and how it interacts with a pulse on time were deemed
significant in the ANOVA concerning the polynomial model.
As a result, the developed models were capable of the
prediction of the MRR. However, the ANFIS model predicted
the MRR more accurately.

Therefore, this study aims to develop a hybrid way of 
predicting the MRR during the machining of aluminium 8112 

alloys by comparing the ANFIS-PSO and the ANFIS-GA. The 
study considered five (5) different machining parameters at 
five (5) levels. The parameters are the helix angle, feed rate, 
cutting depth, spindle speed, and cut length during the 
machining. MRR is one of the complex machining responses 
to study during the end milling process. Also, the ability to 
implement the ANFIS-PSO and ANFIS-GA in the prediction 
of MRR is a unique contribution to knowledge in machining 
operations.  

2. MATERIALS AND METHOD

This study uses high-speed steel as the cutting tool, TiO2
nanolubricants as cutting fluid lubricants, and Al8112 alloys 
as the materials. The subsections explain the methodology for 
data creation and the artificial intelligence tool utilised for the 
best prediction. 

2.1 Dataset description for the MRR 

The end-milling process was conducted using a five-factor, 
five-level experiment, and the cutting fluid was made of nano-
lubricants (copra oil based on TiO2 nanoparticles). This 
section is broken down into several steps. The experimental 
inquiry employed the subsequent methodologies. The 
rectangular plate made of aluminium alloy 8112 was divided 
into several lengths: 20, 30, 40, 50, and 60 mm. Fifty (50) 
samples were cut using TiO2 nano-lubricant and copra oil 
lubricant, and 50 were used in each machining setting. In order 
to ascertain the weight before and after the machining of the 
workpiece, a mini-scaling system was used to weigh each of 
the samples. Eq. (1) calculates the MRR once the machining 
time is recorded and the workpiece's density is known [14]. 

𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑊𝑊1 −𝑊𝑊2)/𝜌𝜌 ∗ 𝑀𝑀𝑡𝑡 (1) 

where, w1  = weight before machining, w2  = weight after 
machining of the AL8112 alloy (in grams), ρ  = materials 
density of the AL8112 alloy workpiece (in g/mm3), and M𝑡𝑡 = 
machining time (minutes). 

Figure 1. The machining process setup used for the data 
collection 

This work was conducted at PEDI in Ilesha, Osun State, 
Nigeria, using a CNC milling system such as the SIEG 
3/10/0016 desktop, which has three plane axes—the x, y, and 
z planes—used to experiment. Its features include a 16 mm 
end-milling capacity, an MT3 spindle taper, a 63 mm face-
milling capacity, and a 1 kW power output. Additional 
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parameters include a maximum feeding speed of 500 mm/min, 
frequency of 50 Hz, voltage of 220-240 V, and quick 
movement of 2000 mm/min. Spindle travel is 270 mm, table 
travel is 300 × 120 mm, spindle speeds range from 100 to 5000 
rpm, and the precision is 0.01 mm while repeating the process. 
The experimental setup utilised in this work is depicted in 
Figure 1.  

Additionally, the necessary quantity of HSS cutting tools 
was used in this study to ensure that the maximum flank wear 
remains below the required tool wear limit of VBmax = 0.2 mm. 
However, the analysis only considered the cutting mode for 
slot milling. The TiO2-based copra oil nano-lubricants were 
cleaned and placed ready for use on the vertical CNC milling 
machine. Additionally, the dynamometer and the Al-8112 
alloy were clamped and installed on the machine's table bed, 
and the HSS cutting tool with a 13 mm diameter was fastened 
on the end milling device's spindle head. 

For the machining process, CNC component programs with 
particular commands were created. The Y- and Z-axes 
employed various cut lengths, feed rates, axial depths of cuts, 
helix angles, and spindle speeds for each of the 50 samples. 
This Y- and Z-axis reference is completed. The experimental 
setup for end-milling the AL8112 alloy is shown in Figure 1. 

