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The use of solar energy as electrical energy in Indonesia is still relatively small, 

accounting for 0.15GWp of a total of 207.8GWp capacity. The sustainability of renewable 

energy in Indonesia is an important aspect towards national energy security and one of 

the efforts is to create a real-time reliability monitoring system. Reliability is an important 

factor in the longevity of the components of a power plant. The purpose of this research 

is to create a real-time reliability monitoring system for a solar power plant (SPP) which 

is developed through two stages, modeling the SPP system and designing a reliability 

system. The SPP system model was built using an artificial neural network (ANN) which 

uses time and previous measurement data as input and three lags as variations. 

Measurement data is divided into training data and testing data with a ratio of 70:30. The 

ANN model for the reliability system is developed based on failure detection, which 

occurs when the predicted value deviates from the actual measurement by more than five 

percent. Each occurrence of failure will be detected and entered into Benard's 

approximation to determine the value of reliability. The results of the ANN model for the 

most accurate prediction system are achieved by using time and lag-3 voltage data as 

inputs. The resulting MSE value is 8.963×10-3 for training data and 9.533×10-3 for testing 

data. The SPP reliability value was 0.683 in the first year and continued to decrease by 

0.376 in the second year. Preventive maintenance needs to be done when the reliability 

reaches 0.55 with a maintenance interval of 21 months. 
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1. INTRODUCTION

The demand for electrical energy in Indonesia continues to 

rise. The State Electricity Company reported that national 

electricity consumption in 2018 was 232,296 TWh and is 

expected to grow by 5.1 percent annually. However, energy 

sources are still dominated by coal and fossil fuels by 59,6 

percent [1]. However, the energy supply remains heavily 

dependent on coal and fossil fuels, accounting for 59.6 percent 

of the total energy mix 111. In response, the government is 

transitioning to renewable energy sources to reduce CO₂ 

emissions, with solar energy being a promising alternative. 

Indonesia has significant solar energy potential [1]. 

Indonesia has significant solar energy potential. The National 

Energy General Plan (2017) estimates a generation capacity of 

207.89GW, yet the installed capacity remains far below the 

target, reaching only 0.15GWp out of the 6.5GW target for 

2025 [2]. The data shows that the energy produced by SPP is 

still far below the target. Of course, this still far-reaching level 

of achievement was triggered by several challenges. 

The challenges of developing renewable energy can be seen 

from the problems in the form of investment costs, access to 

efficient technology, access to cheap funding, and reasonable 

selling prices or economic prices [3]. The biggest challenges 

in the development of renewable energy, especially in the 

development of SPPs, are economy and efficiency. Solar 

Power Plants (SPPs) are highly demanded as an energy source 

because they generate electricity in an environmentally 

friendly and cost-effective way, utilizing the unlimited 

potential of solar energy [4]. However, despite their 

advantages, SPPs still face technical and operational 

challenges that must be addressed to ensure consistent 

reliability and performance. A study of 23 renewable energy 

development projects across 17 countries found that almost 21 

percent of the projects failed, and only 48 percent remained 

fully functional over time. This is largely due to a lack of 

responsibility, inadequate maintenance, and the use of low-

quality technologies that compromise the reliability and 

capability of the systems in the long term [5]. Unanticipated 

failures that prolong downtime periods further worsen the 

situation and negatively impacting the financial performance 

of the investment [6]. In response to these challenges, one 

important effort is the development of a real-time reliability 

monitoring system, aimed at ensuring the sustainable 

performance of solar power plants. Reliability of renewable 

energy systems plays a significant role in optimizing decisions 

in design and economical operation over a long period of time 

[7]. 