2.2 Method of the prediction process for the MRR 
prediction via ANFIS-PSO and ANFIS-GA 

Segmentation tasks, rule-based procedure controls, pattern 
recognition problems, and approximate function problems are 
included as applications of ANFIS [15]. In the ANFIS 
framework, which combines ANN and FL, the best way to 
allocate membership functions is determined through input 
and output data mapping connections. Adaptive network 
frameworks utilise some elements from fuzzy logic (FL) 
theory and adaptive neural networks. The FL theory enabled 
the development of the fuzzy interference system (FIS) 
application, and the FIS membership functions (MF) were 
progressively improved through trial and error. In the ANFIS 
technique, the ANN process is employed to realise the FIS 
model. This makes it possible for the provided data to train the 
neural network. Concurrently mapping the results are the 
factors in the Sugeno category IF-THEN rule structure. Figure 
2 depicts the overall layout of the ANFIS framework. This 
inference system consists of five different layers. This includes 
the following layers: the de-fuzzy layer (iv), the fuzzy layer 
(i), the product layer (ii), the normalised layer (iii), and the 
overall output layer (v). Each stratum has unique nodes 
represented by squares, adaptive nodes and changeable 
factors. Circles, on the other hand, represent the fixed nodes, 
where the factors never change. Find the mathematical 
expression in Okokpujie and Tartibu [16]. 

Figure 2. The architecture adopted for the ANFIS model for 
the MRR  

The study takes into account two fuzzy if-then rules to 
describe the rules associated with each layer given in Eqs. (2) 
and (3): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵1𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1 (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵2𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2 (3) 

A1 and B1 are fuzzy sets, x and y are the input variables, and 
f is the output (linguistic variables). As part of the ANFIS 
training process, the following parameters—{pi}, {qi}, and 
{ri}—should be measured. Each layer's performance can be 
evaluated using the following metrics: Initial Layer: A 
membership function defines each node (i) in this layer. Fuzzy 
logic uses membership functions to make the variables fuzzy.  

The mapping from a point in the input space to a 
membership value in the [0,1] interval is specified by these 
membership functions, which are curves. There are several 
membership functions, the most popular being the Gaussian, 
Trapzoidum, and Triangular types, which give Eq. (4) and Eq. 
(5) [17].

𝑄𝑄1.𝑖𝑖 = 𝜎𝜎𝐴𝐴1(𝑥𝑥) (4) 

𝑄𝑄1.𝑖𝑖 = 𝜎𝜎𝐵𝐵1(𝑥𝑥) (5) 

where, x is identified as Q1 and node input, i is the membership 
function of Ai, which the Gaussian function often defines as 
follows in Eq. (6): 

𝜎𝜎𝐴𝐴1(𝑥𝑥) = exp
−(𝑥𝑥 − 𝑐𝑐)2

𝜎𝜎2
(6) 

The antecedent parameters in this formula are the standard 
deviation (σ) and the centre of the Gaussian membership 
function (C), respectively. These parameters are important for 
membership functions, and the optimisation algorithm 
determines their worth. Second Layer: The following relation 
determines a rule's firing strength is given in Eq. (7): 

𝑤𝑤𝑖𝑖 = 𝜎𝜎𝐴𝐴𝐴𝐴(𝑥𝑥)X𝜎𝜎𝐵𝐵𝐵𝐵(𝑥𝑥)  𝑖𝑖 = 1,2, … (7) 

Third Layer: By dividing the projectile strength of the ith 
rule by the overall firing power of all rules, the firing strength 
of each rule is normalised in Eq. (8). 

𝑄𝑄3.𝑖𝑖 = 𝑤𝑤𝚤𝚤��� =
𝑤𝑤𝑖𝑖

𝑤𝑤1 + 𝑤𝑤2
 𝑖𝑖 = 1,2, … (8) 

Fourth Layer: The fuzzy rule's outcome portion is measured 
in the manner described in Eq. (9): 

𝑄𝑄4.𝑖𝑖 = 𝑤𝑤𝚤𝚤���𝑓𝑓𝑖𝑖 = 𝑤𝑤𝚤𝚤���(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1)  𝑖𝑖 = 1,2, … (9) 

where, pi, qi, and ri are the consequential machining variables 
computed by the optimisation algorithm.  

Fifty Layer: at this stage, all the outputs of the fourth layer 
are added to form Eq. (10), and Figure 3 depicts the MRR 
neural network model. 