Reliability is the probability of an item to be able to carry 

out the specified function, under certain operating conditions 

and environment for a specified period of time [8]. This 

malfunction has the potential to affect the efficiency of system 

performance which in turn will also increase maintenance 

costs at the level of severe damage. Several studies have 

International Journal of Safety and Security Engineering 
Vol. 15, No. 3, March, 2025, pp. 533-541 

Journal homepage: http://iieta.org/journals/ijsse 

533

https://orcid.org/0000-0002-9520-3390
https://orcid.org/0009-0000-6003-3806
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150312&domain=pdf


 

concluded that energy and maintenance are generally the main 

factors affecting production costs. A real-time reliability 

monitoring system could address these issues by enabling 

early detection of failures, preventing total system breakdowns, 

and minimizing downtime. 

Research on monitoring the reliability levels of Solar Power 

Plants (SPP) has been extensively conducted by several 

researchers. One method used is the control chart. A control 

chart is a diagram that provides an image of the behavior of a 

process. The determination of the control chart is based on the 

calculation of statistical values computed from the entire 

sample. In a control chart, limits are set where a process can 

be said to deviate, consisting of the Upper Control Limit 

(UCL) and the Lower Control Limit (LCL). Reliability values 

are calculated using an exponential distribution obtained based 

on the failure rate by considering the number of data points 

deviating from the set limits. The results show that the 

reliability value decreases to 0.55 after the SPP has been 

operating for 22 days [9]. Another method used involves a 

control chart with a Weibull distribution, which can represent 

many Probability Density Functions (PDF). The system 

reliability value of 0.3 occurs at an operational time of 5 days 

[10]. Reliability calculations for solar panels use the beta 

distribution and binomial distribution with a data working life 

of 17 years. The results show that reliability decreases from 

100% at 12 years of working life to 2.5% at 17 years of 

working life [11]. Another study also uses the Reliability 

Block Diagram (RBD) approach with components such as 

Balance of System (BOS), inverter, Photovoltaic (PV) 

module, converter, and storage system. Reliability 

calculations are based on each subsystem. The reliability of the 

PV subsystem is 0.7956 after 10 years and 0.5036 after 30 

years. The best Probability Density Function (PDF) for solar 

modules is the exponential distribution [12]. 

While previous research has explored various methods for 

assessing solar power plant (SPP) reliability, most approaches 

rely on offline statistical analyses, such as control charts, 

Weibull distributions, beta-binomial models, and Reliability 

Block Diagrams (RBDs). These methods provide valuable 

insights into system performance but lack real-time 

monitoring capabilities, limiting their ability to detect failures 

promptly. This study addresses this gap by proposing a real-

time reliability monitoring system for SPPs. Unlike existing 

approaches, the proposed system enables continuous 

assessment of reliability metrics, allowing for early detection 

of potential failures and faster decision-making to optimize 

maintenance strategies [12]. By integrating real-time data 

acquisition and analysis, this research enhances the 

operational efficiency of SPPs, reduces maintenance costs, and 

contributes to the broader effort of improving the reliability 

and sustainability of solar energy systems. 

 

 

2. METHOD 

 

The research method consists of six stages, namely data 

collection, data processing, data testing, SPP system modeling, 

model testing, anomaly detection design, and reliability 

monitoring design. 

 

2.1 Data collecting 

 

The data used is voltage measurement data from the solar 

power plant located at the Pandansimo Hybrid Power Plant, 

Bantul, Yogyakarta. The data consists of measurement results 

collected over a period of 5 years. Nine measurements are 

taken daily at one-hour intervals, from 08:00 to 16:00 GMT+7. 

 

2.2 Data processing 

 

Voltage measurement data is graphed based on time. The 

measurement data is also carried out by separating outliers 

using a box plot. The data is divided into two parts, namely 

training data and test data with a ratio of 70:30. The training 

data is used to obtain the weight and bias values of the ANN 

model and the test data is used to test the ANN model obtained 

previously. 

 

2.3 Data testing 

 

The data were tested using the correlation test, 

autocorrelation function (ACF) test, and partial 

autocorrelation function (PACF) test. The correlation test aims 

to get the value of the relationship between the independent 

variables and one dependent variable. The Pearson correlation 

test equation is shown in Eq. (1) [13, 14]. 
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(1) 

 

ACF is a linear relationship between time series data x(i) 

and x(i-1) with the aim of identifying the model and the 

stationarity of the data in mean and covariance [15]. The ACF 

equation is shown in Eq. (2). 
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ρk is the autocorrelation function, y(i) is the i-th 

measurement data, and i is the time lag which refers to the 

delay or shift in time-series data, meaning that past values of a 

variable are used as inputs to predict future values. 

PACF is the correlation between x(i) and x(i-1) after 

removing any linear dependence or x(t) and x(t-h). This 

coefficient is denoted ϕhh with a different, h [13]. If x(t) is a 

normally distributed time series, then: 

 

( )1 2 1cor , , , ,hh t t h t t t hX X X X X − − − − += ∣  (3) 

 

A common method for determining PACF is to use the 

following Yule-Walker Eq. (4). 

 

𝜙ℎ1 + 𝜌(1)𝜙ℎ2 + 𝜌(2)𝜙ℎ3 + ⋯+ 𝜌(ℎ − 1)𝜙ℎℎℎ
= 𝜌(1) 

𝜌(1)𝜙ℎ1 + 𝜙ℎ2 + 𝜌(1)𝜙ℎ3 + ⋯ + 𝜌(ℎ − 2)𝜙ℎℎℎ
= 𝜌(2) 

𝜌(ℎ − 1)𝜙ℎ1 + 𝜌(ℎ − 2)𝜙ℎ2 + 𝜌(ℎ − 3)𝜙ℎ3 + ⋯
+ 𝜙ℎℎℎ = 𝜌 

(4) 

 

And the value of ϕhh is obtained as Eq. (5). 
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2.4 System modeling 

 

Measurement data is modeled using an artificial neural 

network (ANN) with input in the form of time, previous 

measurement data, and output in the form of current 

measurement data. The ANN scheme for modeling is shown 

in Figure 1. ANN consists of an input layer (leftmost) that 

receives data, hidden layers (middle) that process information 

using weights, biases, and activation functions, and an output 

layer (rightmost) that produces the final result. As a subset of 

machine learning, ANN is designed to recognize patterns and 

make predictions by learning from data through iterative 

training processes. 

The ANN model is presented in a matrix form, with the 

number of nodes set to 15. The activation function in the 

hidden layer uses the sigmoid function while the output layer 

uses a linear function. The sigmoid activation function in the 

hidden layer and the linear activation function in the output 

layer were chosen because they are simple, commonly used, 

and fit the normalized input data range [16]. The mean square 

error (MSE) value was chosen at 0.01 as the standard for the 

iteration to finish. The learning algorithm used is Levenberg-

Marquardt. The Levenberg-Marquardt algorithm is highly 

valued for its accuracy and is often applied in ANNs, but the 

probability of convergence at local extrema with errors 

approaching the global extrema is very low [17, 18]. The 

Adaptive Moment Estimation (ADAM) algorithm is an 

alternative algorithm that can be used for large datasets, deep 

models, and using modern frameworks such as 

TensorFlow/PyTorch. The general ANN equation is shown in 

Eq. (6). 

 

 
 

Figure 1. ANN scheme 
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wh is the hidden weight, x is the input data, bh is the input 

bias, fh is the activation function in the hidden layer, wo is the 

output weight, bo is the output bias, fo is the activation function 

in the output layer and yo is the model output. Nx is the number 

of inputs and Nh is the number of nodes. 

 

2.5 Testing modeling 

 

Model testing is carried out to see the difference in the 

difference between the model output and the actual 

measurement output. Testing is carried out using the mean 

square error (MSE) that measures the average squared 

difference between predicted and actual values. MSE is shown 

in Eq. (7) [19, 20]. 
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Ny is the amount of data from y, y is the measurement output, 

and 𝑦̂ is the model output. 