𝑄𝑄 5.𝑖𝑖 = � 𝑤𝑤𝚤𝚤���𝑓𝑓𝑖𝑖
𝑅𝑅

𝑖𝑖=1
  𝑖𝑖 = 1,2, … (10) 
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Figure 3. Neural network model for MRR 

Figure 4. The procedure of the ANFIS-PSO prediction 
analysis 

The initial and final variables are typically the two structural 
variables of the ANFIS model [18]. The ANFIS model's 
antecedent and consequent parameters are typically changed 
using gradient-based techniques [19]. The sluggish pace of 
convergence and the fact that the solution is found in local 
optimality are two problems with gradient-based approaches 
[20]. The neural network model and ANFIS structure for 
cutting force are displayed in Figures 3 and 4. Particle swarm 
optimisation (PSO) can apply metaheuristic algorithms and 
successfully alleviate the issues with gradient-based 
techniques [21]. The ANFIS-PSO method is shown in Figure 
4, and the ANFIS-GA for the model utilising the metaheuristic 
optimisation approaches of GA and PSO is shown in Figure 5. 

Figure 5. The procedure of the ANFIS-GA prediction 
analysis 

In 1995, Hub and Kennedy invented the PSO algorithm, one 
of the nature-inspired optimisation techniques [22]. Large-
scale numerical optimisation problems are primarily addressed 
by this method, which does not require knowledge of the target 
function gradient [23]. In order to solve a problem, a simple 
formula is used to randomly transfer a population of possible 
solutions into the issue domain. Subsequently, it searches for 
the optimal global solution (each feasible option is called a 
particle). Like the PSO algorithm, the approach searches 
inside the problem domain to produce a population of 
randomly produced solutions, much like the genetic algorithm 
[24]. The following variables were changed to perform 
parametric analysis after the hybrid ANN-GA model was 
trained using experimental data: Five to ten hidden neurones 
are present, depending on how the set is constructed to 
optimise the ANFIS using the GA algorithm, chromosome 
encoding, fitness function, selection, recombination, and the 
evolutionary scheme for the cutting force. The population 
numbers are 25, 50, 75, and 100. 

However, the distinct GA and the PSO approach gives a 
random speed to each particle—that is, to every conceivable 
solution to the optimisation problem—so that each iteration 
shifts a single particle around its velocity. Moreover, unlike 
the genetic algorithm, every particle in the PSO algorithm 
should retain the superlative solution to the optimisation 
problem from the program's start until the end of the last 
iteration. The PSO algorithm can solve continuous 
unconstrained maximisation problems, much like the 
evolutionary algorithm. On the other hand, continuous state 
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optimisation issues (such as minimisation or maximisation) 
can also be solved with slight adjustments to the function 
specification [25]. All of these particles share five traits. The 
goal function that corresponds to the present location, speed, 
optimal position, and quantity of the objective function that 
corresponds to the optimal position all define the position. 
Within the method, equations define the position and speed of 
each particle. Eqs. (11) and (12), as well as based on 
information from the phase before. These equations designate 
c1 and c2 as the velocity constants and r1 and r2 as random 
integers. P-best, x, v, Pt, and Gt comprise inertia's weight. 

𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡 = 
𝜒𝜒�𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖𝑡𝑡−1 + 𝑐𝑐1𝑟𝑟1�𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡−1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡−1� + 𝑐𝑐2𝑟𝑟2�𝐺𝐺𝑗𝑗𝑡𝑡−1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡−1�� 

(11) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡−1 + 𝜐𝜐𝑖𝑖𝑖𝑖𝑡𝑡  (12) 

The genetic algorithm model begins with chromosomes, a 
collection of solutions. A prior population is completed to 
generate a new one. The new solution created from the chosen 
progeny has a signed fitness certificate. This process is 
repeated Until a condition— the improvement of the best 
solution—is satisfied. The ANFS algorithm, which is a 
component of the fitness function, is crucial to f(x) in order to 
achieve this. Eqs. (13) and (14) show the fitness of the ANFIS 
algorithm function intervention. 