 

2.6 Design of anomaly detection 

 

The measurement result is considered to be an anomaly 

(failure) when the measurement result exceeds the specified 

limits including the upper control limit (UCL) and lower 

control limit (LCL). The allowed error limit is five percent or 

0.05. the UCL and LCL equations are shown in Eqs. (8) and 

(9). The anomaly detection algorithm flowchart is shown in 

Figure 2. 

 

 
(a) 
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(b) 

 

Figure 2. Flowchart (a) anomaly detection algorithm (b) 

calculation of the cumulative number of anomalies 

 

( ) ( ) 0.05 ( )UCL i y i y i= +  (8) 

 

( ) ( ) 0.05 ( )LCL i y i y i= +  (9) 

 

The arrangement of the anomaly detection algorithm is as 

follows: 

1) Initialize the number of measurement outputs, Ny and 

measurement outputs y. Calculation of model output 

𝑦̂(𝑖), UCL(i), and LCL(i). 

2) Compare the measurement output values, 𝑦̂(𝑖) , 

against UCL(i), and LCL(i). If the measurement 

output is still within the UCL and LCL range, then no 

anomaly is detected (d1(i)=0), and if the measurement 

output is outside the UCL and LCL range, an 

anomaly is detected (d1(i)=1). 

3) Comparing the value of i is equal to 1, If i is equal to 

1 then d2(i)=d1(i) and if i is not equal to 1 then 

comparing d1(i-1) is equal to 1. If d1(i-1) equals 1 

then d2(i)=0, and if d1(i-1) does not equal 1 then 

d2(i)=d1(i). This comparison is used to summarize 

successive anomalies. 

4) Update the value of i if i is smaller than the number 

of measurement outputs. 

5) The calculation of anomaly detection is carried out 

until it reaches the number of measurement outputs, 

Ny. 

 

The arrangement of the cumulative anomaly calculation 

algorithm is as follows: 

1) Determination of anomaly, d2(i). 

2) Comparing the value of i is equal to 1. If i is equal to 

1 then D2(i)=d2(i) and if i is not equal to 1 then 

D2(i)=D2(i-1)+d2(i). 

3) Update the value of i if i is less than the number of 

anomalies. 

4) Calculation of anomaly detection is carried out until 

it reaches the number of anomalies, Nd2. 

 

2.7 Design of reliability monitoring 

 

The detected anomaly d2(i) is assumed to be a failure in the 

reliability calculation. Failures will be counted cumulatively, 

D2(i). Reliability calculations are carried out based on Benard's 

approximation which is shown in Eq. (10) [14]. 
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R(i) is the current reliability in i, D2(i) is the cumulative 

failure and ND2 is the total number of failures. 

 

 

3. RESULT AND DISCUSSIONS 

 

3.1 Results of data acquisition and processing 

 

The results of the data division for training data and test data 

are shown in Figure 3 with a composition of 70:30. Figure 3 

(a) is a graph of the training data and test data before the 

outliers and Figure 3 (b) is a graph of the training data and test 

data after the outliers. Outlier data is done to remove data that 

is outside the ideal data range. Data before the outlier range 

between 200.3 to 383 and after the outlier, data range between 

223.6 to 298.2 with 51 data is removed. Outliers can have a 

significant influence on ANN modeling in real time 

monitoring. Figure 3 (a) shows that the voltage value 

fluctuates within the specified time range, with one instance 

where the value significantly spikes. Therefore, an outlier is 

performed for values that are outside the range so that Figure 

3 (b) is obtained. 

Figure 4 shows the box plots before and after the outliers 

for the time data and stress data. Box plots provide a visual 

representation of the quartiles, mean values, and outliers of the 

data set. Box plots also provide an overview of data that are 

outside the box plot or out of reach. MSEThe time variation is 

in the range of 10 to 14 hours and the voltage data variation is 

in the range of 254 volts to 274 volts. The result shows that in 

Figure 4 (a) there are still stress data that are outside the box 

plot, which means that the data is outside the range of the data, 

so these data must be removed. Figure 4 (b) shows that the data 

is already in the box plot area, which means that the data is 

within the measurement data range. 

Figure 5 shows that there is a relationship between the 

voltage data from the current solar power plant, Vt with time t 

and the previous voltage data, Vt-k. Figure 5 (a) shows the 

relationship between the voltage data from the current solar 

power plant, Vt and the time, t correlation coefficient value of 

0.2744 before removing outliers and 0.2725 after removing 

outliers. Figure 5 (b) shows the relationship between the 

current voltage data, Vt and the previous voltage data, Vt-k 

namely lag-1 (Vt-1), lag-2 (Vt-2), and lag-3 (Vt-3) respectively 

0.6229, 0.3426, 0.1296 for before removing outliers and 

0.6429, 0.3424, 0.1077 for after removing outliers. The value 

of the correlation coefficient can be seen in Table 1. 

Table 1 shows that the largest correlation coefficient value 

is shown by the relationship between the current voltage data, 

Vt to previous data, Vt-1 for data after removing outliers, which 

is equal to 0.6429 which is classified as strong. 
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(a) Before outliers detection 

 

 
 

(b) After outliers detection 

 

Figure 3. Graph of data 
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(a) Before outliers detection 

 
 

(b) After outliers detection 

 

Figure 4. Box plot 

 

 
 

 

 

Figure 5. Scatter plot (a)Vt to t; (b) Vt to Vt-1; (c) Vt to Vt-2; (d) Vt to Vt-3 

(a) (b) 

(c) (d) 
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Table 1. Correlation coefficient value 

 

Input 

Output, Vt 

Before Removing 

The Outliers 

After Removing 

The Outliers 

t 0.2744 0.2725 

Vt-1 0.6229 0.6429 

Vt-2 0.3426 0.3424 

Vt-3 0.1296 0.1077 

 

Figure 6 shows the ACF and PACF graphs from the training 

data and test data. Figure 6 (a) shows that there is no cut-off 

on the ACF graph but decreases following an exponential 

shape. Figure 6 (b) shows that there is almost a cut-off on the 

PACF graph. This shows that the time series method can be 

used in the design of reliability monitoring designs in real time. 

Figure 7 shows a graph of normalized data from training 

data and test data. Normalization aims to make measurement 

data, namely time data and voltage data from the solar power 

plant, within the same range. Data normalization is typically 

performed within the range of 0 to 1 or -1 to 1. In this study, 

normalization is applied within the range of 0 to 1. 

 

 
 

(a) ACF 

 

 
 

(b) PACF 

 

Figure 6. Graphic of correlation function 

 

 
 

Figure 7. Graph of normalized data 

 

3.2 Results of solar power plant modeling 

 

The results of modeling solar power plant data obtained 

from ANN in matrix form are shown in Eq. (11) and Figure 8. 

 

𝑤ℎ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.333 4.324 0.364 8.210
0.689 9.413 −0.499 −4.797

−4.681 6.177 −6.012 4.071
9.591 1.243 4.183 3.582
6.088 9.722 −0.242 −6.759
6.814 −3.898 −5.133 1.857

−3.940 9.085 4.484 0.384
1.298 8.228 5.075 5.790
5.729 6.322 6.601 5.250
12.880 −4.161 −1.979 3.278
5.969 −0.774 5.474 −7.249

−7.998 −3.909 3.114 −2.091
0.945 8.737 −5.064 2.118

−6.252 10.753 −0.610 −0.103
−1.991 7.002 −4.411 5.020 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑏ℎ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−16.787
−8.876
1.613

−11.669
−5.241
−2.085
−5.535
−9.546
−11.842
−2.292
0.758
2.971
1.358

−4.342
−10.364]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (11) 

 

 
 

 
 

Figure 8. Comparison graph of the ANN model with 

measurement data output 

 

Table 2. MSE value 

 

Input 
MSE form 

Training Data 

MSE form 

Testing Data 

t, Vt-1 8.994×10-3 8.430×10-3 

t, Vt-1, Vt-2 8.948×10-3 9.667×10-3 

t, Vt-1, Vt-2, Vt-3 8.963×10-3 9.533×10-3 

Vt-1, Vt-2, Vt-3 1.208×10-2 1.408×10-2 

 

0

0.188 0.081 0.087 0.