𝑓𝑓1(𝑥𝑥) −
1
𝑚𝑚
��𝑜𝑜(𝑑𝑑𝑖𝑖 − 𝑎𝑎𝑖𝑖)2

𝑚𝑚

𝑖𝑖

 (13) 

where, di is the anticipated traffic volume, ai is the output 
obtained by the ANFIS, and m is the number of features.  

𝑓𝑓2(𝑥𝑥) −
1

𝑛𝑛 − 𝑚𝑚
��𝑚𝑚(𝑑𝑑𝑖𝑖 − 𝑎𝑎𝑖𝑖)2

𝑚𝑚

𝑖𝑖

 (14) 

where, ai is the actual traffic volume, di is the minimum, n is 
the total amount of input qualities, and n-m denotes the 
remaining undesirable characteristics. 

The fitness function that follows is provided in Eq. (15). 

𝑓𝑓(𝑥𝑥) −
𝑓𝑓1(𝑥𝑥) + 𝑓𝑓2(𝑥𝑥)

2
(15) 

3. RESULTS AND DISCUSSIONS

The results obtained for the prediction analysis of the
materials removal rate study on the Al8112alloys are depicted 
in Table 1. Fifty samples' worth of data were utilised, of which 
35 runs were used for training and 15 for testing. The MRR is 
predicted using two hybrid metaristic models, ANFIS-PSO 
and ANFIS-GA. The comparative analysis of the two-hybrid 
system, such as the MRR ANFIS-PSO training analysis, 
shows that the ANFIS-PSO has a prediction rate of R2 0.8159, 
MAPE 6.8837, MAE 3.5242, MAD 3.5164, and RMSE 
4.4947.  

Table 1. The performance metrics obtained for MRR via ANFIS-PSO and ANFIS GA 

Performance Metrics Data MRR ANFIS-PSO 
Training 

MRR ANFIS GA 
Training 

MRR ANFIS-PSO 
Testing 

MRR ANFIS-GA 
Testing 

Mean Absolute Percentage 
Error MAPE 6.8837 5.5419 8.9155 7.6455 

Mean Absolute Error MAE 3.5242 3.3792 3.3697 3.3437 
Mean Absolute Deviation MAD 3.5164 3.4301 3.3977 3.2073 
Root Mean Square Error RMSE 4.4947 3.6685 4.0051 4.004 

Coefficient of Determination R2 0.8159 0.8826 8031 0.8118 

(a) ANFIS-PSO (b) ANFIS-GA

Figure 6. The comparative analysis of the training data prediction with the experimental data for the MRR 
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At the same time, the ANFIS-GA training performance 
shows that the ANFIS-GA could predict the MRR ANFIS GA 
training R2 0.8826, MAPE 5.5419, MAE 3.3792, MAD 
3.4301, and RMSE 3.6685. The results show that the most 
accurate prediction performance was achieved with the 
ANFIS-GA for the testing. Figure 6 shows the comparative 
analysis of the training data prediction with the experimental 
data for the MRR (a) ANFIS-PSO and (b) the ANFIS-GA. 
Figure 7 illustrates the comparative analysis of the training R2 

predicted and experimental data for (a) ANFIS-PSO and (b) 
ANFIS-GA. Figure 8 depicts the comparative analysis of the 
testing data prediction with the experimental data for the MRR 
(a) ANFIS-PSO and (b) the ANFIS-GA. Figure 9 compares
the testing R2 predicted and experimental data for (a) ANFIS-
PSO and (b) ANFIS-GA.

(a) ANFIS-PSO

(b) ANFIS-GA

Figure 7. The comparative analysis of the training R2 

predicted and experimental data 

(a) ANFIS-PSO

(b) ANFIS-GA

Figure 8. The comparative analysis of the testing data 
prediction with the experimental data for the MRR  

(a) ANFIS-PSO

(b) ANFIS-GA

Figure 9. The comparative analysis of the testing R2 

predicted and experimental data  

Statistical indicators were utilized to assess the accuracy of 
the model developed in this study. Eqs. (16)-(20) introduce 
these indicators. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1

50
�(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖)2
50

𝑖𝑖=1

 (16) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1

50
�(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖)2
50

𝑖𝑖=1

 (17) 
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𝑀𝑀𝑀𝑀𝑀𝑀 = �
1

50
�|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖|
50

𝑖𝑖=1

 (18) 

𝑅𝑅2 = 

�
∑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇����������) × (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)�����������

�∑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇����������)2 × ∑(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)�����������2
�
2

(19) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
1

50
�(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖)2
50

𝑖𝑖=1

 (20) 

3.1 Comparative prediction performance of experimental 
results, ANFIS-PSO and ANFIS-GA of MRR of AL-8112 
alloy for testing and training data 

From the comparative study, Figure 10 and Figure 11 show 
that the ANFIS-PSO and ANFIS-GA prediction of the testing 
experimental data was 80%, and the ANFIS-GA was 81%, 
which shows that the prediction analyses are significant. 
MAPE of 8.9155 and 7.6455 for ANFIS-PSO Testing and 

ANFIS-GA Testing, respectively. Having an MAE of 3.3697 
compared to 3.3437, RMSE of 4.0051 compared to 4.004 for 
both the MRR ANFIS-PSO Testing and the MRR ANFIS-GA 
Testing, this result is supported by the work [26]. The results 
[27] carried out a hybrid study of the ANFIS-GAN-XGBoost
model for forecasting MRRs depending on process variables.
This study opens the door for more research in this area by
demonstrating the potential of using cutting-edge machine-
learning algorithms for sustainable machining processes [28].
The ability to predict MRR for the sustainable manufacturing
process is very complex as the MRR affects both the analysis
of the tool wear rate, the surface produced during the
machining process, and the cutting force during the cutting
process. It has been proved that the application of ANFIS can
predict the MRR; however, it is necessary to employ the
Heuristic and Metaheuristic Methods to predict the MRR. The
significant aspect of this study is to enable the application of
the ANFIS-GA and ANFIS-PSO for optimal analysis of the
MRR [29]. The study employed five cutting parameters with
five levels to generate the data of 50 runs during the
machining, and the response surface method was used to
generate the experimental results for the practical study.

Figure 10. Comparative prediction performance of experimental results, ANFIS-PSO and ANFIS-GA of MRR of AL-8112 alloy 
for testing data 

Figure 11. Comparative prediction performance of experimental results, ANFIS-PSO and ANFIS-GA of MRR of AL-8112 alloy 
for training data 

4. CONCLUSION

The prediction analysis of the MRR of the data collected via
machining of AL-8112 Alloy has been trained and tested using 
ANFIS-PSO and ANFIS-GA. The study considered 50 
experiment runs obtained from 5 cutting parameters with 5 
levels, such as helix angle, feed rate, depth of cut, spindle 
speed, and cut length. The spindle speed varies from 2000, 
2500, 3000, 3500, and 4000 rpm, the helix angles 0, 15, 30, 
45, and 60 degrees, and the feed rate 100, 150, 200, 250, and 

300 (mm/min), the length of the cut, 20, 30, 40, 50, and 60 
(mm), with a depth of cut 1, 1.5, 2, 2.5, and 3 (mm). 
Employing the response surface method to generate 50 runs 
for the experimental analysis. The 50 machining runs were 
conducted under TiO2 nano-vegetable oil-cutting fluid 
machining media. The following conclusion was drawn from 
the results obtained from the prediction study. 

-The ANFIS-PSO and ANFIS-GA techniques were viable
tools for the prediction of MRR for sustainable manufacturing 
processes.  
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-The ANFIS-PSO training prediction rate of the MRR is
82% compared with the ANFIS GA training of 88%, which 
was achieved for the training data with the selected 
experimental results. 

-For the testing process, the ANFIS-PSO prediction rate is
97% and 99% for the ANFIS-GA. This has shown that the 
hybrid model could predict the MRR for 5 cutting parameters 
at 5 levels. 

Finally, this study will recommend that the manufacturing 
industry apply these parameters and techniques in machining 
operations for sustainable production processes. The 
environmental benefit of this study is that the machining 
operations are carried out in an eco-friendly cutting fluid 
environmnet, which increases the performance of the 
production process. For future studies, further explorations 
could be made into the applications in various industries, such 
as the study demonstrated in the construction and biomedical, 
respectively [29, 30]. 
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