]

228 0.238 0.136 0.219 0.282 0.024 0.575 0.455 0.268 0.22-0.835 -0.905 2

1.129[

ow

b

− − − − − −=

=

− −
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Figure 8 shows the results of matrix modeling using training 

data and test data. Figure 8 consists of a training data graph, 

namely the actual solar power plant power data and a test data 

graph, namely a graph of the modeling results with the matrix 

obtained. It can be seen that the resulting graph is close to the 

actual data graph. The MSE value from the results of a 

comparison of the training data graph and the test data can be 

seen in Table 2. 

The smallest MSE value for reliability modeling using 

training data is 8.948×10-3 with the input variable time data, t 

and lag-1 voltage data, Vt-1. The MSE value in the training data 

for each variation of the input variable is not much different, 

which is in the range of 8.948×10-3 to 1.208×10-2. The 

smallest MSE value for the model with test data is 8.948×10-

3 with the input variable time data, lag-1, and lag-2 voltage 

data. MSE values in the test data are in the range of 8.994×10-

3 to 1.408×10-2. The ANN model is selected with t, Vt-1, Vt-2, 

Vt-3 as inputs. This is to accommodate all measurement values 

and to note that the MSE value is still less than 0.01. 

 

3.3 Results of reliability modeling 

 

The results of reliability modeling for solar power plant are 

anomaly detection and reliability graph that are shown in 

Figure 9 and Figure 10. 

Figure 9 shows an anomaly detection graph, namely a graph 

that shows the results of comparing the model output with 

measurement output. The number of detected anomalies is 507 

in 8402 data. Reliability calculations are carried out based on 

the anomalies that occur and are shown in Figure 9. 

Figure 10 shows a graph of the reliability of a solar power 

plant. The reliability value of the solar power plant in the first 

year is 0.683 and will continue to decrease by 0.376 in the 

second year. To produce maximum reliability, it is necessary 

to optimize performance by operating according to Standard 

Operating Procedures (SOP). In addition, preventive 

maintenance needs to be done when the reliability reaches 0.55 

with a maintenance interval of 21 months. 

 

 
 

Figure 9. Graph of anomaly detection 

 

 
 

Figure 10. Graph of reliability 

 

4. CONCLUSIONS 

 

Modeling of real time reliability monitoring system for solar 

power plants can be carried out using time series, past voltage 

data and time as input variables to predict future voltage data. 

The largest correlation coefficient value is the relationship 

between the voltage data from the current solar power plant to 

previous data for data after removing outliers, which is equal 

to 0.6429. The results of reliability modeling for the best 

predictive system are using input variables, time and voltage 

data with lag-1, lag-2, and lag-3. The resulting MSE value is 

8,963×10-3 for training data and 9,533×10-3 for test data. The 

solar power plants reliability value was 0.683 in the first year 

and continued to decrease by 0.376 in the second year. 

Preventive maintenance needs to be done when reliability 

reaches 0.55 with a maintenance interval of 21 months. 

Implementing this real-time reliability monitoring system in 

existing solar power plants can optimize maintenance 

scheduling, reducing unexpected failures and operational 

downtime. This approach can lead to significant cost savings 

by extending the lifespan of system components and 

minimizing unnecessary maintenance expenses. Future 

research will develop a system for detecting or identifying 

types of errors in the machine using machine learning 

algorithms. 
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